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Abstract

Parallel Programming relies on the coordination of computing resources, so that they

simultaneously work towards a common objective. Achieving this requires extra effort

from the software designer, because of the increased complexity involved. Furthermore,

as Parallel Programming is considered a means to improve performance, the software

designer has to consider sophisticated and cost-effective practices and techniques for

performance measurement and analysis. In particular, it is of great interest to obtain per-

formance information during design stages and before implementation, since this enables

the software developer to select the organisation of computations and communications

between components.

The Architectural Performance Modelling Method is presented as a criteria for

selecting the organisation of a parallel program based on estimating its probable per-

formance. By considering a parallel program as an instance of a software architecture, it

can be described in terms of interacting software components. Such components can be

classified depending on their particular objective and their rate of change, for example,

as components associated with the hardware and software environment (or Platform),

components representing the fundamental structural organisation for execution and com-

munication (or Coordination), and so on. The performance of a parallel program can be

estimated as the result of the contribution of each one of those kinds of components.

An Architectural Performance Model is based on selecting from the Architectural

Patterns for Parallel Programming (descriptions of coodinations commonly used in Par-

allel Programming), a component simulator (representing a simulation of a processing

component’s behaviour), and a performance analysis of parallel applications (in which

the information on system performance is examined). Parallel programs simulated using

the Architectural Performance Modelling Method range from a complete parallel pro-

gram to a partially implemented program design. The simulation of parallel systems,

using the information about the problem to be solved, the available resources, and archi-

tectural patterns describing overall coordinations of the parallel programs, makes it pos-

sible to identify the best performing architectural solution for the system being built.
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Chapter 1

Introduction

“Une oevrue qui serait le pur produit d’une combintorie préexistante n’existe pas

pour l’historie de la littérature... Aussi l’oeuvre d’art (ou de science) comporte-t-elle

toujours un élement transformateur, une innovation du système. L’abscence de dif-

férence égale l’inexistence”

“A work that is the pure product of a preexisting combination does not exist for the

history of literature... Thus, the work of art (or science) behaves always as a trans-

former element, an innovation of the system. The absence of difference equals the

inexistence”

Todorov

1.1 The Context

Parallel processing is defined as the division of work among multiple processors that

operate simultaneously with a common objective. The expected result is, commonly, a

faster completion of the objective in comparison with single processor execution. Its

main advantage is the ability to handle tasks of a scale that would not be realistic nor

cost-effective for other systems. However, it is generally recognised that designing soft-

ware for parallel computers is hard (Carriero & Gelernter, 1988; Chandy & Taylor, 1992;

Darlington &To, 1992). Parallel computers have become a platform for high-perform-

ance applications, but remain a challenging environment in which to achieve good per-

formance. One reason for this is the difficulty of estimating the execution time of a

parallel application.

Software design is a critical feature in parallel programming because the process is

significantly more complex than for programming sequential programs on single proces-

sor computers. Examples can be found in the history of parallel software design, where

scientific code (such as numerical analysis, fluid dynamics, etc.) has been hand-crafted

for specific machines and problems, at immense expense (Andrews, 1991; Brinch-
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Hansen, 1977; Foster, 1994; Culler et al., 1997; Pancake & Bergmark, 1990; Skillicorn

& Talia, 1996).

Parallel Software Design begins when a particular need for high-performance is

identified, and a software designer is asked to start the design of a parallel software pro-

gram. Usually, hardware and software resources are known and given: a parallel program

must be designed, using a specific programming language, for a particular parallel hard-

ware. The problem to solve is normally already described in terms of a data set and an

algorithm that performs operations on it. This algorithm can be a sequential algorithm, or

better, an already parallelised algorithm. Generally, performance as execution time is the

feature of interest to contend with (Pancake & Bergmark, 1990; Pancake, 1996).

Parallel programming relies on the coordination of computing resources, so that they

simultaneously work towards a common objective. Achieving this requires extra effort

from the software designer, because of the increased complexity involved. Furthermore,

as parallel programming is considered a means to improve performance, the software

designer has to consider sophisticated and cost-effective practices and techniques for

performance measurement and analysis. Most programming problems have several par-

allel solutions, and therefore parallel software design cannot easily be reduced to recipes.

At best, the designer has some parallel organisation structures, and would like to decide

which one to use as the basis of the parallel system to be built. Commonly, the selection

is carried out based only on the information available at this stage and the intuition of the

designer. However, as the cost of the parallel design is high, complementing the informa-

tion available with quantifiable information would be an important advantage.

1.2 The Problem

Performance is considered as the main driving factor for most of the history of parallel

programming. Even though performance is not considered as the only goal of Parallel

Software Design, it is important to recognise that the primary objective of using parallel

systems is performance (Pancake & Bergmark, 1990; Pancake, 1996).

“Performance refers to the responsiveness of the system — the time required to

respond to stimuli (events) or the number of events processed in some interval of time”

(Smith &Williams, 1993). Performance is an architectural quality attribute, since it is a

function of the amount of interaction between the components of a program. This is

especially relevant if the components execute on different computing elements, such as
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in parallel or distributed systems. Furthermore, it is still true if all components execute

on the same processor (Bass et al., 1998).

In particular, it is of great interest and advantage to obtain performance information

during the design stages and before implementation, since this enables the software

developer to more reliably select the parallel organisation structure of computations and

communications between components. If attention is given to performance estimation

during the design phases by working through parallel design alternatives while attempt-

ing to meet overall performance objectives, problems and risks during parallel software

development can be mitigated.

However, performance is an important aspect generally neglected during design

stages in general software development. Usually, traditional software design methods

follow a “fix-it-later” approach towards performance, concentrating on software correct-

ness, and deferring performance until the later phases of software development (Smith

&Williams, 1993). Typically, methods in Parallel Software Design have adopted the

“fix-it-later” approach from traditional software design methods. In these methods, par-

allel software is analysed for correctness during design phases, but performance issues

are deferred to be corrected later. If performance requirements are not met, the software

is “tuned” to correct them, or additional hardware is used.

The “fix-it-later” approach is clearly undesirable, in particular for parallel systems.

For example, if severe performance problems are discovered late in the development,

extensive changes to the whole software and system architecture may be required to deal

with them. Furthermore, as these changes are made late in the development process, they

can increase development cost, deployment delay, or adversely affect other desirable

qualities of a design, such as understandability, maintainability or reusability.

An alternative might be to design for performance from the beginning, by selecting

from several parallel organisation structures, using simulations, the one which best per-

forms for the parallel system being built. The simulations can be executed to calculate

the performance estimation for each particular parallel organisation structure. Early per-

formance estimation, based on parallel software architecture and simulations, allows the

selection of the appropriate architecture before the implementation, using a quantitative

criteria.
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1.3 The Hypothesis

The main objective of this research can be expressed as the confirmation of the following

hypothesis:

“Given a problem to be solved and a set of parallel hardware and software

resources for deployment, it is possible to obtain a reasonable estimate of the

performance characteristics of a parallel program during the initial stages of

parallel software design in order to identify the architectural pattern that will

produce the best performance for the program.”

Initially, we must establish what “a reasonable estimate of the performance charac-

teristic of a parallel program” means. We propose the following two assumptions:

1. Reproducibility Assumption. Each execution of a parallel program on a platform

yields an execution time. Nevertheless, it is very unlikely that two or more executions

of the same parallel program would yield exactly the same execution times. It is well

known that the variations in the execution of a real parallel program are due to the

non-determinism in its execution environment, which typically arise from sharing

computer resources among several programs (Foster, 1994; Culler et al., 1997).

Hence, for the purposes of the present thesis, the performance characteristics of a par-

allel program is presented as an average execution time. This way, our objective

would not be to predict a unique execution time, but more likely to estimate an aver-

age execution time that is representative of all the possible execution times of the par-

allel program on the platform. If the execution environment for the parallel program

can be held constant, the average execution time can be used to characterise the exe-

cution of the parallel program on a given platform.

2. Fidelity Assumption. The estimates are accurate approximations, not exact predic-

tions, of the performance characteristic of the execution time of the real parallel pro-

gram. Thus, the estimated average execution time should be as close as possible to the

actual average that can be statistically obtained from all the measured execution

times.

We define what is meant by a reasonable estimate as follows: An estimate is reason-

able if it can reproduce the performance characteristics of a real parallel program under

the reproducibility and fidelity assumptions. Thus, reasonable estimates can be produced

and used for architectural design decisions and for assessing the probable performance

characteristic of a parallel program.



17

1.4 The Approach

An architectural design approach is proposed, providing a method to support perform-

ance estimation at the early stages of parallel software design. The main goal is to pro-

vide a quantitative criterion for evaluating design alternatives. In this research work, we

propose the Architectural Performance Modelling Method as a way of selecting from

design alternatives by estimating their performance.

By considering a parallel program as an instance of a software architecture, it can be

described in terms of interacting software components. Such components can be classi-

fied depending on their particular role as:

• components representing or associated with the hardware and software environment

(or simply platform components);

• components representing the fundamental organisation for coordination and commu-

nication (or simply coordination components); and

• components providing particular processing functionalities (or simply processing

components).

The method proposes that the performance of a parallel program can be estimated

from the execution times that all individual components require to carry out their coordi-

nating or processing activities. Performance is understood, modelled and analysed from

an architectural point of view by using “scale-models”. The objective is to keep these

scale-models as simple as possible, while providing acceptable accuracy. This is

achieved by considering that processing and communication are activities sharply sepa-

rated among coordination and processing components. Even though this may not be

always the case, our objective in this research work is to prove that such a supposition

does not introduce a considerable error for performance estimation. So, our scale-models

can effectively be used to estimate the performance of parallel programs with different

coordination organisation, and hence, to select the best performing coordination for the

problem at hand.

The scale-model proposed here is the Architectural Performance Model (APM). This

model is based on Architectural Patterns for Parallel Programming (descriptions of coor-

dination organisations commonly used in parallel programming) and a generic Compo-

nent Simulation (a simulation of a component’s processing behaviour). An APM can be

used to simulate parallel systems, ranging from a complete parallel program to a partially
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implemented program design. This simulation of a parallel system, using the available

hardware and software, makes it possible to calculate an estimate of its performance.

1.5 Contributions

The main goal of this thesis is the development of an Architectural Performance Model-

ling Method for identifying the best performing coordination, based on the performance

estimation of the parallel programs. This covers the following main contributions:

1. The development of the Architectural Performance Modelling Method, allowing par-

allel program developers to estimate the performance of a parallel program based on

information from a particular architectural pattern (Chapter 4), and use this informa-

tion for comparing purposes between architectural patterns.

2. The Architectural Patterns for Parallel Programming, which describe the coordination

at the architectural level of parallel software programs, and their initial selection crite-

ria (Chapter 5).

3. The construction of a Component Simulation that represent the processing time

behaviour of the processing components of a parallel software program (Chapter 6).

1.6 Thesis Structure

The thesis is structured as follows:

• Chapter 2. Background. This chapter provides an introduction to Parallel Program-

ming, explaining the general nature and characteristics of parallel programs, the fac-

tors that influence their development, and the main models of parallel programming

used for their design. It also presents an introduction to Software Architecture,

describing some standard notions of several concepts in the architecture-oriented

research, and some relations between software architecture and performance model-

ling. Finally, a description of architectural software design is presented, introducing a

vocabulary for the present research work, that is used and applied in the following

chapters for describing concepts within Parallel Software Design.

• Chapter 3. Related Work. This chapter introduces a review of the relevant related

work in Software Performance Modelling, as approaches that combine Software

Architecture and Performance Modelling, and approaches to performance estimation

of parallel and distributed systems. The related work is organised as follows: first, an

introduction to Software Performance Modelling is presented, describing some basic
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notions within this research area. Next, the main approaches that attempt to relate

Software Architecture and Performance Modelling are briefly described, paying

attention to their main characteristics. The following section describes the main

research work in the area of performance modelling of parallel and distributed pro-

gramming, describing their main features. Finally, descriptions of the Archetypes/

eText project, the Algorithmic Skeletons, and the Structural Modeling are presented

as architectural approaches to parallel software design with similar objectives than the

Architectural Performance Modelling Method.

• Chapter 4. Architectural Performance Modelling Method. This chapter presents

the Architectural Performance Modelling Method as a method for estimating the per-

formance of a parallel application, by obtaining and analysing the information and

response time of its coordination components at the architectural level.

• Chapter 5. Architectural Patterns for Parallel Programming. This chapter intro-

duces the concept of architectural pattern, its relation with performance, and the

Architectural Patterns for Parallel Programming. These last ones describe the coordi-

nation layer of an overall parallel software architecture, and whose initial selection

constitutes the first main step of the Architectural Performance Modelling Method.

The architectural patterns commonly used in parallel programming introduced here

are Pipes and Filters, Parallel Hierarchies, Communicating Sequential Elements,

Manager-Workers, and Shared Resource.

• Chapter 6. Architectural Performance Model Construction. The Architectural

Performance Modelling Method relies on two types of simulations and a model to

estimate the performance of early parallel software plans: the Coordination Simula-

tion, the Component Simulation, and the Architectural Performance Model. The

Coordination Simulation is constructed as a runnable instance of an architectural pat-

tern. A Coordination Simulation can execute for typical workload scenarios, which

specify the coordination operations to be performed in response to predefined events.

Also, this chapter presents the Component Simulation, as a simulation of the process-

ing behaviour and performance of a single active object, using the Active Object Pat-

tern and elements of Queuing Theory. Finally, the Architectural Performance Model

is constructed from gathering both simulations, so the effect of the platform, the coor-

dination, and the processing are taken into account for the calculation of performance

estimates.
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• Chapter 7. Performance Simulation and Calculation. This chapter presents the

actual performance simulation, executing the Coordination Simulation and the Archi-

tectural Performance Model, and the calculation of performance estimates using the

data taken from the simulations.

• Chapter 8. Evaluation of the Method. In order to test the validity of this method for

performance estimation, and its utility for parallel architecture selection, a set of

experiments are proposed for: (a) testing the modelling method, and (b) using the

method for comparing three architectural patterns for solving three different prob-

lems.

• Chapter 9. Conclusion. This chapter presents a review of the research in the form of

a critical summary of the research work is presented, restating the hypothesis and con-

tributions of the thesis. A future work section is presented, summarising the next steps

to follow into the research of software architecture, and its application to parallel pro-

gramming.
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Chapter 2

Background

“Tous les autres arts obéissaient et se mettaient en discipline sous l’architecture”

“All the other arts were obedient and submitted to the discipline of architecture”

Victor Hugo

The objective of this chapter is to provide (a) an introduction to Parallel Programming,

explaining the general nature and characteristics of parallel programs, the factors that

influence their development, and the models of parallel programming; (b) an introduc-

tion to Software Architecture, describing some standard notions of several concepts in

the architecture-oriented research, and some relations between software architecture and

performance modelling; and (c) a description of architectural software design, introduc-

ing a vocabulary for the present research work, that is used and applied in the following

chapters for describing concepts within Parallel Software Design.

2.1 An Introduction to Parallel Programming

Parallel programming is based on the division of a processing task among multiple proc-

essors that operate simultaneously. A parallel program is, then, the specification of a set

of processes executing simultaneously, and communicating among themselves in order to

achieve a common objective. The expected result is to perform such processing in a

faster way compared to its execution on a single-processor system. Its main advantage is

its ability to handle tasks of a scale that would not be realistic or cost-effective for other

systems. Nevertheless, it is generally recognised that parallel programming is a difficult

activity. In theory, parallel programming is simply to apply multiple processors to a sin-

gle problem. However, in practice, parallel programming tends to be difficult and costly,

since it requires a greater effort from the programmer, who has to consider new forms for

understanding and programming in a parallel execution environment. Usually, traditional
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techniques used in single processor systems for reviewing and correcting defects and for

improving the performance are not directly applicable or portable to parallel program-

ming. Moreover, it is necessary to consider that the parallel execution environment is

inherently unstable and unpredictable (or simply, non-deterministic). Such an execution

environment could be a network of workstations, a grid of personal computers, or a high-

performance parallel processing system. It is common that, after months of programming

a parallel program, it is found that it yields incorrect results, or executes slower that its

sequential counterpart.

Generally, performance has been considered the driving factor for most of the his-

tory of parallel programming. Performance refers to the response capability of a parallel

system, this is, the time required to respond to stimuli (events) or the number of events

processed in some interval of time (Smith, 1990). Ultimately, performance is the reason

for using parallel systems (Pancake & Bergmark, 1990; Pancake, 1996).

2.1.1 Directions in Parallel Programming

“If one is good, then 10 or 1,000 should be better” (Bond, 1987). Ideas like this origi-

nated parallel programming. Even though such a statement is not necessarily true, it pro-

poses a primary attraction towards parallelism. It is a fact that those who have

contributed in the development of computing have accepted parallelism as a novel way

to solve programming problems.

Several competitive methods were proposed for organising parallel programming,

but there was very little evidence as to which design was superior, nor there was suffi-

cient knowledge on which to make a careful evaluation. Flynn (Flynn, 1966) helped ini-

tiate an organised study of high-speed computer architecture by showing that parallel

programming falls naturally into four classes. Within this classification system, it is pos-

sible to make some non-trivial observations about the utility of a computer system and its

relative cost-effectiveness on specific types of problems. Flynn proposed that in dealing

with parallel computer systems and programming, it is quite natural to classify comput-

ers in terms of parallelism within the instruction stream and parallelism within the data

stream (Flynn, 1966). In this context, by instruction stream we mean the sequence of

instructions that are executed in a processing unit. By data stream we mean the sequence

of operands that are manipulated by the processor. Flynn observed that the methods for

achieving a parallel operation depended on replicating the instruction stream and the data
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stream. This gives rise to four types of computers: the single instruction single data

(SISD), which is a sequential computer; the single instruction multiple data (SIMD),

which is a vectorial processor that operated one instruction on a data vector; multiple

instruction single data (MISD), which is considered as an unrealistic mode for parallel

computers; and the multiple instruction multiple data (MIMD), which is composed of

various processors, each of which is a complete computer. Only SIMD and MIMD are

considered to be realistic approaches to parallel programming.

Parallel programming properly emerged during the late 1960’s and 1970’s, attempt-

ing to model how parallel processes could be expressed in programming terms, and to

improve performance of computer systems. The following sections present and describe

some of the most influential contributions to parallel programming, which have served as

base for the research nowadays.

“Co-operating Sequential Processes”, by E.W. Dijkstra

In 1968, E.W. Dijkstra presents his paper “Co-operating Sequential Processes” (Dijkstra,

1968), in which he develops an initial proposal for the treatment of parallelism in a pro-

gramming language, beginning with elements of sequential programming, and finally

proposing new elements of programming using a notation similar to the ALGOL60 pro-

gramming language.

In this paper, Dijkstra adds some new concepts to sequential programming, in order

to extend it into a concurrent programming. He defines elements such as co-routines or

concurrent processes (using the reserved words parbegin...parend, which are inter-

preted as the parallel execution of processes within a program), mutual exclusion, event

synchronisation, critical section, and the definition of a new data type called sema-

phores. Besides, Dijkstra makes emphasis in a new problem which generates as a result

of trying to execute parallel processes, referring to it as deadly embrace or deadlock.

The central idea in this paper is based on the data exchange among independent and

sequential processes which non-deterministically execute at different speeds, through

shared variables. These variables are modified using indivisible operations of inspection

and assignment. In this paper, Dijkstra’s objectives are “code clarity and safety of shared

information” (Dijkstra, 1968).

The importance of Dijkstra’s work relays on the proposal of a base on which support

the concepts of parallel and distributed programming. This work is particularly refer-
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enced as the background of many other researches by Habermann, Peterson, Hoare,

Brinch-Hansen, and others that have proposed new techniques to solve the problems of

mutual exclusion and synchronisation around the concept of semaphore.

“Communicating Sequential Processes”, by C.A.R. Hoare

Hoare’s work has been fundamental for the development of parallel programming during

the last years. His main contribution has been the definition of a language for the formal

specification of parallel algorithms, known as CSP (Communicating Sequential Proc-

esses). This language is defined in the paper with the same name (Hoare, 1978).

In this paper, Hoare starts performing an analysis of the basic structures used in pro-

gramming: assignment, sequence, repetition, and selection. He comments new structures

for expressing parallelism, communication, and control of non-determinism between

processes within a multiprocessor architecture.

Hoare exposes the main characteristics for a parallel language, expressing the fol-

lowing proposals (Hoare, 1978):

• Use the concept of guarded commands, proposed by Dijkstra, as a mechanism for

controlling non-determinism.

• Consider a parallel command based on Dijkstra’s parbegin...parend, which

specifies the parallel execution of commands or processes that compose them. It is

considered that all processes initiate simultaneously, and the parallel command final-

ises only when all its constituent processes finalise.

• Use of simple forms of input and output for communication between processes.

• Communication between processes is established only when a process invokes

another process as its output, and the last process invokes the first process as its input.

In such a case, the output value is copied from the sending process as an input value to

the receiving process. There is no temporal storage or buffering during communica-

tion, this is, the two processes that invoke input and output operations suspend their

execution until sending or receiving data. The delay is invisible for both processes

(but it is not for the execution of the program as a whole).

• The input commands can appear as guards. A guarded command in an input executes

only when the associated process to such an input executes an output command. If

several input guards are in such a situation, only one is arbitrarily selected and exe-

cuted, and the others have no effect.
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• It is proposed the use of an element of pattern correspondence to discriminate the

input structure. Such an element is used to inhibit the input of messages that do not

present the specified pattern.

These characteristics largely define the behaviour of programs in CSP. Conse-

quently, CSP is a static language which can be used in a conventional machine with sin-

gle storage or in a fixed network of processors connected through input/output channels.

Also (and due to the previous point) the language does not allow recursion as other pro-

gramming languages do. Finally, the language is restricted to the necessary bare mini-

mum in order to obtain a more flexible implementation of applications.

Even though this paper by Hoare is a milestone for the development of parallel pro-

gramming, it has the disadvantage of not proposing a proof method that assists the con-

struction and test of correct programs. In fact, such a method is exposed later in detail by

Hoare himself, in a book about the same theme (Hoare, 1985).

“Distributed Processes: A Concurrent Programming Concept”,

by P. Brinch-Hansen

Also in 1978, and with the development of network communication among computers,

Brinch-Hansen writes a paper in which he proposes another kind of parallelism (Brinch-

Hansen, 1978). Brinch-Hansen’s proposal for parallel programming is based on the inter-

communication of uni-processor systems via a network system. His work introduces the

concept of distributed system as a form of concurrent programming. It focuses on real-

time programming that, in his opinion, has the following characteristics (Brinch-Hansen,

1978):

1. Real-time programming interacts with an environment in which simultaneous events

happen at a great speed.

2. A real-time program must respond to a series of non-deterministic inputs from the

environment, that is, it is not possible to predict the order in which the inputs arrive,

but the program should be prepared to respond within a limit of time.

3. A real-time program controls a computer with a fixed configuration of processors and

peripherals, performing in most of the cases a fixed number of concurrent tasks in its

environment.

4. A real-time program never ends, but continues serving its environment as long as the

computer keeps working.
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From these characteristics, and based on the programming language Concurrent Pas-

cal proposed by himself, Brinch-Hansen analyses the properties of a new programming

language for real-time applications. These properties are (Brinch-Hansen, 1978):

• A real-time program consists of a fixed number of concurrent processes that start

simultaneously. Each process has its own variables; however, there are no common

variables among processes.

• A process can generate a call for common procedures defined in another process. This

is the only form of communication between processes.

• Processes synchronise through non-deterministic instructions known as guarded com-

mands.

• Processes can be used as programming modules of a multiprocess system with shared

or distributed memory.

• To satisfy the real-time programming requirements, each processor of the system is

dedicated to a single process.

These properties have originated what is known as remote procedure call (RPC),

which is the base of distributed programming today; for instance, it forms the basis of

distributed communication in CORBA (OMG, 1998) and Java’s Remote Method Invoca-

tion (Hartley, 1998; Smith, 2000). The paper continues with the description of a distrib-

uted language based on Concurrent Pascal, examples of some implementations, and

some ideas around the implementation of the language. Finally, as a conclusion, Brinch-

Hansen mentions that the properties of distributed programming are very similar to

Hoare’s CSP. The importance of this paper by Brinch-Hansen relays not only on the def-

inition and use of RPCs, but also on the considerations made for real-time programming.

Based on the concepts, properties and characteristics proposed by Dijkstra, Hoare, and

Brinch-Hansen, other authors have taken the task to develop further such ideas in formal

terms and different languages for concurrent, parallel and distributed programming

(Hoare, 1985; Andrews, 1991; Lynch, 1996; Hartley, 1998; Andrews, 2000). In the area

of Software Engineering, some authors have developed different methods for parallel pro-

gramming (Foster, 1994; Culler, 1997). 
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2.1.2 Factors that influence the Performance of a Parallel Program

Parallel programming is complex activity, aiming for developing specifications of paral-

lel processes which execute simultaneously and non-deterministically. Commonly, paral-

lel programming is developed in order to obtain performance gains about execution time.

Nevertheless, the performance obtained when applying parallel programming is affected

by the hardware platform, the programming language, and the problem to solve (Pan-

cake, 1996). The following sections briefly describe some important features of these

factors.

The Hardware Platform

Generally, a parallel computer is considered as any hardware collection of processing

elements connected through some type of communication network (notice that a

“processing element” is composed by a processor and its associated memory as hardware

devices). Nowadays, such parallel computers range among prices and sizes, from a group

of workstations connected through a LAN, to a high-performance (and cost) computer

involving hundreds or thousands of processors, which are connected through a high-

speed network. Clearly, the performance of any parallel application is restricted by the

speed, capacity and interfaces of each processing element.

Programming a parallel computer depends on the way in which the memory of the

hardware platform is “organised” or “divided” among the processors. There are two

commonly used organisations of memory: shared memory and distributed memory.

Depending on which organisation is used for a parallel computer, different mechanisms

for process communication are selected for programming.

• Shared Memory. A shared memory multiprocessor system allows access from any

processor of the system to any location within a common memory, through an inter-

connection network. In most cases, such network is completely hardware controlled,

independent from the activity of the programmer, who only perceives a shared, cen-

tral, and continuous memory. Each memory location or address in unique and identi-

cal for any processor of the system.

Communication between processes in a shared memory system can be carried out

normally by reading or writing shared variables. When a processor reads from or

writes on a specific memory address, the network proceeds automatically by selecting

the appropriate memory block. In order to guarantee data integrity, programming
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mechanisms have been proposed to support communication between processes, pro-

viding planning, synchronisation, and coordination between communicating proc-

esses. Common programming mechanisms for a shared memory computer are

semaphores (Dijkstra, 1968), and monitors (Hoare, 1974).

• Distributed Memory. A distributed memory multiprocessor system allows that each

processor directly accesses only its own memory, communicating with the memory of

other processors through explicit I/O operations, and through a interconnection net-

work. This network is composed of a set of connections between processors or nodes,

based on a specific topology. During the execution of a parallel program, the network

may remain the same (static) or change (dynamic) in accordance with the program

needs.

Communication between processes in a distributed memory system is performed

through message passing, which implies the explicit I/O operations of sending and

receiving messages. Each processor “recognises” the difference between its local

memory and the memory of other processors, so it is able to freely read and write data

from its local memory. Nevertheless, when a processor requires to read or write data

from another processor’s memory, it should do it through request, explicitly by a mes-

sage passing operation.

Message passing is defined as a communication model for distributed memory sys-

tems. The characteristics of such a communication model are (a) point to point, (b)

unidirectional, and (c) non-buffered (Hoare, 1978). The actual programming mecha-

nisms used for message passing are input/ output operations (Hoare, 1978; Hoare,

1985), channels (Pountain & May, 1987), and remote procedure calls (Brinch-

Hansen, 1978).

The Programming Language

The programming language obviously affects the effort required to parallelise an appli-

cation. Moreover, extreme variation in compiler capabilities and run-time support envi-

ronments means that the language also constrains the performance to attain. The type of

programming libraries that can be used into a program is often a key indicator of both

effort and performance that can be achieved using a particular programming language.
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In general, a parallel language can be considered as such mainly by its capacity to

express basic characteristics of parallelism, sequencing, communication, and control of

non-determinism between processes (Hoare, 1978).

• Parallelism. A parallel language should be able to describe the parallel execution of

processes, using an instruction for parallel composition. This instruction is required

since the sequential programming languages normally do not have a programming

construction defined to express parallelism. The need for such an instruction has been

notorious since the beginning of parallel programming (Dijkstra, 1968; Hoare, 1978).

Dijkstra (1968) proposes an extension to ALGOL60, using a structure based on the

delimiters parbegin...parend. Processes declared between these delimiters are

executed simultaneously. This is known as a parallel composition.

Dijkstra’s considerations have given as a result what constitutes in various parallel

languages as the parallel instruction, which represents the simultaneous activation of

disjoint processes, with an independent execution speed among themselves. The par-

allel instruction successfully finishes only when all the processes it generated success-

fully finalise.

There are various derivations of the parallel instruction depending on the language.

Parallel instructions, for example, are the instructions cobegin...coend of Concur-

rent Pascal (Brinch-Hansen, 1978), the construction P1||P2||...||PN of CSP

(Hoare, 1978; Hoare, 1985), and the instruction PAR of the Occam programming lan-

guage (Pountain & May, 1987). These instructions represent what is considered as

inter-process parallelism. There are other examples of mechanisms which allow to

represent intra-process parallelism, as it is the case with Java threads (Smith, 2000),

and tasks in Ada (Burns & Wellings, 1997).

• Sequencing. The expression of sequential instructions is present as the basic feature of

most sequential programming languages. However, in a parallel programming lan-

guage, it is necessary to explicitly represent a sequential composition (or sequential

instruction), in order to contrast its action with the parallel composition.

The sequential instruction express a set of disjoint processes that activate in sequence

as they appear within the instruction (Hoare, 1978). It successfully finalises if all and

each process in the sequence finalise; on the contrary, it is interrupted, and its execu-

tion fails.

In general, several programming languages explicitly express the sequential instruc-
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tion through the inclusion of the symbol “;” between the instructions of the sequence.

Languages such as ALGOL60, Pascal, C, and others present such an expression,

which has been also considered by several parallel languages. Examples are the con-

struction P1;P2;...;PN in Concurrent Pascal (Brinch-Hansen, 1978) and in CSP

(Hoare, 1978; Hoare, 1985). Other parallel languages, such as Occam, explicitly

introduce the SEQ instruction (Pountain & May, 1987).

• Communication and synchronisation. A parallel language has to provide expressions

for communication and synchronisation of processes. There are several mechanisms

for communication and synchronisation between parallel processes. Normally, their

use depends of the organisation of memory used: shared memory or distributed mem-

ory. A parallel language for a shared memory system requires to express communica-

tion through shared variables by primitives for read or write (or simply assign) such

variables. The synchronisation of such actions is based on the use of mechanism such

as semaphores (Dijkstra, 1968) or monitors (Hoare, 1974). A parallel language for a

distributed memory system expresses communication through message passing by

primitives for send and receive messages (Hoare, 1978; Brinch-Hansen, 1978).

In particular for message passing in distributed memory systems, the synchronisation

is based on blocking the processes during communication, considering the following

characteristics (Hoare, 1978): (a) the send instruction in the sending process specifies

a expression whose evaluation is assigned to a variable in the receiving process; (b)

the receive instruction in the receiving process specifies a variable which is assigned

to the result of the expression in the sending process; (c) the data type of the variable

in the receiving process and the result of the expression evaluation in the sending

process should have the same data type; (d) the send or receive instruction in a proc-

ess remains blocked until its counterpart in another process is successfully executed,

which establishes communication; (e) once the communication is completed, both

processes continue their independent execution; and (f) in case that a parallel program

finalises, and a process within such a program has not successfully carried out a send

or receive instruction, the whole program fails.

Examples of send and receive instructions are respectively P1!expression (send)

and P2?variable (receive) in CSP (Hoare, 1978; Hoare, 1985), and C!expres-

sion (send in P1) and C?variable (receive in P2), which uses a channel C in

Occam (Pountain & May, 1987). Additional examples for shared variables include the
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synchronized keyword in Java (Smith, 2000), and entry calls in Ada (Burns & Well-

ings, 1997).

• Non-determinism. A parallel language has to provide expressions for controlling non-

determinism. Non-determinism is a characteristic of concurrent and parallel program-

ming in which the order (or track) of simultaneous operations performed by a set of

parallel processes (each one executing at different speed) is arbitrary. If such opera-

tions are, for example, send or receive operations, the characteristic of non-determin-

ism establishes that the order of how those send and receive operations cannot be

known beforehand during programming. Each execution of the program produces a

(probabilistic) different order of instruction performed through time. Nevertheless,

the simultaneous sequential processes involved in the parallel program are expected

to still execute their operations in the order defined for each one of them.

Even though non-determinism is generally considered as a consequence of parallel

execution, in several cases it is not convenient to allow a completely random parallel

execution. Many times, it is necessary to verify several conditions, for instance, to

receive a message. So, non-determinism is normally controlled using a boolean

expression, known as guard, that conditions the execution of some particular instruc-

tions. The set of guards and instructions are known as guarded command, and it is the

base of another kind of instructions used for dealing with non determinism: the alter-

native instruction (Hoare, 1978).

In an alternative instruction, all guards are simultaneously evaluated, executing only

the guarded command associated with the successful guard, this is, the boolean

expression which resulted true. In case that more than one guard is evaluated as true,

the instruction arbitrarily selects a guarded command associated with one of the suc-

cessful guards. The alternative instruction is executed, expecting that at least one

guard is verified. If no guard is verified, the instruction fails.

Examples of alternative instructions are the instruction [C1→P1[]...[]CN→PN]

in CSP (Hoare, 1978; Hoare, 1985), and the ALT instruction of Occam (Pountain &

May, 1987). Another example is the select statement in Ada (Burns & Wellings,

1997).
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The Problem to Solve

The division of the problem to solve, expressed as an algorithm and/or a set of data, is a

key for the success or failure of a parallel program. In particular, the patterns for data

access and the algorithm order indicate the way in which processing has to be carried

out, an in turn, it is related with performance. Furthermore, if partitioning of an algo-

rithm and/or data is the base for parallel execution, then parallel programming is strongly

affected by the order and dependence among instructions (as elementary parts of the

algorithm) and/or datum (as basic part of the data), independently of the nature of the

actual problem to solve. This is due to the “orthogonal dimension” that characterises

concurrent execution (Wegner, 1987).

Even though some simple, well-structured problems have been successfully solved

by means of improvements in the area of compilers design (for example, the automatic

parallelisation in Fortran, as developed by Burke et al. (1988), Kuck et al. (1998), and

many other authors), other problems have remained as a challenge for obtaining an effi-

cient parallel solution.

Based on this idea, Parallel Software Design has been developed during the last few

years, providing a way to organise software that contains relatively independent parts

and at the same time to efficiently make use of multiple processors. The goal is to solve a

given problem faster or equivalently to solve a larger problem in the same amount of

time. Although there are many parallel programming applications, such applications

employ only a small number of “programming structures” as solutions. Many

approaches have been presented up to date: outlines of the program (Chandy & Taylor,

1992), programming paradigms (Kleiman et al., 1996), parallel algorithms (Hartley,

1998), architectural patterns for parallel programming (Ortega-Arjona & Roberts,

1998a), high-level design strategies (Lewis & Berg, 2000), and paradigms for process

interaction (Andrews, 2000).

2.1.3 Models for Parallel Programming

A question that now arises is how do we select a programming structure in order to build

a parallel program? On a large spectrum of approaches, three basic models for parallel-

ism deserve special mention: functional parallelism, data parallelism, and activity paral-

lelism. These models are conceived from the partitioning policy of data and/or algorithm

(see Section 2.1.2), establishing three different forms to think about parallelism, and
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design parallel programs. Moreover, they also represent different ways of analysing par-

allelism.

Each one of the models of parallelism can be envisioned in terms of a characteristic

of a parallel programming: the program’s algorithm, the program’s data, or both. So, the

three models are described as follows:

1. Functional parallelism. Functional parallelism (also known as task parallelism or

specialist parallelism) focuses on the decomposition of the algorithm (Carriero &

Gelernter, 1988; Chandy & Taylor, 1992; Foster, 1994; Pancake 1996). The objective

is to divide the algorithm into disjoint tasks, which are able to be executed simultane-

ously. Once divided into disjoint tasks, the data requirements of each task (input data

and output data) should be examined. If the data requirements for each task is also

disjoint, then the division is completed. Nevertheless, if the data requirements overlap

significantly, considerably communication is necessary in order to avoid replication

of data.

In functional parallelism all tasks start simultaneously, but initially most tasks will

have to wait until data is available for them. Different tasks may carry out different

operations, and all these are organised so they accomplish the algorithm as a whole.

Once under way, different tasks operate on different pieces of data. The main idea

behind functional parallelism is to allow the execution of tasks, by overlapping and

proceeding simultaneously. Also, each task is normally assigned to perform one spec-

ified kind of work or operation, and they all work in parallel up to the natural restric-

tions order and precedence imposed by the problem (Carriero & Gelernter, 1988;

Pancake 1996).

2. Domain parallelism. Domain parallelism (also known as data parallelism or result

parallelism) is based on decomposing the data associated with the problem (Carriero

& Gelernter, 1988; Chandy & Taylor, 1992; Foster, 1994; Pancake 1996). If possible,

the data is divided into smaller pieces of approximately equal size. Now, the algo-

rithm is divided, typically by associating each task with the data it operates on. This

division yields a number of tasks, each comprising some data and a set of operations

on that data. An operation may require data from several tasks, so communication is

required to move data between tasks.

In domain parallelism all tasks start simultaneously. Separate tasks are set to operate

on different data at the same time. They all proceed in parallel, up to the point until
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the work on a piece of data cannot proceed until another is finished. In sum, each task

is assigned to produce one piece of the result, and they all work in parallel up to the

natural restrictions of order and precedence imposed by the problem (Carriero & Gel-

ernter, 1988; Pancake 1996).

3. Activity Parallelism. Activity parallelism (also known as agenda parallelism)

requires partitioning both, the data and the algorithm (Carriero & Gelernter, 1988;

Pancake 1996). A number of independent tasks are set to operate on the data. Differ-

ent pieces of data are operated on by different tasks. Each task can be considered as a

“worker”, capable of grabbing some data, performing part of the algorithm on it, and

returning a result. When it has finished, it grabs another piece of data. Tasks have no

particular identity. They all do whatever needs doing.

In activity parallelism, all tasks also start simultaneously, grabbing pieces of data and

operating on them. As there is no special commitment to any part of the data, tasks are

able to operate in disorder. However, occasionally there can be a sequence of actions.

Tasks have to coordinate their operation on a piece of data. Also, from the activity of

each task, they have to assemble a single final result. In sum, each task is assigned to

pick a piece of data, operate on it, produce a result, an repeat until the whole data has

been operated. They all work in parallel up to the natural restrictions of order and

precedence imposed by the problem (Carriero & Gelernter, 1988; Pancake 1996).

The boundaries between these three models can sometimes be fuzzy, and often, their

elements are mixed in order to deal with a particular problem. This means that a func-

tional parallelism approach may use activity parallelism, for example, assigning a team

of workers to some special operation. It is, nonetheless, an essential issue to point out

that these three models represent three clearly separate ways of thinking about the prob-

lem (Carriero & Gelernter, 1988). Later, in Sections 5.2.7 and 5.3, these models of paral-

lelism are re-taken when classifying and selecting the Architectural Patterns for Parallel

Programming, as architectural descriptions of solutions commonly used in parallel pro-

gramming.

2.1.4 Performance Measures in Parallel Programming

Performance measurement is a crucial issue in parallel programming. Commonly, for the

users of parallel programming, the whole point is to develop parallel programs that run

fast. Once a parallel application is up and running, it is necessary to explore and know
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how well it is doing, and how to do better. Normally, if the parallel program does not run

faster as more processors are made available, at least to a point, it is considered a failure

(Carriero & Gelernter, 1988; Freeman & Phillips, 1992).

Execution Time

The most common and used measure of parallel systems performance is the execution

time, this is, the time that elapses since a parallel program starts executing until it fin-

ishes. In fact, this is the most important feature to be considered about the performance

of a parallel program. As a parallel program is intended to decrease the execution time,

execution time is in itself a measure that reflects the global performance of a parallel sys-

tem.

The execution time of a parallel program can be subdivided into a sequential part

and a parallel part (as it is described below by Amdahl’s Law), or in a processing time

and a communication time. Considering this subdivision, a trivial parallel application is

that which does not require communication among its processors. Thus, execution time

in such a parallel application tends to be linear. However, most parallel applications are

not trivial, since communication among processors is unavoidable in most cases. In fact,

the execution time of a parallel program depends on a balance between processing time

and communication time. An optimal point can be looked for, in which the amount of

processing carried out by each processor does not conflict with the communication time

required for exchanging messages.

For the actual purposes of this thesis, execution time (in fact, its average over a set of

measurements) is considered as the main measure of the performance that a parallel pro-

gram is able to achieve (see Section 1.3).

Speed-up and Efficiency

Other common and usual measures of parallel performance are speed-up and efficiency,

which are generally derived from measuring the execution time. Hence, speed-up and

efficiency are defined from execution times by mathematical expressions. Let  be the

execution time for a parallel program on p processors, thus:

Tp
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• , the speed-up ratio on p processors, is given by (Freeman & Phillips, 1992):

where  is the time for the fastest sequential algorithm on a single processor.

It should be noted that this definition of speed-up ratio compares a parallel program

with the fastest sequential algorithm for a given problem. Hence, it attempts to meas-

ure the benefit to be gained by moving the application from a sequential computer

with one processor to a parallel computer with p identical processors. Even if the

same algorithm is employed, it is normally expected that the time taken by the parallel

implementation executing on a single processor ( ) to exceed the time taken by the

sequential implementation on the same processor ( ) because of the overheads asso-

ciated with running parallel processes.

• , the algorithmic speed-up ration on p processors, is given by (Freeman & Phillips,

1992):

This expression represents the speed-up to be gained by the parallelisation of a given

program. It thus directly measures the effects of synchronisation and communication

delays on the performance of a parallel program. This definition of speed-up ratio is

basically the one used throughout this thesis.

Ideally, it would be desirable that  to grow linearly with p. Unfortunately, even for

a “good” parallel program, at best it is expected that speed-up initially grow at a close

to linear rate, and then eventually to decline as more processors are used, and hence,

synchronisation overheads and communication delays start to dominate the execution.

• , the efficiency on p processors, given by (Freeman & Phillips, 1992):

Notice that the efficiency of a parallel program is obtained as a percentage, and that in

an ideal situation it is hoped to get 100% efficiency for all p. In practice, however,

efficiency decreases as the number of processors p increases.
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It should be mentioned that, as defined here, both speed-up and efficiency are

obtained in terms of the number of processor employed, rather than the number of proc-

esses. Nevertheless, speed-up and efficiency are considered by many authors as the driv-

ing forces behind the development of a parallel program.

Amdahl’s Law

From the definitions provided for speed-up and efficiency, it can be observed that the

ideal situation for a parallel program is one in which (a) the speed-up ratio increases lin-

early with p, with slope 1, and (b) giving an efficiency of 100% for all p. Such a situation

rarely occurs in practice, partly because of the need to synchronise parallel processes.

Moreover, there is a further consideration which arises from the inescapable fact that

there are likely to be portions of a parallel program which are inherently sequential. This

observation is embodied in Amdahl’s Law: Suppose that r is the fraction of a program

which is parallelisable and that  is the remaining inherently sequential fraction

of such a program. Then, on p processors, the algorithmic speed-up ratio  satisfies that

(Freeman & Phillips, 1992):

Amdahl’s Law appears to have serious consequences as far as parallelisation of algo-

rithms is concerned, since it imposes an upper bound on the speed-up ratio. For example,

if only 50% of an algorithm can be parallelised, then as the number of processors

increase ( ), the speed-up ratio has to accomplish that . This means that for

this particular algorithm, the speed-up ratio is limited to 2, regardless the number of

processors used.

2.1.5 Summary of Parallel Programming

A parallel program executing on a parallel (or distributed) hardware specifies a message

passing system of communicating sequential processes. This is the entity which we

attempt to model its performance. It is normally used to solve problems of a scale that

would not be realistic nor cost effective to be solved using sequential systems. Moreover,

it is noticeable that the hardware platform, the programming language, and the order and
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dependence between instructions and/or data impose a limit to the performance that each

sequential process within the parallel program can achieve. The sequential processes

execute non-deterministically, probabilistically generating different interactions for each

parallel program execution. This situation makes it difficult to track parallel execution

using analytical models, so simulation models are proposed to represent a parallel pro-

gram in execution. Nevertheless, the cost of simulating a parallel program execution

tends to be extremely high in terms of time. A feasible solution proposed here is to use a

parallel simulation of the parallel program.

2.2 An Introduction to Software Architecture

Although there are a great deal of definitions to the term software architecture, a distilla-

tion of commonly used ideas is that software architecture is the overall description of a

software system in terms of components and interfaces. In its strict sense, “a software

architecture is a description of the subsystems and components of a software system, and

the relations between them” (Buschmann et al., 1996). An architecture thus attempts to

define the internal structure —“the way in which something is constructed or organ-

ised” (Oxford dictionary)— of the resulting software. Nevertheless, concrete definitions

of the expression Software Architecture by recognised authorities are but few, and those

few tend to be periphrastic. In order to have a better understanding of how such an

expression could be defined, it will be convenient to consider what software designers

mean when they speak of a software system.

Many products may be regarded as an integration or assembly of parts. The parts are

independent, following the cohesion heuristic, that is to say that their properties can be

defined without reference to other parts (Parnas, 1972). A software product made up in

this way of a collection of separable parts is called a software system. The parts of which

it is built are usually called software components (Broy et al., 1998).

The components of a software system are the simplest parts that are to be considered

as distinct units. Just how simple these parts are is a quite arbitrary choice. Often, the

software components, so called, are themselves made up of still simpler sub-compo-

nents. However, in a given analysis or description of a software system, it is usually con-

venient to limit the resolution to a certain level of complexity, and the parts so revealed

are simply thought of as components. This does not, of course, preclude the possibility of
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sometimes referring to sub-systems, that is, an assembly of software components form-

ing less than the complete software system. 

The simpler the components are chosen to be, the simpler will be their design and

implementation (in general), but, of course, the more there will be of them. Thus, the

choice of the components is often an attempt to strike a balance between analytical prob-

lems arising from over-complex descriptions of individual components, and others aris-

ing from the sheer number of components to be handled. 

However, there may be other bases of choice. Quite often, the software designer

chooses software components from a list of available units (the meaning of “available”

here will be considered below), in which case what is to be treated as a component is, in

effect, fixed. Thus, for example, it has for some years been quite possible to design a

software system or application using ready-made parts. The design of the software sys-

tem is based on the properties of the available components and how these are assembled

together, in many cases without the need for any non-standard part. Thus a complete

software system may be constructed as a simple assembly-job of software components,

following a pre-defined relationship, configuration or pattern, using only the simplest

tools, and perhaps without coding at all.

Software components are described here as “available”, but this term merits some

further consideration. What is meant by available is either that the software component

can be had at once, say from a commercial provider, or that there is a reasonably high

probability that it can be implemented by modification or development of other existing

components. In the latter case, software products are being considered within the cate-

gory of things known to be feasible and makeable, either by virtue of being within the

range of current technology, or so little beyond it that the prospect of successful develop-

ment is good. Thus, available software component in this sense can be thought as having

a high probability of being available in pre-implemented form at the time when the soft-

ware system is assembled. From this point of view, whether they are actually in existence

at the time when software design is carried out or whether it is merely known that they

could be produced is of secondary importance.

Whenever the number of software systems of fairly similar kind to be produced (or

the number of types of components in a given system) is large enough to permit compo-

nent production on an extensive scale, the balance of advantage tends to swing strongly

in the direction of software system construction as an assembly of pre-implemented
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components. Thus, the design problem resolves itself into selecting the right components

from those available and inter-connecting or assembling them in the right relationship,

configuration or pattern.

Therefore, Software Architecture is defined here simply as the discipline or study of

designing software systems, as the result of an “assembly-job” of software components.

Although the emphasis is commonly on existing standard components, the use of availa-

ble components specially made for the software system is not excluded.

The essential basis of Software Architecture, so understood, is a concern with the

assembly of components, whose properties are largely given. Hence, a software architect

(who acts as a translator between the client’s problem domain concepts and the program-

mer’s solution domain concepts) is concerned with the problems of deriving the overall

software system properties from those of the components, and with questions of compat-

ibility between components with the software system as a whole. The software architect

is not, however, concerned with the detailed design of elements, but is satisfied to treat

them as having certain established specifiable properties. To sum up, the software archi-

tect’s attitude to the software system may be either analytical or synthetic, but regarding

all its components under a purely phenomenological light.

2.2.1 Directions in Software Architecture

It is not very clear from a study of literature who started the use of the term software

architecture. Certain it is, however, that the remarkable book “The Mythical Man-

Month”, by Fred Brooks Jr. (Brooks, 1975) made the expression system architecture

meaningful to a large public.

More specifically, within the software literature, the paper “Foundations for the

Study of Software Architecture” by Perry and Wolf (1992) used the term for describing

the design of software systems at the organisation level. Since then, the architectural

approach, the overall view of software, or simply, Software Architecture, has become

something sine qua non of modernism in certain fields of software design.

Software Architecture has received considerable attention. A special issue of the

IEEE Software magazine (IEEE, 1995) has been devoted to “The Artistry of Software

Architecture”. This issue contains several articles on Software Architecture, emphasising

the importance of mixing requirements and implementation-driven approaches to pro-

ducing quality software systems.
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During the mid-90’s, however, Software Architecture started to emerge as a broader

discipline involved with the studying software structure in a more generic way (Shaw &

Garlan, 1996). This gave rise to a number of interesting notions involved with the design

of software at different levels of abstraction. Some of these notions can be useful during

the architectural design, as well as during the detailed design of a specific software sys-

tem. But they can also be useful for designing generic systems, leading to the design of

families of systems or product lines. Interestingly, most of these notions can be seen as

attempts to describe, and thus reuse, generic design knowledge. Nowadays, at least sev-

eral books cover the subject. Much of the current work in Software Architecture prima-

rily addresses the product, known as architectural structure, and its description through

views rather than the process to generating it. The published studies cover topics such as

classifying architectures, mapping architectural styles and software patterns to particu-

larly appropriate applications, and the use of software frameworks to assemble multiple

related software systems, known as families. In the terminology, work on architectural

styles and software patterns is attempting to classify the high level forms of software and

their application to particular software problems.

Architectural views

Different high-level facets of a software design can be and should be described and doc-

umented. These facets are often called views: “a view represents a partial aspect of a

software architecture that shows specific properties of a software system” (Buschmann

et al., 1996).

A view describes a system with respect to some set of attributes or concerns. The set

of views chosen to describe a software system is variable. An adequate set of views

should be complete (cover all aspects of the software system), and mostly orthogonal

(capture different pieces of information). Different views pertain to different issues asso-

ciated with the design of software, for example, the logical view (satisfying the func-

tional requirements), the process view (concurrency issues), the physical view

(distribution issues), and the development view (how the design is broken down into

implementation units) (Kruchten, 1995). Other authors use different terminology, e.g.,

behavioural, functional, structural, and data modelling views.

The key idea is that a software design is a multifaceted artifact produced by the

design process and generally composed of relatively independent and orthogonal views
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(Finkelstein et al., 1993; Kruchten, 1995; Bass et al., 1998; Buschmann et al., 1996;

Booch et al., 1999; Budgen, 1994; IEEE, 1998).

Architectural Styles

An architectural style is “a set of constraints on an architecture (that) define a set or

family architectures that satisfies them” (Bass et al., 1998). An architectural style can

thus be seen as a meta-model that can provide the high-level organization of a software

system. At the most general level, a style is defined by its components, connectors, and

constraints. The components are the things from which the software systems is com-

posed. The connectors are the interfaces by which the components interact. A style sets

the type of components and connectors which make up the system. The constraints are

the requirements which define system behaviour. In the current usage, the architecture is

the definition in terms of the form, which does not explicitly incorporate the constraints.

To understand the constraints, it is necessary to look at additional views.

A number of major styles have been identified by various authors. Some of the styles

proposed include pipes and filters, object-oriented, event-based, layered, and blackboard

(Shaw & Garlan, 1996). A pipe and filters architecture contains filters as components

that potentially operate incrementally and concurrently on a stream of data, and pipes

allow the flow of such a stream between filters. An object-oriented architecture is built

from components that encapsulate both data and function, and which exchange mes-

sages. An event-based architecture has as its fundamental structure a loop which receives

events, interprets the event in the context of the system state, and takes actions based on

the combination of event and state. Layered architectures make emphasis on horizontal

partitioning of the system with explicit message passing and function calling between

layers. Each layer is responsible of providing a well-defined interface to the layer above.

A blackboard architecture is built from a set of concurrent components which interact by

reading and writing asynchronously to a common area.

These styles can (tentatively) be organised as follows (Bass, et al., 1998; Bosch,

2000; Booch et al., 1999; Pfleeger, 1998):

• General structure (e.g., layers, pipes and filters, blackboard);

• Distributed systems (e.g., client-server, three-tiers, broker);

• Interactive systems (e.g., Model-View-Controller, Presentation-Abstraction-Control);

• Adaptable systems (e.g., micro-kernel, reflection);
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• Other styles (e.g., batch, interpreters, process-control, rule-based).

Each style carries its advantages and disadvantages. Each style encompasses

descriptions of implementations from a software implementor’s point of view. They are

not descriptions from the user’s point of view, or even from the point of view of the hard-

ware implementor. A coherent style, at least of the types currently described, gives a

level of conceptual integrity that assists the builder, but may not help the designer or the

user. Having a coherent implementation style may help in construction, but it is not

likely to yield dramatic improvements in productivity or quality because it does not

promise to cut the size of what must be implemented.

Software Patterns and Pattern Languages

The progression from “inspired” Software Architecture to formal software design meth-

ods is through long experience. Long experience in software development by its practi-

tioners eventually yields tested software patterns of function and form. Software Patterns

and Pattern Languages or Systems are a formalisation of this progression in the software

development and evolution.

Design matures in a domain as designers identify reusable components and repeating

patterns of connection. They recognise recurring patterns of form and their relationship

to patterns in problems. In mature domains, patterns in both problem and solution

develop rigorous expression. For instance, a formalisation of patterns in building archi-

tecture is due to C. Alexander (Alexander et al., 1977; Alexander, 1979). Working within

civil architecture and urban design, Alexander developed an approach to synthesis based

on the composition of formalised patterns.

Succinctly, a pattern is “a common solution to a common problem in a given con-

text” (Alexander et al., 1977; Alexander, 1979). A Software Pattern is a recurring struc-

ture within software design. It consists of both a problem or functional objective for a

software system, and a solution or form of the software system.

In general, patterns are described in narrative form. A template for defining a pattern

is (Buschmann et al., 1996):

1. A brief name which describes what the pattern accomplishes.

2. A concise problem statement.

3. A description of the problem including the motivation for the pattern and the issues in

resolving the problem (called “forces”).
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4. A solution, preferably stated in the form of an instruction.

5. A discussion of how good or bad the pattern solves the problem, and how it relates to

other patterns.

Some categorisation of software patterns classify them as architectural, design, and

idioms. Architectural patterns describe the high-level organisation of software systems.

Design patterns can be used to describe details at a lower, more local level. Idioms

describe local solutions based on the characteristics of a particular programming lan-

guage (Buschmann et al., 1996). Another popular classification scheme presents design

patterns as structural, behavioral, and creational (Gamma et al., 1994).

A Pattern Language or System is a set of patterns complete enough for design within

a domain. It is a method for composing patterns to synthetise solutions to diverse objec-

tives (Buschmann et al., 1996). In the Alexandrian method, the architect consults sets of

patterns and chooses from them those patterns which evoke the elements desired in the

project (Alexander, et al., 1977). The same approach is intended in software develop-

ment. Software Patterns become the building blocks for synthesis, or suggest important

elements that should be presented in the software system. Each software pattern suggests

instructions for solution structure, or contain a solution fragment. The fragments and

instructions are merged to yield a system design.

Families of programs and Frameworks

The progression in software is through the construction and standardisation of compo-

nents embodying behaviours closer and closer to problem domains. Instead of program-

ming in what was considered a “high-level language”, the designer can now build a

software system from components close to the problem domain. The programming lan-

guage is still used, but primarily to knit together pre-build components. Programming

libraries have been in common use for many years. The libraries shipped with commer-

cial software development environments are often very large and contain extensive class

or object libraries, for example.

One possible approach to allow the reuse of software designs and components is to

design families of systems —also known as software product lines— which can be done

by identifying the commonalities among members of such families and by using reusable

and customisable components to account for the variabilities among the various mem-

bers of the family (Bass et al., 1998; Bosch, 2000; Pressman, 1997).
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Whenever a family of related systems is built, a set of accepted design abstractions

appears and forms the basis for a specialised design discipline. If the family becomes

important enough, the design discipline will attract enough research attention to build

scientific foundations. At the same time, the set of design abstractions will be recognised

as “architectures” for the family (Shaw & Garlan, 1996).

In the field of Object-Oriented Programming, a key related notion is that of frame-

work (Buschmann et al., 1996; Bosch, 2000; Booch et al., 1999): a framework is “a par-

tially complete software subsystem which can be extended by appropriately instantiating

some specific plug-ins (also known as hot spots)”.

2.2.2 Software Architecture and Performance

Many software systems are driven by quantitatively stated performance objectives.

These software systems may also contain complex behaviour or other attributes, but its

performance objectives are of most importance to the client. For these software systems,

it is common to take a performance-centred approach to specification, decomposition,

and synthesis. Real-time systems must perform their behaviours within a specified time-

line. Absolute deadlines produce “hard real-time systems”. More flexible deadlines pro-

duce “soft real-time systems”. The question of whether or not a given software

architecture will meet a set of deadlines has been extensively studied (Stankovic et al.,

1995; Kopetz, 1997; Sanz & Zalewski, 2003). To integrate these considerations within

Software Architecture requires integration of timing to the descriptions of architectural

structures based on styles and patterns. In particular, two interesting approaches have

attempted to deal with performance issues in software from a design perspective: ROOM

and the UML Performance Profile. Both are briefly discussed as follows.

Real-time Object-Oriented Modeling — the ROOM method

ROOM stands for Real-time Object Oriented Modelling, and was developed some years

ago by Bran Selic and others (Selic et al., 1994). Since then, it has received quite some

attention from the (real-time) software area. Although initially intended for designing

and building telecommunication systems, the ROOM method can also be used for the

design of other types of embedded systems.

ROOM designs contain primarily actors, ports, bindings and state machines (Selic et

al., 1994):



46

• An actor is an autonomous piece of code that plays a specific role in the system. The

main distinction between an actor and an object is the fact that an actor behaves

autonomously. An advantage of this is that the encapsulation goes a step further:

objects only offer data encapsulation while actors offers data and thread encapsula-

tion. Thread encapsulation means that two different threads cannot alter the internal

state of the object at the same time. This ensures that the data is always left in a con-

sistent state.

• A port is an opening on the encapsulation shell of the actor through which it can send

and receive messages. A port has also a specification (protocol) associated with it.

• A binding is a connection between two ports. Actors can exchange messages via bind-

ings. It is only possible to create a binding between ports that have the same protocol.

• A state machine describes the internal workings of an actor. This state machine

describes how the actor will respond to (external) messages and the states it will be in.

The ROOM method has some new and interesting ideas: (a) it introduces thread

encapsulation that hides the internal thread mechanisms; (b) it offers and alternative way

of connecting software components by means of bindings; (c) the idea of port protocols

is an advantage since it enforces a designer to only connect compatible ports; and (d) to

conclude, it offers the ability to generate code (by putting code into transitions of the

state machines) and model execution.

ROOM however lacks a consistent way to annotate time in designs. In general,

ROOM has no support for the annotation of non-functional constraints, like memory and

bandwidth constraints.

UML Performance Profile

During the last few years, the UML Performance Profile has been proposed as a frame-

work defined by the Object Management Group (OMG, 2001)2. The objective of such a

performance profile is to enable the construction of models that can be used for quantita-

tive predictions regarding these characteristics.

The original first document was issued in march 1999, and it was followed by the

first “Response to RFP” submission in august 2000. The last revised submission was

2. Notice that the development of the UML Performance Profile in 2001 is latter than the submis-

sion of the present thesis. Nevertheless, even though many of the ideas presented in the UML 

Performance Profile are common to those proposed in this thesis, it only defines notational con-

ventions; it is not a complete method.
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issued in june 2001 (OMG, 2001). The later includes some additional aspects not covered

by the formers, among which is a section dealing with performance analysis.

The proposed performance profile extends the UML metamodel with stereotypes,

tagged values and constraints, which make possible to attach performance annotations

(such as resource demands and visit ratios) to a UML model. The performance profile

provides facilities for (OMG, 2001):

• capturing performance requirements within the design context,

• associating performance-related QoS characteristics with selected elements of the

UML model,

• specifying execution parameters which can be used by modelling tools to compute

predicted performance characteristics, and

• presenting performance results computed by modelling tools or found by measure-

ment.

The profile describes a domain model which identifies basic abstractions used in

performance analysis. Scenarios define response paths through the system, and can have

QoS requirements such as response time. Each scenario is executed by a job class, called

here workload, which can be closed or open, and has the usual characteristics (number of

clients or arrival rate, for example). Scenarios are composed of scenario steps that can be

joined in sequence, loops, branches, fork/joins, etc. A scenario step may be an elemen-

tary operation at the lowest level of granularity, or may be a complex sub-scenario com-

posed of many basic steps. Each step has a mean number of repetitions, a host execution

demand, other demand to resources, and its own QoS characteristics. Resources is

another basic abstraction, and can be active or passive, each with its own attributes.

The performance profile maps classes representing the basic abstractions to a stereo-

type that can be applied to a number of UML model elements, and each class attribute to

a tagged value. For example, the basic abstraction PStep is mapped to the stereotype

<<PAstep>> that can be applied to the following UML model elements: Message and

Stimulus (when the scenario is represented by an interaction diagram) or Action-

State and SubactivityState (when the scenario is represented by an activity dia-

gram).

In order to conduct quantitative performance analysis of an annotated UML model,

the performance profile establishes that it is necessary (a) to translate it into a perform-
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ance model, (b) use an existing performance analysis tool for solving the performance

model, and (c) import the performance analysis results back in the UML model.

The UML Performance Profile cannot be considered as a complete guide to perform-

ance modelling, but as a framework. It establishes the steps to follow in order to develop

performance models and performance analysis. Most of the approaches to performance

modelling based on information described in terms of UML diagrams (or other similar

diagrammatic representation) follow closely these steps, providing and developing dif-

ferent types of performance models from software descriptions, solving (in the case of

analytical models) or executing (in the case of simulation models) them, and using their

results as feedback for the original description of the software system.

As it can be observed in the cases of ROOM and the UML Performance Profile, timing

considerations require integration of scheduling and scheduling analysis to Software

Architecture. In spite of the extensive study, this is still at least partly an art. Theoretical

results yield scheduling and performance bounds, and some associated scheduling rules,

but can do so only for relatively simple systems. When system functions execute inter-

changeably on parallel processors, run times are random, and events requiring reaction

occur non-deterministically, there are no deducible, provably optimal solutions.

2.3 Architectural Software Design

Even though software has being successfully used in standardising and automating other

industries, paradoxically it is having trouble achieving a similar success on its own field.

The increase in productivity and quality has been lower in software development com-

pared to other industries, like building construction or electronics. By analysing how we

develop software, it is possible to find out some things that contribute to this situation. 

Usually, software programs produced by software designers and developers can be

accessed only through the source code or as a executable system. At source code level,

programmers can only see programming language constructs —functions, classes, and

so on— whose sizes are quite small relative to the global size of most software systems.

Therefore, it is very difficult to notice any larger scale structures by inspecting a software

system at the level of its code. This lack of visibility of the larger scale structures in soft-

ware systems is a major cause of the apparent complexity commonly associated with

software systems (Rechtin & Maier, 1997).
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Industries, such as building construction, have an advantage over the software indus-

try due to their ability to manage the complexity of their products and the process of

developing them (Rechtin & Maier, 1997; Bennett, 1997). However, what does building

construction have that software development lacks? From our point of view, there are

three common design elements in building construction that would be very useful to

have in software development. Briefly, these elements are: a base of design experience

and techniques, a tangible representation of the product structure, and measurements and

evaluations to determine if desired attributes are found in the final product.

• A Base of Design Experience and Techniques. New building designs start out as

ideas. When a new building design is proposed, it is often initially examined with

informal design studies to reveal feasibility problems and to determine the economic

potential of the new building. In general, building architects and engineers have hand-

books to provide established design experience and techniques. Design experience

and techniques range from simple diagram representations to formal, mathematical

simulations of the product design (Rechtin & Maier, 1997).

• A Tangible Representation of the Building Structure. In building construction, an

architect represents a project with diagrams such as drawings or plans of a building.

These diagrams describe a form as the static structure of the complete building as a

whole. From these diagrams, the architect describes how the occupants will carry on

doing their jobs within the building structure. However, these diagrams do not explic-

itly expose the structural steel, the mechanical or electrical views of the building. The

architect has to provide room in the structure for all those things, and for all the uses

and functionalities that the building will accommodate (Bennett, 1997).

• Measurements and Evaluations. During building construction, to achieve the inter-

connection of a newly designed components with other standard or designed compo-

nents, it is necessary to have a measurement system that allows a comparison between

the actual construction parts and those specified in the design. In general, we need (a)

a way to measure the property of interest, and (b) an evaluation guideline for the

range of measured values that are acceptable (Tichy, 1998). 

These three design features of building construction constitute what we define as the

architectural design elements of building architecture. In the following sections, we

present some approaches that actually attempt to work out similar features for software

development.
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2.3.1 Design Experience and Techniques — Software Patterns

Mature industrial and engineering disciplines work with handbooks of design experience

and techniques that describe successful solutions to known problems. Most designers do

not create their designs from scratch, but reuse standard design solutions with successful

track records contained in such handbooks. The extra performance available by starting a

design from scratch typically is not worth the cost (Buschmann et al., 1996).

Software design problems should be addressed by good practice experiences and

proven techniques. Several approaches have focused on capturing and systemising suc-

cessful experience and techniques used in previous software developments. In particular,

Software Patterns is one of the most important efforts, aiming for the creation of a hand-

book of good design and programming practices for software development (see Section

2.2.1). Patterns were originally developed for building architecture (Alexander et al.,

1977; Alexander, 1979), and adopted later for software construction (Gamma et al.,

1994; Buschmann et al., 1996; Gabriel, 1996). Their use is spreading in the software

community to the benefit of those undertaking design and implementation tasks. 

Software Patterns are an attempt to describe successful solutions to common soft-

ware problems. Their long term goal is to gather design experience and techniques for

software development. Even though there is still a long way to reach that goal, Software

Patterns have proven to be useful helping people to reuse successful software practices.

They not only teach useful techniques, but also help people to better communicate their

experience, and reason about what they do and why they do it.

Defining what is a software pattern is not an easy task. It involves several philosoph-

ical and practical considerations. Inside the Pattern Community, it is generally accepted

that a pattern is “a recurring solution to a standard problem” (Coplien, 1994; Gabriel,

1996). In a wider sense, a pattern is “a way to capture and systemize proven practice in

any discipline” (Alexander et al., 1977; Alexander, 1979). In the particular case of the

software industry, a software pattern can be considered as “any reusable software design

abstraction or identifiable piece of software, that may be exploited in several contexts”

(Gamma et al., 1994; Buschmann et al., 1996).

For our purposes, a software pattern is a function-form relation that occurs in a con-

text, where the function is described in problem domain terms as a group of unresolved

trade-offs or forces, and the form is a structure described in solution domain terms that

achieves a good and acceptable equilibrium among those forces. This definition of a
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software pattern follows from our intention to relate them to an architectural design for

software.

2.3.2 A Tangible Architectural Description of Software

A tangible architectural description for software systems consists of components, con-

nectors, and a boundary of the system. The components are made tangible, enclosed in

implementation containers. Every level of implementation container has a contain rela-

tionship with one another, so that the software subsystems have the same relationships

with each other (see Section 2.2.2). Based on the concept of the Layers of Change

(Brand, 1994), components can be classified and grouped into “layers” of design and

implementation, depending on their change rate (the speed in which different compo-

nents tend to evolve during the lifetime of a software system) (Ortega & Roberts, 1999a;

Ortega & Roberts, 1999b). This generic architectural description of software provides a

basis for designing emergent properties of the software system. Emergent properties

include changeability, maintainability and any others that depend on the whole system

for their expression.

For our actual purposes, a three layered architectural description model seems to be

sufficient to analyse the characteristics of a parallel program. The intention is to keep this

model as simple as possible. Some components are clearly related to elements of hard-

 Figure 2.1 An architectural description of Software
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ware, and some are clearly software components. Therefore, an architectural description

is composed of the following layers (Figure 2.1):

• Platform. This represents the connection to elements of the hardware architecture of

the system.

• Coordination. This represents the fixed and stable subsystems that comprise the sys-

tem, and the form in which they are connected by communication components.

• Processing. This represents the software elements designed for and explicitly allo-

cated to the subsystems focusing on data and behaviour, that make up the software

architecture.

The objective of classifying the components of a software system into layers is

merely to deal with complexity during design and implementation, by arranging them in

a hierarchy of “contains” relationships between components. In this sense, the term com-

ponents refers to pieces of software, put together into a “container”, representing code

processed by a processor (see Section 2.2). Thus, the software subsystems of the Coordi-

nation layer are contained in each hardware subsystem of the Platform layer, and the

software elements of the Processing layer have, similarly, a “contained-in” relationship

with the Coordination layer subsystems. The distinction between layers is based on rec-

ognising what is “fixed” and what is “transient”, that is, on what must be put in the sys-

tem, or installed, in order to run it (Ortega & Roberts, 1999a; Ortega & Roberts, 1999b).

During architectural software development, fixed layers like Platform and Coordination

are considered at the beginning because they define the basic functionality of the soft-

ware system as a whole. Transient layers, such as the Processing layer, are considered

later, defining the detailed behaviour of each piece of software. However, this is not to

say that the transient components of the software systems are not important or that they

do not have to be considered during architectural design. They do. They are just not part

of the fixed layers.

2.3.3 Measurement and Evaluation for Software Design

The main reason for adopting an architectural design approach for software in the first

place is to obtain software quality. “Software quality is the degree to which software pos-

sesses a desired combination of attributes” (Barbacci et al., 1995; Barbacci et al., 1997;

Bass et al., 1998). Software quality must be built-in by design and considered from the

beginning. In our approach, defining an architectural description of software is the earli-
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est point of a software system design, in which we can start measuring and evaluating to

obtain a good idea how well the software system will meet its requirements.

The Need of Measurement and Evaluation

Repeatability is the most important issue for any design development. It ensures that

good results can be reproduced. If a software system has certain qualities, it is very

important to be able to reproduce these in other software systems. However, this requires

the ability to measure those qualities, evaluating them to confirm their presence or

absence in a design.

Software quality means that software systems possess some relevant attributes, like

low cost, reliability, rapid development, safety, and so on (Barbacci et al., 1995; Bar-

bacci et al., 1997). To determine whether a particular software development method or

technique allows the inclusion or improvement of a particular quality attribute of interest

present in a software system, we need a way to measure it. Merely stating that a software

system possesses such an attribute conveys no real information. Instead, applying meas-

urements for that quality attribute of interest, we can state if such a method or technique

results in a software system that achieves our expectations more or less effectively

(Tichy, 1998). Depending on the quality attribute of interest, relating it to a measurement

scale is fairly straightforward. If the attribute of interest is “performance”, then execution

time would be our measurement (Tichy, 1998; Zelkowitz & Wallace, 1998).

Evaluating Software Alternatives

In order to evaluate alternative software architectures as potential solutions to a problem,

they should be measured on their ability to satisfy the requirements that emerge from the

system as a whole (Bass et al., 1998). The architectural description presented in Section

2.3.2 can help with this, because it represents the tangible physical structure of the entire

system. Software architectures are considered different if at the level of at least one of

their layers they are different. Different software architectures can be compared and

evaluated on their ability to satisfy the requirements of the software system. For this, it is

necessary to have explicit goals for each layer of the architectural description, and evalu-

ate each layer against goals for that layer. Thus, the requirements should be stated as spe-

cific instances of change that the system should support. 
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Significantly, there are several run-time attributes of a software system that do not

manifest themselves until all of the subsystems that make up the software system are

working together. These attributes include reliability, performance, throughput, and

availability. Software architectures should be evaluated against the specific levels of

each of those run-time properties (Abowd et al., 1997; Barbacci et al., 1997; Bass et al.,

1998). However, that is easier said than done. The process of evaluating a system for

reliability and performance is a large task, often involving large simulations or trials on

working systems (see Chapter 3).

2.4 Summary

In this chapter we present an introduction to parallel programming, describing it and pre-

senting a general overall of its origins, the factors that influence it, and the main models

used for parallel programming.

The origins of parallel programming are described as the main research contribu-

tions by Flynn, Dijkstra, Hoare, Brinch-Hansen, and many others, which have resulted

on concepts of notions that represent the basics of parallel systems development.

Parallel programming is normally considered as a mean for getting higher perform-

ance, in terms of processing speed. There are three factors of parallel programming that

influence the performance that can be achieved by a parallel program: the hardware plat-

form, the programming language, and the very problem to parallelise. This last one is

influenced by the order and dependence between instructions and data, which directly

affect the possibility of simultaneous execution.

Functional parallelism, domain parallelism, and activity parallelism are presented

here as three model for parallel programming, used as a base for developing parallel pro-

grams.

Also in this chapter, an introduction to software architecture is presented, describing

its main standard research notions. Notice, however, that as a discipline, software archi-

tecture lacks of a comprehensive study of performance modelling, particularly in the

context of parallel programs. Two approaches within software architecture are presented,

which attempt to relate it with performance modelling.

Finally, we introduce a vocabulary of architectural design based on software archi-

tecture standard notions, and particularly for the purposes of this thesis, presenting its

key elements. These elements are a base of design experience and techniques, a tangible
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architectural description, and considerations for measurements and evaluation. In the fol-

lowing chapters, we use the interpretation of these elements applied to software design to

propose and investigate the initial stages of parallel software design.
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Chapter 3

Related Work

“Verständige Leute kannst du irren sehn In Sachen, näemlich, die sie nicht verstehn”

“Understanding people you may see erring in those things, to wit, which they do not

understand”

Goethe

This chapter presents a review of the relevant related work in Software Performance

Modelling, as (a) approaches that combine Software Architecture and Performance

Modelling, (b) approaches to performance estimation of parallel and distributed systems,

and (c) other similar approaches in Parallel Software Design to the Architectural Per-

formance Modelling Method. Nevertheless, it is important to mention that the present

PhD work was originally developed between september 1997 and august 1999. So, this

chapter considers the relevant related work that was published or was started before

1999, by the time of this PhD submission. Other related work developed later, from 1999

until 2003, is also presented here in order to show how such more recent approaches

have developed similar ideas as those originally proposed in 1999 by the present PhD

thesis.

The related work is organised as follows: first, an introduction to Software Perform-

ance Modelling is presented, describing some basic notions within this research area;

next, the main approaches that attempt to relate Software Architecture and Performance

Modelling are briefly described, paying attention to their main characteristics; next, the

following section describes the main research work in the area of performance modelling

of parallel and distributed programming, describing their main features, and; finally, a

description is presented about the most relevant architectural design approaches related

to the problem of describing, programming and estimating the performance behaviour of

a parallel and distributed systems based on information about their coordination struc-

ture.
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3.1 Software Performance Modelling 

Performance analysis of software systems is commonly carried out by measurement or

by modelling techniques. In general, direct measurement of an actual implementation

provides an accurate assessment of the performance of a software system. This is rela-

tively simple and straightforward to do, but requires to build a system implementation

before the measurement can take place. Implementing a complex system is usually a

time-consuming, error-prone, and expensive task; mastering this complexity is the goal

of all the software development processes which have been proposed in the literature.

Software performance modelling is challenging, since it is difficult to derive mean-

ingful performance information from specifications, models, or static analysis of code.

The reason is that software performance is heavily dependent on the hardware platform

on which the software executes, and also, on the usage pattern the software is subject to.

Moreover, software performance modelling cannot be carried out on one component at a

time, as critical issues may arise only when different components interact. In general,

software performance modelling can be obtained by analytical or simulation techniques

(Rechtin & Maier, 1997).

3.1.1 Analytical Techniques

Most of the research in the area of software performance modelling is based on develop-

ing analytical models. Many performance models have been proposed in the literature;

these models include queuing models (also known as Queuing Networks or QN) (Klein-

rock, 1975), Petri Nets (Petri, 1962) and Stochastic Process Algebra (Hermanns et al.,

1995). At the moment, there is no clear consensus on which analytical model should be

preferred in practice. The general understanding is that different models are suitable for

different domains.

The vast majority of the software performance modelling approaches proposed so

far (whether analytical or even simulations) base its estimations on a certain type of ana-

lytical models. This is motivated by the fact that those models are well studied and

understood. Also, they can sometimes be solved analytically, providing performance

results which are exact, and optionally, can be expressed parameterically with respect to

one or more unknown variables. This, however, has a price.

Analytical models can usually built only by imposing some structural restrictions on

the original system architecture, depending on the specific modelling formalism used;
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the reason is that analytical models have often a limited expressiveness. While it is some-

times possible to simplify the model of the system in order to make it analytically tracta-

ble, there are many cases in which the significant aspects of the system cannot be

effectively represented into the analytical model.

Moreover, the analytical models which can be solved exactly can be derived only by

imposing some limitations on the software architecture from which they are derived.

Generally, they can be efficiently computed only for special classes of systems, with con-

straints about their topology. Also, analytical performance models are often structurally

very different from the software architecture from which they are derived. This makes

very difficult to report performance results from the model to the original software archi-

tecture. This is very limiting, as software performance evaluation is supposed to provide

the modeller with feedback about possible performance problems. Finally, many approx-

imate techniques used to analyse the performance results of analytical models do not

provide any error consideration of their results, meaning that it is impossible to quantify

whether the obtained performance value is an adequate approximation or not.

3.1.2 Simulation Techniques

Simulation is a powerful modelling technique that allows general system models that can

represent arbitrarily complex situations, which can be too difficult or even impossible to

represent by analytical models. Simulation models can be arbitrarily detailed, in that,

informally, they impose no restrictions on what they can model. The modeller has the

maximum degree of freedom in selecting the aspects of the system to model, and at

which level of detail. This freedom comes at some cost: the drawback of simulation is

that very complex models may require a lot of time and computational resources in order

to be executed. The results also require sophisticated statistical techniques in order to be

correctly understood. While it is true that any given system can be represented at an arbi-

trarily high level of detail by a simulation model, the modeller often ignores the exact

inner working of the system being simulated. This is certainly the case with Software

Architecture, since components are defined at a high level of abstraction, and many

details are postponed until the implementation phase (see Section 2.2). However, while

the software architect may ignore the inner details of the system being designed, he could

have more or less detailed knowledge of part of the architecture (for example, if some

pieces are taken from an existing, already implemented system). Whenever additional
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information is available, it should be used to obtain better and more realistic performance

estimates.

In general, a simulation modelling follows the process shown in Figure 3.1. The

starting point is an architectural description of the software system to be simulated. Such

a description is a set of structural and behavioural representations (commonly, descrip-

tions containing UML diagrams). This information is used to derive a simulation per-

formance model. The model is a simulation program, which eventually is executed.

Simulation results are a set of performance measures that can be used to take decisions

about the software architecture, or to provide a feedback at the original architectural

description. Normally, the feedback should give hints to the software designer about how

the problem can be solved, and possibly pinpoint performance problems on the software

architecture. This cycle can be iterated until a software architecture with satisfactory per-

formance is obtained.

3.2 Approaches to Software Architecture and Performance 

Modelling

There is a growing interest in quantitative analysis of software systems, which is impor-

tant for software design, and it has been recognised that performance analysis should be

integrated in the software development life cycle from early stages (Smith 1990; WOSP

2000; WOSP 2002). Since software architectures describe the structure of software sys-

tems at a high level of abstraction, they have been devised as the appropriate design level

to perform quantitative analysis (Bass, et al., 1998). To this aim, several approaches have

been recently proposed to integrate or combine performance analysis and software archi-

tecture specification. Various types of performance models and different specifications

 Figure  3.1 The simulation performance modelling process.
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have been considered. Some approaches refer to the entire software life cycle, whereas

others refer to a certain software stage, usually design specification.

In this section, we consider some approaches that derive performance models from a

software architecture specification. We present a review of such different approaches,

focusing on their proposed method and type of performance model. The feedback to the

software designer of the results of the software performance analysis is another impor-

tant issue to be considered, i.e., how easily can the designer interpret the quantitative

results obtained by the performance evaluation at the software architecture design level.

Several approaches refer to a software specification based on the Unified Modeling Lan-

guage (UML) (Booch et al., 1999), which is becoming the standard notation for the spec-

ification of software systems. It provides several kinds of diagrams, which allow the

description of different aspects and properties of systems, like static and behavioural

aspects, interaction among system components and physical implementation details.

Each approach is based on a certain type of analytical performance model. These

models include queuing networks (QN), and their extensions, such as Extended Queuing

Networks (EQN), Layered Queuing Networks (LQN), and Augmented Queuing Net-

works (AQN); Petri Nets (PN), and their variations, namely Stochastic Timed Petri Nets

(STPN) and General Stochastic Petri Nets (GSPN); and Stochastic Process Algebras

(SPA), particularly their derivation as Stochastically Timed Process Algebra (STPA).

Many of the proposed methods are based on the Software Performance Engineering

(SPE) methodology introduced by C.U. Smith (Smith, 1990). This methodology has

been the first comprehensive approach to the integration of performance analysis into the

software development process, from the earliest stages of design. The SPE methodology

is based on two models: the software execution model (based on execution graphs (EG)

and represents the software execution behaviour) and the system execution model (based

on queuing network models and represents the computer system platform, including

hardware and software components). The analysis of the software execution model gives

information concerning the resource requirements of the software system. The obtained

results, together with information about the hardware devices, are input parameters of

the system execution model, which represents the model of the whole software/hardware

system.

More recently, Pooley (2000) outlined a road-map that shows how software perform-

ance can be integrated within the Software Engineering process. Performance engineer-
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ing is described as an experimental approach to predicting the likely performance of

systems. It can involve building and monitoring the system under the workloads of inter-

est, or using models to represent the system. Modelling has many advantages over build-

ing/monitoring, which makes it used in most of the work of interest to software

performance engineering. The challenge is to bring the areas of Software Architecture

and Performance Modelling analysis together, which can be achieved by embedding per-

formance analysis techniques into design methods and tools.

3.2.1 General Methods

Some approaches propose general methods for deriving performance models from soft-

ware architecture specifications. These methods refer to different architectural specifica-

tions and performance models, and they consider the combination of different tools and

environments for system performance evaluation.

• Williams and Smith (Williams & Smith, 1998) apply the SPE methodology to evalu-

ate the performance characteristics of a software architecture. The emphasis is in the

construction and analysis of the software execution model, which is considered the

target model of the specified software architecture, and it is obtained from sequence

diagrams. The class and deployment diagrams contribute to complete the description

of the software architecture, but they are not involved in the transformation process.

The SPE process requires additional information that includes software resource

requirements for processing steps and computer configuration data.

• Menascè and Gomaa (Menascé & Gomaa, 1998) present a method to derive QN per-

formance models from software architecture specification. It has been developed and

used by the authors in a design of client/server applications. The method is based on

CLISSPE (CLIent-Server Software Performance Evaluation), a language for the soft-

ware performance engineering of client/server applications (Menascé, 1997).

Although the method does not explicitly use UML, the functional requirements of the

system are specified in terms of use cases, and the system model is specified by the

analogous of a class diagram. The use cases, together with the client/server software

architecture specification and the mapping associating software components to hard-

ware devices, are used to develop a CLISSPE program specification. The CLISSPE

system provides a compiler that generates a corresponding QN model. By considering

specific scenarios, it is possible to define the QN parameters and apply the appropri-
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ate solution methods, such as the Layered Queuing Models (LQN) (Rolia & Sevcik,

1995; Woodside et al., 1995), to obtain performance results.

• Balsamo, Inverardi and Mangano (Balsamo, et al., 1998) provide a method for the

automatic derivation of a queuing network model from a software architecture speci-

fication, described using the CHAM formalism (CHemical Abstract Machine). Infor-

mally, the CHAM specification of a software architecture (Inverardi & Wolf, 1995) is

given by a set of molecules which represent the static components of the architecture,

a set of reaction rules which describe the dynamic evolution of the system through

reaction steps, and an initial solution which describes the initial static configuration of

the system. This work presents an algorithm to derive a QN model from the CHAM

specification of a software architecture. It is based on the analysis of the Labelled

Transition System (LTS) (Ghezzi, et al., 1991; Kemppainen, et al., 1992; Rabinovich,

1992; Valmari, 1992) that represents the dynamic behaviour of the CHAM architec-

ture, and that can be automatically derived from the CHAM specification. Although,

the algorithm does not completely define the QN model, whose parameters, such as

service time distributions and customer’s arrival processes, have to be specified by the

designer. The solution of the QN model is derived by analytical methods or possibly

by symbolic evaluation. Parameter instantiation identify potential implementation

scenarios and the performance results allow to provide insights on how to carry on the

development process in order to satisfy given performance criteria.

• Cortellessa and Mirandola (Cortellesa & Mirandola, 2000) propose a method making

a joint use of information from different UML diagrams to generate a performance

model of the specified system. This work attempts to provide an automatic translation

from UML diagrams into a queuing network based performance model. The goal is to

complement the UML notation with a method that encompasses the performance val-

idation task (which includes model generation and validation) as an integrated activity

within the development process. The paper refers to the SPE methodology, and speci-

fies the software architecture by using deployment, sequence and use case diagrams.

The target performance model is composed of two parts: the Software Model (SM)

based on Execution Graphs (EG); and the Machinery Model (MM), based on

Extended Queuing Network (EQN) models. By combining SM and MM, a complete

(parameterised) EQN based performance model is obtained, which is then solved

using some known techniques.
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This approach is a more formal extension of the approach by Williams and Smith

(Williams & Smith, 1998), and consists of the following steps:

1.Complement the use of use case diagrams (UCD) by assigning a probability to

every edge that links a type of user to a use case, so that such probability applies to

the execution of the corresponding set of sequence diagrams. Use case diagram are

used, then, for deriving the user profile and software scenarios. This leads to the def-

inition of the workload of the performance model.

2.For each use case in the UCD, process the corresponding set of sequence diagrams

to obtain the meta-EG (execution graph). The algorithm incrementally builds the

EG by processing in turn all the sequence diagrams and building, for each one, the

part of the EG it contributes to. It considers only sequence diagrams without no-

reply and asynchronous interactions.

3.Use the deployment diagram both to obtain the EQN model of the hardware plat-

form and to appropriately tailor the meta-EG, so obtaining an EG-instance that

defines the workload of the EQN. Also, the deployment diagram is used to identify

the hardware/software relationships that improve the accuracy of the performance

model. In this step, the basic idea is to enrich the deployment diagram that shows

the topology of the platform and the type of sites, with the information needed to

build the EQN, such as the internal structure and parameters of devices. Moreover,

the EG-instance defines the type of communication and the size of data exchanged.

However, the paper does not present the details of the EQN construction from the

deployment diagram.

4.Assign numerical parameters, defined by the designer, to the EG-instance.

5.Combine EG-instance and EQN model to solve the obtained performance model by

using the SPE approach.

Note that a key point of the method is adding the information concerning performance

evaluation to the considered UML diagrams, and to obtain the EQN model. In this

paper, the method is not yet implemented as a tool, and to achieve this, the authors

consider that there are two further steps to take: (a) choosing an appropriate syntax to

represent the UML diagrams involved (and perhaps some supporting data structures),

and (b) studying the underlying syntax of the existing SPE tools in order to ease the

translation from UML notation to performance modelling representation.

• The approach by Aquilani, Balsamo and Inverardi (Aquilani et al., 2000) concerns the
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derivation of QN models from Labelled Transition Systems (LTS) (Ghezzi, et al.,

1991; Kemppainen, et al., 1992; Rabinovich, 1992; Valmari, 1992) describing the

dynamic behaviour of software architectures. Starting from a LTS description of a

software architecture makes it possible to abstract from any particular software archi-

tecture specification language. The approach assumes that LTSs are the only knowl-

edge on the system that they can use. This means, in particular, that it does not use any

information concerning the system implementation or deployment. This approach

considers a finite state representation independent of a specific architectural descrip-

tion language, and modelling more complex interaction patterns and synchronisation

constraints that can be represented by EQNs. Such EQNs model the software concur-

rent execution and component interaction at the software architecture design level.

• Bernardo, Ciancarini and Donatiello (Bernardo et al., 2000) propose an architectural

description language based on Stochastically Timed Process Algebras. This approach

provides an integration of a formal specification language and performance models.

The aim is to describe and analyse both functional and performance properties of soft-

ware architectures in a formal framework. The approach proposes the adoption of an

architectural description language called AEMPA, giving its syntax with a graphical

and contextual notation, and its semantics in terms of EMPA specifications, which is a

Stochastically Timed Process Algebra (Bernardo, 2000). The authors illustrate vari-

ous functional and non-functional properties, including performance evaluation which

is based on the generation of underlying Markov chains that are numerically solved.

To this aim, the authors propose the use of TwoTowers (Bernardo, 2000), a software

tool for systems modelling and analysis of functional and performance properties that

support the system EMPA description.

• Cortellesa and Mirandola (Cortellesa & Mirandola, 2002) present an approach for

translating UML sequence diagrams, use case diagrams, and deployment diagrams

into a performance model based on EQN, using an intermediate transformation into

Execution Graphs. System performance evaluation is presented as an incremental

process integrated in the software development life cycle, by using information of dif-

ferent kinds of UML diagrams from the early stages of the development process. The

level of detail of the model is extended as the software development proceeds. This

allows incremental building of a performance model of the system, which can be used

to improve or modify the software architecture. The UML diagrams are annotated
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with quantitative informations, which are necessary to set the parameters of the

model. Actors are annotated with the frequency they may appear in the system. Asso-

ciations between actors and use cases are annotated with the probabilities that each

actor executes each use case. Sequence diagrams are annotated with timing informa-

tion attached to events, and messages sent among objects are tagged with their sizes.

Deployment diagrams represent various kinds of resources, and they are annotated

with suitable parameters such as bandwidth for network links, or speed of computa-

tional resources. Finally, the three types of UML diagrams (use case, sequence, and

deployment) are used together to build a EQN model.

• Gu and Petriu (Gu & Petriu, 2002) derive performance models based on LQN models

from a description of software architecture. They use UML activity diagrams, anno-

tated as defined in the UML Performance Profile (OMG, 2001). Diagrams and annota-

tions are saved in XML files in the XML Metadata Interchange format (XMI), and

then translated in LQN models through Extensible Stylesheet Language Transforma-

tion (XSLT).

• Lindermann, Thümmler, Klemm, Lohmann, and Waldhorst (Lindermann, et al., 2002)

develop an algorithm for deriving performance models based on Generalized Semi-

Markov Processes from UML state and activity diagrams. These diagrams are anno-

tated with exponentially distributed or deterministic delays applied to events, and

timed events trigger a state transition. Annotations are based on an extension of the

UML Performance Profile (OMG, 2001).

The Architectural Performance Modelling Method presented in this thesis is similar

in spirit to these general methods, in the sense that it describes a method to develop per-

formance models (based on two types of sub-models) for performance estimation. Nev-

ertheless, these general methods to performance estimation are based on too general

descriptions of the software architectures, making them difficult to apply to a parallel

programming application. As it is shown later, the Architectural Performance Modelling

Method bases its estimations on models created from common architectural patterns

used in parallel programming, simplifying both the process of model creation and the

process of parallel application development.



66

3.2.2 Methods based on Architectural Patterns

Architectural Patterns identify frequently used architectural solutions, and commonly are

used to describe software architectures. Each pattern is described by its structure (what

are the components and their responsibilities) and its behaviour (how the components

interact). Some approaches consider software specification of architectural patterns, and

derive their corresponding performance models. Normally, they use UML specification.

The main idea is to identify a direct correspondence between a pattern and its perform-

ance model, which can be immediately derived.

• Petriu and Wang (Petriu & Wang, 1999; Petriu, 2000) consider a significant set of

architectural patterns (pipe and filters, client/server, broker, layers, critical section and

master-slave) specified by UML collaboration diagrams, that are combined class and

sequence diagrams, showing explicitly the collaborating objects. The approach shows

the corresponding performance models based on LQN models. Moreover, they pro-

pose a systematic approach to building performance models of complex software

architectures based on combinations of the considered patterns. The approach follows

the SPE methodology, and generates the software and system execution models by

applying graph transformation techniques. Software architectures are specified using

UML collaboration, deployment and use case diagrams. The sequence diagram part of

the collaboration is used to obtain the execution model (which is represented as a

UML activity diagram); the class part is used to obtain the system execution model

(which is represented as a LQN model). Use case diagrams provide information on

the workloads, and deployment diagrams allow for the allocation of software compo-

nents to hardware sites.

• Gomaa and Menascè (Gomaa & Menascè, 2000) investigate the design and perform-

ance modelling of component interaction patterns for client/server systems. Such pat-

terns define and encapsulate the way client and server components of software

architecture communicate with each other via connectors. The idea is to start with

UML design models of component interconnection patterns, using class diagrams (to

model their static aspects) and collaboration diagrams (to depict the dynamic interac-

tions between component and connector objects, that is, instances of the classes in the

class diagrams). Such models are then provided with additional performance annota-

tions, and translated into an XML notation, in order to capture both the architecture

and performance parameters in one notation. The performance models of the consid-
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ered patterns are EQN and their definition, based on previous work of the authors,

depends on the type of communication. The EQN model solution is obtained by

Markov chain analysis or approximate analytical methods.

• Petriu and Shen (Petriu & Shen, 2002) develop performance models based on LQN

models from a description of software architecture based on architectural patterns.

They use UML activity diagrams, annotated as defined in the UML Performance Pro-

file (OMG, 2001). The approach is based on Graph Grammar-based derivation, which

is implemented using an automated graph transformation through the PROGRESS

tool. The objective is to achieve a UML to LQN transformation through the UML

Performance Profile, but the paper presents no performance analysis results.

These approaches are perhaps the most similar to the Architectural Performance

Modelling Method, since they all use architectural patterns as a base for model creation,

their models are based on queuing models, and they use a method approach based on the

SPE methodology. Nevertheless, these approaches were originally developed for dealing

with architectural patterns provided by the general programming literature, and not with

architectural patterns describing parallel systems. Hence, they do not cover common

software architectures for parallel programming. Moreover, their models are developed

for executing on a sequential computer system, which normally do not take into consid-

eration important issues during parallel execution —such as the effect of non-determin-

ism over the execution time— which tend to increase simulation costs. The Architectural

Performance Modelling Method deals with this issues by (a) using Architectural Pattern

for Parallel Programming (Ortega-Arjona & Roberts, 1998a) as common architectural

pattern specifically developed for parallel programming, and (b) developing parallel

models that execute on the real parallel system, which takes into consideration a real par-

allel execution environment and, at the same time, decreases simulation costs.

3.2.3 Simulation Methods

Some approaches to software performance estimation are based on simulation methods

that consider simulation packages to define the model, and whose structure and input

parameters are derived from the information obtained from UML diagrams.

• The approach proposed by Arief and Speirs (Arief & Speirs, 1999a; Arief & Speirs,

1999b; Arief & Spiers, 2000; Arief, 2001) develop an automatic tool for deriving sim-

ulation models from UML diagrams, as a simulation framework. The UML diagrams
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describe the classes and behaviour of a particular software architecture. The approach

consists of transforming such UML diagrams into a simulation model described as an

XML document. The XML notation used to describe the simulation model has been

called SimML (Simulation Modeling Language). This model is then translated into a

simulation program, which can be executed, and provides performance results. What

makes this approach particularly interesting is that the simulation model is decoupled

from its implementation. This makes it possible to implement the simulation model

using different languages. A proposed UML tool allows the used to draw class and

sequence diagrams, and to specify the information needed for the automatic genera-

tion of the process oriented simulation model. The authors develop two different

back-ends for translating the SimML model into simulation programs written in

C++Sim and JavaSim.

• The approach by De Miguel, Lambolais, Hannouz, Betgè-Brezetz, and Piekarec (De

Miguel, et al., 2000) proposes extensions of UML diagrams to express temporal

requirements and resource usage, and their automatic evaluation. The interest of this

work is on the specification of architecture and requirements of real-time systems,

which pays special attention to timeliness, performance and schedulability. The exten-

sion is based on the use of stereotypes, tagged values, and stereotyped constraints.

These standard UML extension techniques are used for specifying a UML profile

where they collectively specialise and tailor UML for specific domain process. Con-

straints represent specific semantics of modelling elements with linguistic notations,

stereotypes define new meta-model constructors, and tagged values identify new

parameters or information associated with the modelling elements. UML diagrams

are used as input for the automatic generation of scheduling and simulation models.

Software architectures are specified using the extended UML diagrams without

restrictions of the type of diagrams to be used. The diagrams commonly employed

include the class, collaboration and activity diagrams. Then, these UML diagrams are

used as input for the automatic generation of the corresponding simulation models in

OPNET. There are two tools used: Analysis Model Generator (AMG), which implic-

itly defines a middleware model that affects the scheduling analysis; and Simulation

Model Generator (SMG), which allows an automatic generation of OPNET model.

They also define a middleware model for scheduling analysis.

The simulation model is defined by instantiating with the application information the
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generic models that represent the various UML metaclasses. The approach generates

submodels for each application element and combines them into a unique simulation

model of the UML application. The approach provides also a feedback mechanism:

after the model has been analysed and simulated, some results are included in the

tagged values. This constitutes a relevant feature, which ease the software architecture

design in obtaining feedback from the performance evaluation results.

The proposed performance evaluation sequence is as follows:

1.Construction of the architectural model of the system to be analysed. This is done

by a UML CASE tool. UML elements are annotated with stereotypes, tagged val-

ues, and stereotyped constraints in order to provide parameters to the simulation

step. An XMI representation of the UML model is exported and used in the next

phases.

2.Configuration of the simulation. Given that the UML model might contain different

alternative scenarios and alternative behavioural specifications for the same ele-

ments, during this phase it is possible to choose which scenarios and which behav-

iours to execute.

3.Configuration of the simulation parameters. These parameters are essentially statis-

tics to collect, which filter to apply to simulation results, and the length of the simu-

lation period.

4.Generation of the OPNET simulation model.

5.Execution of the OPNET simulation model.

Simulation results are finally displayed using OPNET facilities, and may provide

hints to reconfigure the UML architecture or used as a criteria for architecture selec-

tion.

• Henning and Eckhardt (Henning & Eckhardt, 2001) and Henning, Hentschel, and

Tyack (Henning et al., 2003b) describe a UML-based simulation framework for early

performance assessment of software/hardware systems described as UML sequence

and deployment diagrams. The framework follows a design-evaluation-feedback

cycle. The simulation cycle starts with a collection of UML diagrams, from which a

subset is extracted and compiled into an XML document describing the simulation

experiment. The UML deployment diagrams are used to describe the physical envi-

ronment on which the software system executes. Also, the UML collaboration dia-

grams are used to model the workload applied to the system and the internal
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behaviour of the application being modelled. A converter module generates code for

the network and behaviour components of the simulator. The simulator itself is based

on the discrete event simulation package OMNet++. It contains core modules and

specific SPE extensions (i.e., an scheduler and a workflow execution engine) as well

as pre-modelled components. The statistics of performance observations collected

during the execution of the simulator can be fed back into the original UML model as

tagged values. The same approach is used in Henning et al. (2003a) for the automatic

generation of small components emulating the behaviour of a real one.

Even though the approaches described above are similar to the Architectural Per-

formance Modelling Method —since they are based on simulation models developed

from the information extracted from UML diagrams—, they have the disadvantage of

being dependent of a particular simulation language, which commonly does not consider

several parallel issues (such as simultaneous execution of software components or com-

munication and synchronisation between them). Including such issues as part of the sim-

ulation model and language would increase simulation costs, and at the same time, make

them considerably more complex to be used and understood. In contrast, the Architec-

tural Performance Modelling Method presented here develops simple simulation models

—which are based on queuing structures that are easy to program in most programming

languages. Moreover, these simulation models are developed to be expressly executed on

a parallel environment.

3.2.4 Applications and Case Studies

Some approaches present the generation of performance models from a software specifi-

cation through an application example or a case study. They consider UML specification

and different types of performance models.

• Smith and Williams (Smith & Williams, 1997) present an example to illustrate the

derivation of a performance model from an object-oriented design model, and pro-

pose the use of the SPEED tool, that supports the SPE methodology, to evaluate

object-oriented systems. Starting from a set of scenarios described by Message

Sequence Charts (MSC), execution graphs (EG) are derived that define the software

execution model, and then, by the modeller specification of computer resource

requirements, a system execution model is defined. The model is analysed by approx-

imate analytical methods or by simulation integrated in the SPEED tool. This work is
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related to the Williams & Smith (1998) approach.

• Pooley and King (Pooley & King, 1999) describe some preliminary ideas on how to

derive a queuing network model from UML specification of a system. Their goal is to

integrate the performance estimation with the system design process. They suggest

that successful efforts towards this goal most likely come from projects that attempt to

build performance analysis directly into accepted design method such as UML. They

describe how the various kinds of UML diagrams can be used for performance evalu-

ation purposes. Use case diagrams are used to specify the workloads and the various

classes of requests of the system being modelled, by identifying actors in use case dia-

grams with workloads applied to the system. Implementation diagrams (deployment

diagrams) are used to define contention and to quantify the available system

resources, by mapping on a queuing network model representing the computational

resources (service centres in the QN) and communication links (queues in the QN).

The idea is to define a correspondence between combined deployment and component

diagrams and queuing network models, by mapping components and links to service

centres. Sequence diagrams can be used as traces to drive a simulation program.

Finally, they suggest modelling of UML state diagrams using Markovian models. To

demonstrate their approach, a queuing network model is derived from a UML

description of an ATM system. The approach adds textual notations to UML diagrams

to include useful information for performance evaluation (i.e., time labels in sequence

diagrams). Such annotations are used to produce more complete models of software

systems. It should be noted that their approach, in general, can be applied regardless

the particular performance model derived.

In this paper, the UML sequence diagram are initially thought to have the potential to

generate and display useful information relating the performance. In the end, it is

decided that the sequence diagrams are more suited to being a display format rather

than a detailed behavioural specification format. It is mentioned that the sequence dia-

grams have been used as traces of events generated from a simple discrete event sim-

ulator. The work have also found a mapping from the deployment diagram to queuing

models, and have built a simulation library around collaborations with state machines.

The challenge lies in setting the foundation for an integrated performance engineering

approach on the whole UML notation. The use of collaboration diagrams with embed-

ded state machines seems promising, as well as its extension to incorporate collabora-



72

tions within deployment diagrams.

• King and Pooley (King & Pooley, 1999) describe how UML designs can be trans-

formed systematically into Petri nets, showing how to generate Stochastic Timed Petri

Net (STPN) models from the UML specification of systems with an example. They

consider use case diagrams and combined diagrams consisting of a collaboration dia-

gram with state diagrams (i.e., statecharts) of all the collaborating objects embedded

in them. The idea is to translate each state diagram that represents an object of the col-

laboration diagram into a Petri Net: states and transitions in the state diagram are rep-

resented by places and transitions in the Petri Net, respectively. The obtained Petri

Nets can be combined to obtain a unique STPN model that represents the whole sys-

tem, specifically a Generalized Stochastic Petri Net (GSPN) (Ajmone et al., 1986;

Marsan, et al., 1995). The merging of nets is only explained via the running example,

i.e. the paper does not include a general merging procedure. The GSPN can be ana-

lysed by specific tools such as the SPNP package. Further explorations of systematic

mappings from UML is undertaken by developing a graphical front-end. The possibil-

ity of employing LQN (on top of Petri Nets) as the targets of UML transformation is

also considered.

• Pooley (Pooley, 1999) describes how to derive Stochastic Process Algebra models

from UML specifications. More precisely, the starting point is like in King & Pooley

(1999): the specification of a system via a combined diagram consisting of a collabo-

ration diagram with state diagrams (i.e., statecharts) of all the collaborating objects

embedded within them. The idea is to produce a Stochastic Process Algebra descrip-

tion of each object of the collaboration diagram, and to combine them into a unique

model. This paper shows how this can be done on a real although simple example. It

presents also an attempt to generate a continuous-time Markov chain directly from the

combined UML diagram of the running example. The key observation here is that, at

any time, each object of the collaboration diagram must be in one and only one of its

internal states. The combination of the object current states is called “marking”. The

idea is to derive all possible markings by following through the interactions: this

allows building the corresponding state transition diagram and, then, the underlying

Markov chain.

• King and Pooley (King & Pooley, 2000) propose a method for deriving performance

models based on Generalized Stochastic Petri Nets (GSPN) (Ajmone et al., 1986;
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Marsan, et al., 1995) from UML collaboration and statechart diagrams. They propose

the use of a combination of UML diagrams (state diagrams embedded into collabora-

tion diagrams) to express the global state of a system.

• Bernardi, Donatelli, and Merseguer (Bernardi et al., 2002) derive a GSPN model from

UML state and sequence diagrams. They define two levels of modelling: a class level

and an instance level. The class level is represented by state diagrams, and it is used to

describe the behaviour of single entities of a system. The instance level uses sequence

diagrams to show patterns of interaction among objects (instances of classes). The

GSPN model is then created merging together the information provided by the dia-

grams of the two kinds of levels.

• Petriu and Woodside (Petriu & Woodside, 2002) describe the UCM2LQN converter

as a tool that automates the conversion of a Use Case Maps (UCM) scenario models

into LQN performance models. A UCM is a collection of elements that describe one

or more scenarios throughout a system. A scenario is represented by a path, shown as

a line from a start point to an end point, and traversed by a token from start to end.

Paths can be overlaid on components which represent functional or logical entities.

Responsibilities on the path represent functions to be accomplished.

The performance modelling of this approach assumes that computational workload is

associated with responsibilities, or is an overhead implied by crossings between com-

ponents. Responsibilities are annotated by service demands (number of processor or

disk operations, or calls to other services) and data store operations.

The tool is based on a Scenario to Performance Model Transformation Algorithm

(SPT), doing the following:

1.Identify when the path crosses component boundaries;

2.Determine the type of messages sent or received when crossing component bounda-

ries;

3.Capture the path structure and the correct sequence of path elements;

4.Create the LQN objects that correspond directly to UCM elements; and

5.Handle fork, joins, and loops.

The UCM2LQN converter connects high-level design in the form of UCMs with per-

formance analysis using LQNs.

• Xiuping, McMullan, and Woodside (Xiuping et al., 2003) propose an approach for

performance prediction based on Component-based Software Engineering (CBSE) to
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develop performance submodels for components, and combine their action through a

system assembly model. The idea is to obtain and specify performance information of

already developed components, and use such an information to create the perform-

ance submodels. These submodels are developed using a queuing model (specifically,

LQN), whose parameters characterise the workload when it is executed on a “stand-

ard” platform. These parameters include processor demands on a nominal architec-

ture, service request parameters between elements of the component, and service

request rates to stub services. However, it is not clear how such parameters are cho-

sen.

In order to get a performance model of the system, submodel are assembled together

to form a high level assembly model, derived from the software architecture of the

system. This model is also based on LQN models, representing slot components and

“glue” for integrating them.

Thus, a system performance model is created from the component assembly model

and the component submodels, using a tool called component assembler. This tool

generates the task instances and their parameters, based on the information from the

assembly model through an automated process. Hence, this approach presents a tool

and a method to automatically generate performance for component-based systems.

Its main advantages are (a) its parameterisation reflects the software component per-

formance attributes under different environments, (b) component submodels are reus-

able, just as components themselves, and (c) interface and stubs are defined in the

component submodel, and can be used for calibration tests.

The Architectural Performance Modelling Method is similar to these approaches in

the sense that it uses UML diagrams and descriptions (provided by the architectural pat-

tern descriptions) to develop simulation models based on queuing models an Markov

chains. Nevertheless, as these approaches refer to a particular application or case study,

their description seems to be difficult to be used in a more general form. Furthermore,

these approaches do not develop applications or case studies for parallel programming.

On the other hand, as the Architectural Performance Modelling Method is based on the

concept of architectural pattern, it does provide a certain generality to be used in more

than a single parallel application or case study.



75

3.3 Approaches to Performance Estimation of Parallel and 

Distributed Systems

Quantitative analysis of performance estimation has been recognised to be useful for par-

allel and distributed software design. Specifically, it is generally accepted that perform-

ance analysis should be integrated in the development life cycle of parallel software from

early stages. To this aim, several approaches have been recently proposed to integrate or

combine performance analysis and software architecture specification to parallel and dis-

tributed programming. In this section, we present a brief description of some approaches,

focusing on the proposed methods and the type of performance model, the implementa-

tion, and how easily the obtained performance results can provide feedback to the soft-

ware designer. The different approaches have been proposed considering the use of

analytical and simulation approaches.

3.3.1 Analytical Approaches

The analytical approaches consider the use of a set of parameters combined by means of

a mathematical rule, allowing the prediction of a performance attribute (see Section

3.1.1). So, the analytical approaches to parallel and distributed performance analysis are

as follows:

• Architectural Modelling Box (AMB) (Jonkers et al., 1998) is a modelling and design

language that provides a unified basis for the design process as well as functional an

quantitative analysis of distributed systems. The aim of this language is to bring

together system designers and performance modellers by introducing a design lan-

guage that includes quantitative properties of the system. AMB is formed by a graph-

ical language that models systems, their behaviour, as well as other relevant data. In

general, AMB models consists of two parts: the resource or entity model, that

describes the static aspects of the system (i.e. its components, their physical proper-

ties, and the way they can interact), and the behaviour model, that describes the

dynamic aspects (i.e. the process or actions performed by the system, in terms of

related activities). Specifications written in the AMB design language can then be

automatically translated into models for performance analysis (such as graph models,

timed Petri nets, or hybrid models) or for functional analysis.

• Kähkipuro (Kähkipuro, 1999) presents a framework for creating, using, and maintain-

ing performance models of object-oriented distributed systems. The architecture of
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this performance modelling framework consists of four main element:

1.The method of decomposition (MOD) that provides the foundation of the frame-

work by defining an algorithm for finding an approximate solution for performance

models

2.UML based performance modelling techniques, which provide the means for mod-

elling complex information systems by using abstraction for separating application

level issues from the use of technical resources.

3.The Performance Modelling Methodology, which provides a link to the Software

Engineering process by indicating how the proposed UML modelling techniques

can be used at different stages of system development to produce useful perform-

ance models for the system.

4.The Object-Oriented Performance Modelling and Analysis Tool (OAT), whose pur-

pose is to automate some tasks required by the framework, such as: (a) transforma-

tion of UML-based performance models into a format solvable by the MOD

algorithm; (b) implementation of the MOD algorithm to produce an approximate

solution for the performance model; and (c) conversion of the solution into a set of

relevant performance metrics that are used in the performance modelling methodol-

ogy.

This approach makes use of four performance model representations, each one with

its own notation. The mappings between them are defined by the framework architec-

ture:

1.UML representation. A description of the system with UML diagrams.

2.PML representation. An accurate textual notation for representing performance

related items in the UML diagrams. The purpose is filtering out the UML informa-

tion that has no significance for performance modelling.

3.AQN representation. A description of the system in an augmented queuing networks

(AQN) format that may contain simultaneous resource possessions and allows the

MOD algorithm to solve the model.

4.QN representation. A description of separable queuing networks with mutual

dependencies that correlate them to the same overall system.

The UML notations employed in this work are class diagrams (for deriving the

resource or queues), as well as collaboration and sequence diagrams (which are used

in conjunction with one or more workload specifications to describe the behaviour of
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the application and the infrastructure of the system). It is mentioned that the state and

activity diagrams could also be used for expressing the performance related informa-

tion conveniently.

• Hoeben (Hoeben, 2000) describes how UML diagrams can be used for performance

evaluation of distributed systems, discussing some rules that can be used to express or

add information useful to derive performance evaluation from the various UML dia-

grams. The approach uses UML class and component diagrams to represent informa-

tion used for modelling the system dynamics. Sequence and collaboration diagrams

are used to model the behaviour of the distributed system, and deployment diagrams

represent processors and network connections. This work proposes some UML exten-

sions based on the use of stereotypes and tagged values, and some rules to propagate

user requests specified by UML models to define the performance model. These rules

allow performance evaluation of UML models at various levels of abstraction, and a

prototype performance model tool is derived from the combination of diagrams to

automatically create performance estimates based on QN models. This prototype tool

is the used to calculate the system’s response time and utilisation. However, the author

provides just some hints on how to obtain a QN model from the UML model of a sys-

tem, and not a complete tool description.

The UML use case diagrams are used for capturing the tasks that the system has to

complete (i.e., its workload), and the tool calculates response times for each of these

tasks. The interaction diagram (i.e. the sequence and collaboration diagrams) provide

the translation of user tasks to hardware resources. In order to avoid the diagrams

becoming too big, multiple interaction diagrams are used to get the entire decomposi-

tion, where each diagram represents the behaviour of a single method. The class and

component diagrams are not of great importance for performance estimation, but they

are used to model information that is later used to understand the dynamics of the sys-

tem. The deployment diagram convey the properties of the processors and network

connections, which are useful in performance estimation. More information needed

for performance estimation can be supplied using the standard extension mechanisms,

i.e. tagged values and stereotypes, but this only shows that there needs to be a more

robust way for incorporating performance related information into UML design.

• Andolfi, Aquilani, Balsamo and Inverardi (Andolfi et al., 2000) propose an approach

to automatically generate queuing network models from software architecture specifi-
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cations described by means of Message Sequence Charts (MSC), that correspond to

sequence diagrams in UML terminology. The idea is to analyse MSCs in terms of the

trace languages (sequences of events) they generate, in order to single out the real

degree of parallelism among components and their dynamic dependencies. The

authors present an algorithm to perform this step. This approach is built on the previ-

ous work by Balsamo et al. (1998) to overcome the drawback of the high computa-

tional complexity due to possible state space explosion of the finite state model of the

CHAM description.

• Gomaa and Menascè (Gomaa & Menascè, 2001) use UML diagrams to represent the

interconnection pattern of a distributed software architecture. Class diagrams are used

to illustrate the static view of a system, while collaboration diagrams show the

dynamic behaviour. Collaboration diagrams are extended with new elements showing

the interconnections and communication ports, and they are added with performance

annotations written in XML. Such annotations refer to routing probability between

objects, average message processing time, average message size, and average arrival

rate of requests. Then they derive a performance model based on QN.

• Kähkipuro (Kähkipuro, 2001) proposes a framework on UML notation for describing

performance models of component-based distributed systems. The performance

model is based on Augmented Queuing Networks (AQN). The approach works as fol-

lows: UML diagrams are first converted into a textual notation called Performance

Modeling Language (PML). The PML model is translated into an AQN, which is then

solved with approximate techniques. The results obtained from the AQN model are

subsequently propagated to the PML model, and finally, to the software architecture

model.

These approaches for estimating the performance of parallel and distributed systems

are based on analytical models, and they attempt to take into consideration as many

aspects of parallel and distributed programming as they can, providing a certain level of

accuracy. Nevertheless, as it has been discussed before (see Sections 2.1.2 and 3.1.2), the

execution of a parallel program involves several non-deterministic issues that are diffi-

cult to take into consideration using analytical models. Hence, in order to deal with the

complexity of parallel execution, they work with simple models, and provide an

improvement on the accuracy of estimates. Several other methods use simulation models
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instead of analytical models. This is the case of the Architectural Performance Modelling

Method.

3.3.2 Simulation Approaches

There are several simulation approaches that have been developed to estimate the per-

formance of parallel and distributed systems. Some relevant approaches are listed as fol-

lows:

• DisCo (Distributed-Co-operation) (Jarvinen & Kurki-Sunio, 1991) is a formal specifi-

cation method for reactive systems which incorporates a specification language, a

method for using the language for building specifications, and a simulation tool sup-

porting the method. It focuses on the collective behaviour of objects, i.e. how they

cooperate with each other, as well as supporting an object-oriented approach. DisCo is

based on the joint action approach which concentrates on the interaction between dif-

ferent components instead of the components themselves. This increases the level of

abstraction, i.e. the bias towards particular hardware and software architecture is min-

imised.

The DisCo language supports modularisation (due to its object-oriented paradigm)

and incremental specification (which means that the level of the specification’s details

can be gradually increased until the desired level is met). A DisCo specification con-

sists of a set of layers, which are composed of classes and actions. New layers can be

constructed by composing two or more separate layers, or refining existing layers by

superposition. The DisCo tool provides a way to validate a specification by using ani-

mated simulations. Animation makes specifications more understandable, and pro-

motes communication between the people involved. The DisCo tool also supports

graphical representation of execution scenarios, using Message Sequence Charts

(MSC).

• Rapide (Luckham, 1996) is a computer language for defining and executing simula-

tion models of distributed system architectures. It introduces an interface connection

architecture, which means that every communication between modules is explicitly

defined by connections between interfaces. In Rapide, an architecture consists of a set

of specification modules (interfaces), a set of connection rules (for defining the com-

munication between interfaces), and a set of formal constraints which determines

whether a pattern of communication is legal or not. A component consists of a module
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and an interface. A module either encapsulates an executable prototype of the compo-

nent, or it describes the hierarchical structure of the component (when a component is

composed of other components). An interface defines what a module requires-from or

provides-to other modules, and connections are defined between the features in inter-

faces.

The Rapide language is accompanied by a set of tools which help in the specification,

design and testing of software modules and architectures. In general, the Rapide lan-

guage is composed of five sub-languages:

1.The Type Language describes the interface components. It supports object-oriented

and abstract data type styles of defining interfaces, as well as multiple interface

inheritance.

2.The Pattern Language provides a general language for defining event-based reac-

tive constructs or dynamic architectures.

3.The Executable Language is used for writing executable modules which are defined

by a set of processes that observe and react to events.

4.The Architecture Language models the interface connection architecture and defines

dataflow and synchronisation between modules.

5.The Constraint Language provides features for specifying formal constraints on the

behaviour of components and architectures.

Rapide is very extensive, and provides a simulation tool using an event-based execu-

tion model, named POSET (Partially Ordered Set Of Events). Nevertheless, Rapide

only supports purely behavioural simulation, and thus, does not adequately support

performance estimation.

• Botti and Capra (Botti & Capra, 1996) propose an approach to model and evaluate

concurrent applications based on Generalised Stochastic Petri Nets (GSPN). An inter-

esting idea is that this approach considers experimental simulation over their target

parallel architecture, and uses this information for performance prediction. The paper

discusses experienced performance metrics and parameter assignment criteria, and

characterise an application in terms of its performance and to support its mapping

over a parallel platform.

The approach describes a methodology based on the Multi Micro Language (MML)

and its related environment (MME). In an example, they describe the target hardware,

composed of two processing units, based on a DEC LSI11 and a Motorola MC68010.
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Both are connected with a serial link. The modelling by GSPNs consider the use of

stochastic parameters, which are measured and retrieved to produce latter simulation

models for performance prediction over the target parallel platform.

• Howell (Howell, 1996) proposes Reverse Profiling, which is a technique that applies

an MPI performance model for a hardware platform to a user’s program to generate

an estimate of the run time on that platform. The performance model is automatically

generated by running an “MPI characterisation” routine on the target parallel plat-

form, rather than being crafted from in-depth knowledge of such a platform. It also

includes a method for evaluating performance by computing delays using the profil-

ing interface of MPI. Rather than use profiling to extract timing data from a run of the

program, Reverse Profiling inserts estimated times.

The performance model consists of separate equations for each MPI function giving

the average, minimum and maximum times for a given parallel platform and message

size. Running this produces a LaTEX document, which is a “datasheet” for estimating

the performance. The equations given in the model may be used for analytical per-

formance predictions of a program to experiment with alternative designs at an early

stage. Nevertheless, this approach is considered between analytical and simulation

techniques, since it uses both for performance estimation. Based on the analytical

model, simulation is introduced at the process level. Because it does not involve full

simulation, each process keeps track of its own simulation time, and updates it when-

ever a function is called. This means that a normal trace can be generated. A model of

any parallel machine may be used, and any MPI implementation can be used as the

development environment.

• El-Sayed, Cameron, and Woodside (El-Sayed et al., 1998) develop a process for auto-

matic performance model-building for distributed systems, which starts from a design

expressed in SDL processes and a set of scenarios, and produces a performance

model. Initially, the process uses the SDL model, which is executed for the set of sce-

narios, recording traces from each scenario, and the performance model structure and

data is extracted from the traces. The performance model is constructed using LQN

models.

In order to build submodel from traces, five steps are followed:

1.Convert a trace into an angio trace (Hrischuk, et al., 1995).

2.Identify the types of messages in the trace.



82

3.Identify the different services provided by each process.

4.Find the precedence relationship between activities in each service.

5.Map the software architecture model into an LQN model.

The performance models produced in this work reflect by construction the structure of

the software or system design in SDL, combined with the coverage of scenarios. If

some part of the design is not activated by the scenarios, then it will not be in the

model.

• Autofocus (Huber et al., 1998) is a tool prototype for the formally based development

of reactive systems, mainly in the area of distributed systems. It supports system

development by offering integrated, comprehensive, and mainly graphical description

techniques for specifying different views and abstraction levels of the system. There

are four different description techniques provided to cover the different views on the

system:

1.System Structure Diagrams (SSD) describe the static aspects of distributed systems

by viewing them as a network of interconnected components with an ability to

exchange messages over their communication channels.

2.Data Type Definitions (DTD) represent the types of data processed by a distributed

system in a textual notation.

3.State Transition Diagrams (STD) describe the dynamic aspects, i.e. the behaviour

of a distributed system and its components.

4.Extended Event Traces (EET) provide an extra behavioural view of a distributed

system (on top of STDs) through exemplary runs from a component-based view.

Autofocus supports component-oriented development of systems, where a component

represents a structural part of the system, possibly described by different views using

the description techniques above, which allow different levels of system granularity to

be specified. Autofocus uses a prototyping and simulation approach for observing and

validating the properties of a system being developed. To support this approach,

Autofocus provides a tool component called “SimCenter” that facilitates: (a) the gen-

eration of executable prototypes; (b) the execution of these prototypes in a simulation

environment; (c) the visualisation of executions using the same description techniques

as used for designing the system; and (d) an optional connection between the simula-

tion environment and third-party front-ends such as multimedia visualisation tools or

external hardware systems. Both Autofocus and SimCenter are written entirely in the
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Java programming language.

• The Performance Modelling for ATM based Applications and Services (PERMA-

BASE) project (Akenhurst & Waters, 1999a; Akenhurst et al., 1999; Utton et al.,

1999; Waters et al., 2001) was carried out by British Telecom and the University of

Kent at Canterbury. This project deals with the automatic generation of performance

models from software systems specified in UML. The aim of this project is to provide

performance feedback as part of the object-oriented design process for distributed

systems, through an automatic generation of a performance model directly from the

system design model. This project tries to address the lack of use of physical environ-

ment (hardware) specification in distributed system designs. The software system is

described in terms of the following specifications or model views:

1.Workload specification. A description of the workloads (human operators or other

systems) that drives the system; this includes classes of components considered as

external to the system.

2.Application specification. A description of the behaviour of the software system,

specifying the class of components that constitute the software or logical behaviour

of the system, i.e. the system logic components (software, firmware or hardware

logic).

3.Execution environment specification. A description of the physical environment,

identifying classes of components that are physical components providing resources

used by the application during system operation (e.g. processors, networks, and

other resources that the system operates over).

4.System scenario specification. A specification of a particular system instance,

describing the configuration of the system (which components are present, and how

they are connected). This specification defines the instances of declared components

(of the three above) and the connections between them, which form a specific sys-

tem architecture or configuration.

UML is used to specify the workloads, the application behaviour and the execution

environment. The descriptions above are combined into a Composite Model Data

Structure (CMDS) of the entire system. The CMDS is then translated into a perform-

ance model (a discrete event simulation), whose execution provides feedback that is

reported back to the CMDS.

This project tried to use, and adapt if necessary, the UML notations for the representa-



84

tion of the four domain specification areas. For example, the Execution Environment

Specification can be described using the class diagram, while the System Scenario

view can be represented using the deployment diagram.

As a follow on from the PERMABASE project, Akenhurst and Waters (Akenhurst &

Waters, 1999b) propose a list of UML deficiencies with respect to performance mod-

elling.

• Ortega-Arjona and Roberts (Ortega-Arjona & Roberts, 1999c) propose an approach to

performance estimation of a parallel software architecture based on Architectural Per-

formance Models. These models encompass the design knowledge of architectural

patterns for parallel programming, a component simulator, and a performance analy-

sis for estimating the performance of a parallel application. The basic idea is to esti-

mate the contribution to performance from the Software Structure, described by an

architectural pattern. The component simulator generates probabilistic processing

times of sequential components, using a queuing model based on Markovian chains.

The workloads are set specifically for a particular use case, which represents the nor-

mal operation of the parallel program as defined by its architectural pattern. Finally,

the performance analysis of the results produces estimates that represent average exe-

cution times of the parallel system, depending on the use case.

In order to decrease the cost of simulating a parallel environment (hardware and soft-

ware), this approach proposes to take advantage of such an environment to carry out

its own simulation. This fact simplifies the use of more complex models for describ-

ing parallel system and parallel software architectures.

• Ayles, Field, and Magee (Ayles et al., 2003) propose a stochastic extension to the

Finite State Process (FSP) notation, as part of the Labelled Transition System Ana-

lyser (LTSA) tool, adding probabilistic choice and arbitrary time delays modelled by

clocks. The analysis of this extension is carried out using discrete-event simulation.

The result of this extension is a Stochastic Finite State Process (SFSP), which defines

scripts as a collection of constant definitions, named processes, performance meas-

ures, and named process compositions. For simulation, the SFSP processes are trans-

lated into stochastic timed automata, which essentially are stochastic extensions of the

original labelled transition system. The simulation explicitly traverses the state space

of the automata using distribution sampling to resolve probabilistic choice and non-

determinism, and to set clocks.
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• Gemund (Gemund, 2003) presents an hybrid approach combining analytical model-

ling with a performance simulation language called PAMELA (PerformAnce ModEl-

ling LAnguage). The approach aims to minimise prediction cost, while providing an

accuracy sufficient to enable code and mapping decisions.

PAMELA allows a symbolic analysis that enables its models as symbolic perform-

ance models, which trade accuracy for the lowest possible solution cost. The

PAMELA performance modelling process is based on the construction of program

and machine models, for which a PAMELA model is constructed (manually or gener-

ated). Once expressed in the language, the both models are gathered and compiled

into a symbolic performance model.

The paper presents a group of modelling examples to demonstrate the approach to

modelling parallel programs and machines. These examples consider pipelining,

branching, vectorisation, and others. The predictions are validated by their compari-

son with actual measurements on the parallel system, reporting the prediction errors.

These range from 10% to 77%, and the author claims that the latter are due to trivial

modelling inaccuracies rather than inherent inaccuracy of the PAMELA approach.

The approaches based on simulation methods for estimating the performance of par-

allel and distributed systems seem to be the most similar to the Architectural Perform-

ance Modelling Method. Most of them develop methods to create simulation models

based on a description of the parallel or distributed system to model. Nevertheless, only

the approach by Ortega-Arjona and Roberts (Ortega-Arjona & Roberts, 1999c) is based

on architectural patterns for parallel programming, as common software structures used

to organise the simultaneous execution of software components, and as a criteria for

selecting different organisations of parallel programs. The rest of the approaches pay a

lot of attention to several issues regarding simulation modelling and parallel execution,

but they do not consider a software design base (like architectural patterns) to be reused

in other design situations. 

3.4 Architectural Design Approaches for Parallel Software

Parallel programming is based on the division of work among multiple processors that

execute simultaneously, cooperating with a common objective. However, because most

highly complex programming problems can be partitioned in different ways, Parallel

Software Design results to be a difficult task, meaning that a single problem program-
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ming may have several parallel solutions. Over the last few years, this fact has resulted

on a growing interest in Parallel Software Design. Particularly, some research efforts

have been carried out to investigate paradigms and techniques to support and evolve the

design of parallel software, based on an structural or architectural design approaches.

The objective of using these architectural design approaches is to minimise the range of

partitioning options, selecting common coordination structures used previously in expe-

rienced parallel software programs. Research efforts on architectural design for parallel

and distributed systems have been proposed capturing and expressing the basic organisa-

tion, elements, experience, methodology and formalism in parallel and distributed pro-

gramming, and trying to develop methods for performance estimation.

In this section, we describe three of these architectural design approaches that we

consider are the most significant and similar to our Architectural Performance Modelling

Method (based on Architectural Patterns), by identifying and capturing general Parallel

Software Design experience. These approaches are the Archetypes/eText project

(Chandy, 1994), the Algorithmic Skeletons (Cole, 1989), and Structural Modeling

(Schopf, 1997). We consider them as the most significant because they provide similar

features, like a description of common configurations used as coordination in Parallel

Software Design, a development strategy, a performance modelling for estimating the

execution time of resulting parallel systems, and a classification for selecting coordina-

tion structures. 

It is important to mention that in this section we only aim to describe each one of

these approaches around these features. Nevertheless, these descriptions will be revisited

in chapter 8, comparing and analysing commonalities and differences with our research

work.

3.4.1 The Archetypes/eText Project

Archetypes were conceived by K. Mani Chandy, as a central part of the Archetypes/

eText project in the California Institute of Technology. Briefly, this project proposes a

system of parallel software construction, intended to provide a systematic process for

teaching parallel programming constructs, and for capturing designer’s rationale and

experiences in various parallel machines, algorithms and problems (Rifkin, 1993).
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Archetypes — Definition and Description

Even though refinements to the definition have been made, most of them are just varia-

tions of the original definition proposed by Chandy (Chandy, 1994):

“An archetype is (a) a method of problem-solving, (b) a program design

strategy associated with the method, and (c) a collection of exemplar prob-

lems to which the method could be applied, and a collection providing refer-

ence implementations in different languages and runtime systems and on

different architectures of each examplar problem” 

The original program design strategy associated with an archetypes has several parts.

These parts are expected to capture information about the structure, experience and tech-

niques for the development of applications based on an specific archetype (Chandy,

1994):

1. The structural description of a class of programs, including their common control and

data-flow structures. Consider for example, the graphic representation of the control

and dataflow structures for the One-deep Divide-and-Conquer Archetype, showed

respectively in Figures 3.2 and 3.3.

2. Methods for parallelising sequential code from specifications.

3. Rationale about the correctness and performance of archetype programs.

4. Suggestions for test suites and debugging, based on the structural description and

from experience of similar applications.

5. Suggestions for performance tuning, based on models and experience, on different

target computer architectures.

6. Detailed documentation and suggestions for an specific application.

7. Descriptions of other archetypes used by this archetype.

Archetypes offer a software construction guidance method at three different levels: 

Archetypes, Applications, and Programs (Rifkin, 1993):

• Archetypes level. The Archetypes level is the highest in the method. It presents a cata-

logue containing archetypes as general patterns for problem-solving. Each one repre-

sents a strategy that has been used as a solution for a particular problem using parallel

programming. Therefore, many problems can be solved choosing and applying an

appropriate archetype. Examples of archetypes are Divide-and-Conquer, Matrix

Operations, Mesh Computation, Dynamic Programming, Spectral Methods, etc. The

catalogue of archetypes is presented in a narrative form that describes each archetype.
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 Figure 3.2 Control structure for the One-deep Divide and Conquer Archetype

 Figure 3.3 Data-flow structure in One-deep Divide and Conquer Archetype
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Each description is intended to unify all examples into a common algorithmic frame-

work, capturing information and experience about the way it solves the problem.

• Applications level. At this level, an archetype is refined to show how it can be used in

a specific application. However, no implementation detail is addressed. The descrip-

tion of an application is properly intended to explain which problems can and cannot

be solved by the archetype, using again the narrative form.

• Programs level. Finally, at the Programs level of refinement, programs and source

code are presented as particular examples of applications, using a particular program-

ming language for a specific parallel or sequential machine. This level tries to capture

and provide the experience obtained during the implementation of such programs.

The narrative form is again used to describe both programs and source code.

Narrative description 

As mentioned above, a uniform narrative form is used in the description of components

(Archetypes, Applications and Programs). This form contains the following elements

(Rifkin, 1993):

• Documentation. An introduction or explanatory text that describes a given compo-

nent, discusses its methodology approach, gives clues to recognise the problem and

provides a reference list of other related components.

• Algorithm. A formal statement of the problem addressed by a component is provided,

containing a description of the steps to develop a solution of the stated problem. 

• Correctness abstraction. A correctness argument/proof discussion is presented, where

verification issues are confronted and discussed. This point should provide a system-

atic correctness outline, including proof obligations for components, safety and

progress considerations, invariants and termination verification strategies. 

• Efficiency abstraction. A performance analysis covering points like efficiency analy-

sis overview, parallel issues such as granularity, mapping and communication, com-

parisons between task-parallel and data-parallel approaches, and so on. This analysis

usually includes examples of implementations using a particular language and a target

machine at the Applications and Programs levels.

•  Debugging Tips/ Test Suite Design. Techniques are provided to help debugging com-

mon errors and capture design and implementation experience. Some creative pseudo-

code strategies are provided to develop a test suite for each component. 
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This five-element way of describing Archetypes, Applications and Programs was

designed to introduce the reader to an archetypal language that uniformly guides the

entire design process from conceptual requirements to code (Rifkin, 1993). The Arche-

types/eText project goal is to develop a library of parallel program archetypes that can

reduce the effort required to create correct and efficient parallel programs, using particu-

lar languages and machines (Chandy, 1994).

Parallel Program Development Strategy

Attending to their description, archetypes are used in the context of a parallel program

development strategy. This general strategy is briefly described as follows (Massingill &

Chandy, 1997):

1. A sequential algorithm or problem description is proposed.

2. An archetype is identified as an appropriate solution.

3. An initial archetype-based version of the algorithm is developed by structuring the

original algorithm to fit the archetype. As this initial archetype-based version of the

algorithm can be executed sequentially, giving the same results as parallel execution,

it is possible to correct and debug the sequential program using familiar tools and

techniques.

4. The initial archetype-based version is transformed into an equivalent algorithm suita-

ble for efficient execution on the target architecture, using transformations that pre-

serve semantics and hence correctness.

5. Implement the efficient archetype-based version of the algorithm using a language or

library suitable for the target architecture.

Performance Models

Originally, the archetypes approach considers performance as an optimization of the

sequential execution time. Performance concerns are introduced late in the program

development strategy, in a “fix-it-later” approach.

Archetypes address performance issues through simple performance models,

describing methods for determining granularity and for mapping processes to processors.

The objective of these performance models is mainly to simplify the process of perform-

ance analysis by exploiting commonalities in programs. In general, archetype perform-

ance models are expressed in the form of equations. For example, an attempt of
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performance analysis using equations is presented by Rifkin & Massingill (1998), aim-

ing for refinement of existing parallel applications. They propose a performance model

in two steps:

1. Analysis. The program is analysed, producing an equation that involves some bench-

marked values. This is achieved by decomposing the program into a set of sub-pro-

grams, and expressing their running times in terms of the benchmark values. The finer

the decomposition grain makes the model equation more predictive of the program

behaviour. 

2. Instantiation. A number representing a prediction of the program’s expected running

time is produced from the equation with the appropriate benchmarked values. Bench-

marked values are simply substituted into the equations developed during the previ-

ous step.

Structured Induction

Structured induction is the base for this decomposition approach and equation produc-

tion to performance modelling. it allows the expected running time of a parallel program

to be computed from the expected running times of its components. For example, a pro-

gram  is decomposed into two sequential programs,  and  (Rifkin & Massingill,

1998):

The running time  of program S can be modelled as:

Since  and  consist of a single computation or communication,  and 

can be modelled as the maximum expected running times of that computation or commu-

nication on all of the processors. As a result for the expected running time, we have:

Archetypes Summary

Archetypes are abstractions that capture the common features of a class of problems,

relating them with a parallelisation strategy to produce a pattern of data-flow and com-

munication. Archetypes describe and model coordination structures, aiming and looking

for structural solutions in parallelism. They present a development strategy considering
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three levels of software construction —Archetypes, Application and Programs—, being

Archetypes at the high-level organisation of components. About performance modelling,

the Archetype approach provides performance models and analysis in the form of simple

equations, exploiting commonalities found in parallel programs. Finally, Archetypes pro-

vide a clear classification scheme to organise their structural configurations. More

recently, archetypes are considered by their own authors to be a particular kind of design

patterns in the Software Patterns sense, “restricted” for the modeling of the computation

and communication structure of a parallel program (Rifkin & Massingill, 1996; Mass-

ingill & Chandy, 1997).

3.4.2 Algorithmic Skeletons

Algorithmic Skeletons have been proposed as a functional programming approach and

methodology for parallel programming. In general, Algorithmic Skeletons are used in

the form of implementation templates (Cole, 1989).

Skeletons — Definition and Description

Some definitions of Algorithmic Skeletons are:

• “Algorithmic forms that abstract the useful computational structures from applica-

tions” (Darlington & To, 1993).

• “An algorithmic form common to a range of programming applications, as polymor-

phic higher-order functions that represent common parallelisation patterns” (Dar-

lington et al., 1993).

• “High-level, parallel programming language constructs encapsulating the expression

of parallelism, communication, synchronisation and embedding, and having an asso-

ciated cost complexity” (Campbell, 1996).

• “Generic patterns of parallel computation which can be parameterised by a small

number of sequential functions or procedures (called here customising functions)”

(Deldarie et al., 1995)

From these definitions, it can be noticed that, essentially, skeletons are useful pat-

terns of parallel computation and interaction that can be packaged up as constructs, that

is, programming elements having structure but lacking detail. These constructs can be

parameterised by other pieces of code, possibly referencing or not explicit parallelism.

Skeletons can be represented using an informal graphical description (Campbell,
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1996), but more commonly, they make use of a functional language, like Haskel (Dar-

lington & To, 1993; Darlington et al., 1993). Consider for example the representation of

the FARM skeleton in Figure 3.4.

When used as building blocks in a functional language, skeletons are represented by

an interface or meaning, and by an implementation or behaviour for a set of computa-

tional problems. The declarative meaning of a skeleton can be established by its func-

tional language definition, which is independent of any particular implementation. The

specific behaviour of a skeleton depends on the particular parallel machine on which the

skeleton is implementable. All aspects of parallelism in a program derive from the

behaviour of the skeletons contained in the program on the machine in question. Func-

tions used by or contained in skeletons are executed sequentially (Darlington & To,

1993; Darlington et al., 1993).

Implementations of skeletons for parallel systems provide several advantages (Dar-

lington & To, 1993):

• Programming complexity is reduced by allowing the programmer to first address the

correctness or meaning of the program, and then to tackle the behaviour to ensure effi-

ciency.

 Figure 3.4 Representation of the FARM skeleton: (a) graphical, and (b) 

expressed in Haskel

FARM :: (α → β → γ) → α → ([β] → [γ])

FARM f env = map . (f env)

(b)

(a)
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• Take previous experience to quickly and efficiently produce specialised implementa-

tions on particular machines, without low level programming concerns.

• Performance can be predicted through the use of performance models attached to each

skeleton.

• Portability is provided by various implementations on different machines.

Examples of skeletons are Divide and Conquer, Iterative Combination, Cluster, Task

Queue, Pipe, Farm, Geometric, Client-Server, etc. (Campbell, 1996; Darlington & To,

1993; Darlington et al., 1993; Marr & Cole, 1993, Cole, 1989).

Skeletons Development Process — Program Transformation

Program transformation is used in the development process of skeleton programs at all

levels. At high-level, program transformation can be used to transform problem specifi-

cations into initial skeleton forms. At middle levels it can be used to convert programs

from one skeleton form to another (e.g. for the purposes of portability). At the low-level,

program transformation can be used to fine-tune, for example, varying the grain-size

used in an application, or configuring the program for a particular machine size. When-

ever possible, the skeletons methodology aims to avoid producing a new solution pro-

gram from scratch by selecting from a limited range of previously experienced

possibilities. Together, skeletons and program transformations compose a decision-tree,

in which the programmer or developer can navigate to map high-level specifications

onto concrete machine architectures (Darlington & To, 1993; Darlington et al., 1993).

Performance Models

Several approaches to performance modeling have been developed for skeletal parallel-

ism. For example, Cole (1989) describes four skeletons, but only the fixed degree divide-

and-conquer skeleton is analysed to obtain a predicted execution time which depends on

the execution times of customising functions. Also, Deldarie et al., (1995) makes a simi-

lar attempt to derive models for the execution time of an overall program. However, this

approach differs from Cole’s, making explicit the notion of a higher-order function,

extending the modelling process to cover scalability, restricting to a specific application

area (image processing), and considering machine specific parameters into the computa-

tional model.

A more general approach is presented by Darlington et al., (1993), using perform-
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ance models to predict performance and suggest improvements. They define the per-

formance model of a skeleton as a formula which predicts the execution time and whose

variables are problem and machine parameters. For example, the performance model for

their divide-and-conquer skeletons, assuming a binary division function, is:

This formula contains  as the time to solve a problem of size x on one processor,

the problem specific parameters  and  which represent respectively the time to

divide and the time to combine problems and solutions of size x, and the machine-spe-

cific parameter , as the time to communicate a problem and results between proc-

essors.

As each skeleton/machine pair has an associated performance model to predict the

performance of a program written using the skeleton on that machine, the formula can be

expanded to calculate the total time required to solve a problem of size G on M proces-

sors:

We consider this approach to performance modelling as a more general one since it

is not dependent on any computational model or machine. A specific implementation of

the skeleton requires then that the general performance model must be instantiated for

the target machine. A drawback is that it may not always be possible to reliably derive all

the machine-specific parameters. While this may currently seem a restriction, the limita-

tion is in fact a reflection of the current diversity of parallel machine models.

Algorithmic Skeletons Summary

The goal of skeletons is to avoid producing a new solution program from scratch, by

selecting and instantiating a fixed range of alternatives, presented as a set of general pur-

pose skeletons. As expressed by Darlington & To (1993), the aim is for “Building paral-

lel applications without programming”. With skeletons, useful patterns of parallel

computations and interactions are packaged together as a construct, and then parameter-

ised with other pieces of code. Such constructs are skeletons in that they have structure,

but lack detail, much as the top-most structural model shows the structure of the applica-

tion with respect to its constituent task implementations, but the details of the tasks

themselves are supplied by individual component models. In this sense, skeletons repre-
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sent a particular form of describing and modelling coordination structure in parallel sys-

tems as functional language constructs, encapsulating structural and design information.

They provide a simple performance modelling, using formulas or equations based on

problem and machine parameter for performance estimation.

3.4.3 Structural Modeling

Structural Modeling is a work on prediction models for high-performance distributed

applications, as part of the AppLeS project in the Computer Science and Engineering

Department, University of California, San Diego. Originally, Structural Modeling was

proposed by Schopf (1997), when applying a structural performance model to predict

performance on a cluster of distributed resources.

Structural Modeling — Description

Structural Modeling presents a structural performance model to predict the performance

of an application on a set of distributed resources. This model is composed by a struc-

tural model, a component model and an application profile.

• The structural model represents the top-most level of an application functionality, pro-

viding a flexible and adaptable mechanism for predicting its performance. Originally,

the structural model is constructed from a developer’s description of the application.

Often, this description is defined in the form of a graph representation or pseudocode.

Figure 3.5 shows an example of both descriptions for the Master-Slave computation.

• A structural model is composed of component models. These component models are

recursively defined as arithmetic combinations of input values (benchmarks, latency

and bandwidth measurements, CPU performance, operation counts, etc.), according to

an application profile.

• An application profile is a form for selecting the input values for the component mod-

els, using descriptions of where execution time is spent. In the original description,

the application profiles are just estimate percentages for each component (Schopf,

1997). This is a simple and easy way to express an application profile, but mostly, the

percentage relations are fixed arbitrary, in accordance with the developer’s experi-

ence. A second approach proposes the use of interval values, defined as a value and a

variation range with a normal probabilistic distribution (Schopf & Berman, 1997).

These interval values seem to more closely the range of possible input values. How-
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ever, as component models are arithmetic expressions using the values, an arithmetic

operation definition is needed to deal with the precision of predictions. Further, in a

third approach, stochastic values are introduced to the performance model (Schopf &

Berman, 1998). Stochastic values are now the input values associated with a normal

probabilistic distribution. This again requires the definition of arithmetic operations

for stochastic values.

Structural Modeling Approach

Informally, the Structural Modeling approach follows four steps to build a structural per-

formance model for performance prediction (Schopf, 1997):

• The structure of the application is examined to propose and construct a top-level

structural model to represent this structure, based on a developer’s description and

experience.

• An application profile is proposed, describing where execution time for the applica-

tion is spent, to determine which components must be modelled to achieve the needed

accuracy. Again, this application profile is created based on developer’s description

 Figure 3.5 Description of the structural model for a Master-Slave computation 

using (a) a graph and (b) pseudocode

(1) For i = 1 to MaxIterations
(2) Master Computation
(3) Broadcast Data
(4) Each Slave:
(5) Receive Data
(6) Compute Slave Work
(7) Send Data to Master
(8) Master receives all Salve Data

(b)

(a)
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and experience.

• The selection and development of component models is performed, guided by availa-

ble data sources and error allowance.

• The accuracy of the model is analysed to determine a course of action.

Structural Performance Model

The structural performance model is created expressing each model —the structural

model and the component model— in the form of equations.

For example, the structural model for the Master-Slave computation presented previ-

ously is (Schopf, 1997): 

where  is the total execution time of the application,  represents the execu-

tion time of the master computation (line 2 of the pseudocode in Figure 3.5),  is the

execution time to communicate data from master to all slaves (lines 3 and 5),  is the

execution time in the ith slave computation (line 6), and  is the time to send data to

master from the slaves. Each one of these times is represented by a component model,

which at the same time is an equation containing values and parameters of component

execution. Consider, for example, the model for the slave computation . There are

two approaches used to model the performance of the slave components: (1) counting the

number of operations involved in computing one element, and (2) benchmarking. The

performance models for both cases respectively are (Schopf, 1997): 

where  is the number of data elements computed by a slave on the ith processor,

 is the number of operations that a slave requires to compute a single element on

the ith processor,  is the time to perform one slave operation on the ith processor,

and  is the benchmark time for a slave to process a single element on the ith

processor.

Finally, we have the three approaches to determine the application profile:

• As estimate percentages, the application profile for a “congested network with a large

amount of data flowing” (Shopf, 1997) can be expressed as for example:
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• As interval values, the application profile values are expressed in the form , rep-

resenting a normal distribution, where  is the mean and  is the standard deviation

(Schopf & Berman, 1997).

• As stochastic values, the assumption is that interval values are now represented in the

form , again representing normal distributions, where  is the mean and  is

two standard deviations. However, to operate these values, a rule for combining sto-

chastic values is used, based on standard statistical error propagation methods

(Schopf & Berman, 1998).

Structural Modeling Summary

Structural Modeling presents a structural performance model to predict the performance

of an application executing on a set of distributed resources, describing and modelling

their coordination structure. The approach is based on decomposing the application per-

formance in accordance with the structure of the application into interacting component

models corresponding to component sub-tasks. Next, using the application profile and

available information as guides, equations are selected and used appropriately to model

the behaviour of each component, allowing different modeling approaches for different

application components as needed. The Structural Modeling goal is precisely to obtain

models for distributed performance estimation, defined recursively as arithmetic combi-

nations of input values. In this approach no classification of common structures, selec-

tion method, or benefits and liabilities of using different structural descriptions, are

considered. Every stage depends strongly on the previous experience of a developer.

3.5 Summary

In this chapter, we have presented a brief introduction to basic concepts on Software Per-

formance Modelling, and references to the most significant research work in the litera-

ture on Software Architecture and Performance Modelling, and on performance

estimation of parallel and distributed systems, considering those approaches published or

started before the present PhD work (1999). In general, each approach is briefly

described around its most relevant objectives and characteristics. Notice, however, that

during the last few years, references of many other approaches have been published after

the submission of this PhD work. Nevertheless, it seems also valid to consider all these

approaches as related work to the present thesis, since they present or describe
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approaches to performance modelling that have similar or common features with the

Architectural Performance Modelling Method proposed here. 

In this chapter, we have also presented the three most significant pieces of research

work in parallel and distributed programming with a similar objective and approach than

our Architectural Performance Models. Archetypes, Skeletons and Structural Modeling

have been presented according to their definition and/or description of their constituent

parts, and their application methodology for parallel or distributed programming. Also,

we have described the basics of their modeling for performance prediction or estimation.

Finally, a summary is presented for each one of them, describing briefly their major

objectives.

Later, in Chapter 8, a comparison with related work is presented, summarising simi-

larities and differences of these approaches with our Architectural Performance Model-

ling Method.
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Chapter 4

Architectural Performance

Modelling Method

“And there, in the middle of the arched concrete cellar, clean as a monastery cell, lay

a gigantic copper cylinder resting on cement supports. It was closed on all sides

except at the top, where there was a grating bedecked with seals. Inside the machine

all was darkness and silence. With a smooth and regular motion the cylinder thrust

forth a piston which slowly rotated a fly-wheel. That was all. Only the ventilator in

the cellar window kept up a ceaseless rattle.”

Karel Capek.

This chapter presents the Architectural Performance Modelling Method as a method for

identifying the best performing architectural pattern for a parallel application. This is

carried out by estimating and analysing its performance, based on its coordination com-

ponents at the architectural level. 

4.1 Motivation

Architects build scale-models as literal models of buildings, often producing models of

considerable artistic quality. These models can be abstract enough to convey the feel and

style of a building, or can be precisely detailed to assist in construction planning. Nor-

mally, scale-models share their form with the prospective building, but expressed at dif-

ferent space scale. Few competent architects would design a project of any size or

consequence without making one or more scale-models, usually during the initial sche-

matic and design development stages. When an architect builds a scale-model of a pro-

spective building, the objective is to provide a “real-life” perspective that portrays how

the building would actually look to the human eye. However, scale-models are designed
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not only to allow clients to understand how the building will look, but also may function

as part of behavioural or performance modelling as well (Rechtin & Maier, 1977).

Software architects may also make use of scale-models to demonstrate partial char-

acteristics of a software system. Building a scale-model, whose components consist of

functionless stubs, may help to create, guide, or clarify the structure and behaviour of the

software system. Commonly, software scale-models also share their form with the pro-

spective software system, but at different time scale. As with building architecture, such

a scale-model may be generated during the software development process, in order to

take design decisions about which structure to use for the software system during initial

stages of its design. Consider, for instance, scale-model simulations that represent the

functionality of a software system, but they do not execute any functionality in real time.

The results of the simulations can be used as quantitative evidences for supporting a

design decision about which structure to use for the software system (Rechtin & Maier,

1977).

Nevertheless, the creation of detailed scale-models is typically expensive and labour

intensive. Often, the effort to create such a detailed scale-model for a software system is

similar or equivalent to create the software system itself. So, the relative advantage of

using scale-models of software systems can be diminished. A possible solution to this

problem could be the development of non-detailed scale-models, which only reflect the

relevant properties for comparison purposes, and are expressive enough to provide useful

information for making design decisions.

4.2 Performance Models

Performance models are scale-models that describe how effectively a system carries out

or satisfies some functionality. Performance models are usually quantitative, and the

most important ones are those related to system functionality, that is, properties observed

from the system as a whole but not individually possessed by any of its subsystems.

They are commonly used to evaluate properties like overall sensitivity, accuracy, latency,

adaptation time, weight, cost, reliability, and many others. In consequence, to formulate

a quantitative performance model, it is necessary to know beforehand an architectural

description about the system’s behaviour and structure.

The performance of a software system is often expressed as the number of opera-

tions per unit of time, or as the amount of time it takes to complete a computation.
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Hence, performance is a function of the coordination activities among components and

the processing actions within each component of the software system. This is especially

true if the components occupy the same processor, but it is still true if the components all

execute on distributed computing elements. The amount of interaction among compo-

nents (by function invocation, process synchronisation or other communication mecha-

nisms) is a performance driver, which makes performance strongly dependant of

software architecture (see Section 2.2.2).

Performance models are generally classified according to their internal structure,

falling into one of the following categories (Rechtin & Maier, 1997):

• Analytical models. Analytical models are described by a set of parameters, which are

combined by means of a mathematical rule, allowing the prediction of a performance

attribute. In order to meet a required performance target, these performance models

are normally presented along with a set of proposed values for the parameters (see

Section 3.1.1).

• Simulation models. In essence, simulation models are similar to analytical models

because the performance attribute of interest is obtained in terms of a set of parame-

ters. However, simulation models are used when the relationship between the set of

parameters and the performance attribute of interest is just too complex and difficult

to explicitly identify. Therefore, if a mathematical rule that combines the parameters

cannot be easily identified or computed, a simulation can be used instead of the math-

ematical rule of combination (see Section 3.1.2).

The following sections provide background information on the Architectural Per-

formance Modelling Method, as a method for selecting an architectural pattern based on

a performance estimation using scale-models. These scale-models are simulation models

used to answer questions about the performance of a parallel software system during

early stages of software design.

4.3 The Architectural Performance Modelling Method

The Architectural Performance Modelling Method is a simulation modelling process for

identifying which architectural pattern presents the best performance, based on estimat-

ing the response time of a parallel program, using (a) information about the available

hardware and software resources, (b) the description of the problem to solve, and (c) the

architectural pattern descriptions, used for designing the potential parallel solutions.
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4.3.1 Problem and Assumptions

In order to develop a suitable performance model for any system, it is necessary to take

into consideration several issues and concepts surrounding such a system, as well as

some basic assumptions to develop the modelling method. In this section, let us describe

some issues and concepts about the parallelisation problem, a suitable and generic

description of a parallel program (which is the system we attempt to model), and some

assumptions taken in order to carry out the performance modelling of a parallel program

during execution.

Software Problem vs Parallelisation Problem

When developing a parallel solution to a problem, the software developer faces not only

the very “software problem”, but also the “parallelisation problem”. Let us briefly

describe both of them in the following paragraphs, in order to notice the basic differences

between these two kind of problems, present in parallel software development.

The software problem normally arises in any software development, implying the

creation of a solution to such a software problem. This solution is commonly described

in terms of an algorithm of abstract operations applied to data objects (such as a matrix)

with a specific range of values. Most of the developments in programming and software

design focus their efforts on solving this software problem.

On the other hand, the parallelisation problem is concerned with describing a solu-

tion as the simultaneous execution of communicating sequential processes (Dijkstra,

1968; Hoare, 1978; Brinch-Hansen, 1978). The objective is a more efficient execution of

the software solution by the simultaneous processing and communication among proc-

esses (or software components, as defined in Section 2.2), once such a solution has been

described in algorithmic terms. Hence, parallel programming only makes sense when the

solution to a problem is already known and proposed as an algorithm and the data to be

operated on.

Therefore, it is first required to solve the original software problem, whose solution

is expressed as an algorithm and data, and only then, solve the parallelisation problem

(Sommerville, 1989; Pancake & Bergmark, 1990). This implies the partition of such an

algorithm and/or data, attempting to provide a more efficient execution. Thus, parallel

programming does not directly deal with the nature of the problem to solve. This prob-

lem is actually solved by applying the algorithm to the data. The parallelisation problem
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is solved by achieving simultaneous execution at the programming level. Hence, there

are two problems to be solved during parallel software design: the software problem and

the parallelisation problem, which exist in different “design dimensions”, as explained

by Peter Wegner (Wegner, 1987). This is also pointed out by Ian Sommerville (1989),

when introducing parallelism in the software design process as a two-stage activity. Con-

sider, for instance, multiplying two  matrices produces a new  matrix, each of

whose  entries is an inner product that can be computed independently of, and thus in

parallel with, all other entries (Hoare, 1978; Andrews, 1991; Freeman & Phillips, 1992;

Foster, 1994; Kleiman, et al., 1996; Hartley, 1998; Andrews, 2000). For this example, it

is required to (a) propose an algorithm for developing a numerical solution for the matrix

multiplication, and only then, (b) consider how to carry out such a numerical solution as

a set of parallel processes.

It is important to clarify that the present thesis attempts to aid with solving the paral-

lelisation problem, using architectural descriptions based on architectural patterns, and

given that the solution to the software problem has been proposed as an algorithm and

data to be parallelised. The solution to the parallelisation problem is not directly affected

by the nature of the problem itself, but more precisely, by the order and relation among

instructions within the algorithm and/or datum within the data.

Describing Parallel Programs

The objective of the present thesis is to compare design alternatives by developing scale-

models to estimate their performance as parallel programs (see Sections 2.1.1 and 2.1.5).

However, in order to do such a performance modelling, some characteristics of parallel

programs should be taken into consideration in order to describe them in time terms for a

performance scale-model development:

• A parallel program only specifies simultaneous processing and communication activ-

ities carried out by software components. Nevertheless, software components are

prone to remain idle during periods of time, even though this state has not been part of

the specification in the parallel program. Idle times result from the non-deterministic

parallel environment in which software components are executed. Software compo-

nents of a parallel program are forced to wait until a particular event occurs (for

instance, synchronisation of communication between components or overhead due to

the use of common hardware resources). Hence, idle times are a consequence of the

n n× n n×

n
2
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components’ simultaneous execution at different speeds into a non-deterministic

environment (Hoare, 1978; Brinch-Hansen, 1978; see also Section 2.1.1). Any

description of the execution of a parallel program must consider idle times for its soft-

ware components, in order to obtain a realistic time model for the parallel program.

• A parallel program is the specification of a set of sequential software components,

processing and communicating among themselves to achieve a common objective.

However, due to non-determinism (and the consequent insertion of idle times), the

times required for a software component’s activities vary from one execution of the

program to another (Dijkstra, 1968; Hoare, 1978; Brinch-Hansen, 1978). Hence,

times ought to be described more likely as probabilistic values, rather than as deter-

ministic ones. For example, in a message passing parallel program, each time there is

a communication between two software components, usually one of them has to wait

(idles) for the other, and the time taken for waiting is normally different from one

communication to another, and from one execution to another.

• A parallel program finishes only when all the software components it specifies finish

(Dijkstra, 1968; Hoare, 1978; see also Sections 2.1.1 and 2.1.2). This may give the

impression that all software components have the same execution time, but this is not

the case: the software components specified in the parallel program would have to

wait until the very last of them achieves its end, and this happens at a particular point

of time. Only then, the parallel program finishes. This is described when introducing

the parallel composition (Dijkstra, 1968) and the parallel instruction (Hoare, 1978) to

express parallelism in a language (see Section 2.1.2). Normally, all software compo-

nents keep processing, communicating or idling until the whole parallel composition

finishes. The only reason that it could fail, is due to deadlock.

Based on these characteristics, the execution of a parallel program is described in

time terms, using a space-time view as the one shown in Figure 4.1 (Notice that this fig-

ure shows only an example of how an execution of a generic parallel program could be

seen, and it is used only for illustration purposes).

The space-time view displays the activities of individual (sequential) software com-

ponents of a software architecture, executing on the parallel platform, like a Gantt chart

(Geist et al., 1994). Listed on the left-hand side of the view are identifiers for the soft-

ware components. Each software component is related to a horizontal bar stretching out

in the Time direction. During execution, the state of each software component (as a proc-
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ess of the parallel program) is considered to be processing, communicating, or idling.

These states are indicated by the change of colour of the horizontal bar. In a message

passing parallel system, let us define such states as follows:

• A software component is defined to be processing when it instructs its processor to

modify the state of its local memory (Hoare, 1978; Brinch-Hansen, 1978). Hence,

such a software component is programmed to modify local data, and its processor

time is only devoted for such activity.

• A software component is defined to be communicating by message passing when it

instructs its processor to modify (a) the state of another processor’s memory (by a

send operation), or (b) the state of its own local memory by a request from another

processor (by a receive operation) (Hoare, 1978; Brinch-Hansen, 1978). Hence, such

a software component is programmed to modify remote or local data, and its proces-

sor time is mainly devoted for message passing.

• A software component is considered to be idling when it is not in a processing or

communicating state, but waiting for an event to occur in order to continue later with

a processing or communicating state. Hence, such a software component does not

modify neither local nor remote data. Nevertheless, it still consumes processor time.

Moreover, this time description of a parallel program using space-time view includes

the basic characteristic that a parallel program only finishes when all its software compo-

nents have finished processing, communicating or idling. This situation is defined to

happen in the space-time view at a time T. However, such a time T is not a fixed value,

since processing, communicating, and idling times are probabilistic values, influenced

by the non-determinism of the parallel hardware environment. Thus, from a statistical

Figure 4.1 Space-Time View description of a parallel program of 6 

software components. Each component spends its time processing, 

communicating, or idling.
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point of view, we refer to such a time as the average total execution time. This is the

value that our performance modelling method attempts to estimate.

Assumptions to develop a Performance Model of a Parallel Program

The most immediate and important decision to make at the beginning of parallel pro-

gramming is to decide which coordination (an architectural description, such as the “log-

ical structure” as described by Somerville (1989), or an architectural pattern) may be the

most viable for parallelising a problem, using given parallel hardware and software

resources. In general, there are many possibilities to parallelise an algorithm or data, and

a parallel program developer will not know in advance which of the various alternatives

will have the desired runtime behaviour on a given computer platform. There are two

possibilities for finding an answer to this question:

1. One can implement the various alternatives. However, the implementation requires a

lot of time and is therefore very expensive.

2. One can use a method based on performance estimation, producing non-detailed mod-

els of the various alternatives, and trying to find which can be considered as the opti-

mal solution by evaluating the models. This approach is less expensive.

Considering the second approach, we propose a method for comparing design alter-

natives using performance estimation, which considers the following general and per-

formance assumptions:

General Assumptions

1. A problem, involving a large computation which applies an algorithm on a certain

amount of data, is identified to be solved using a parallel program.

2. The parallel program can be described in terms of the Architectural Description of

Software (see Section 2.3.2), as Platform, Coordination and Processing components.

3. The Coordination of the parallel program is modelled by more than one architectural

pattern. 

4. The given inputs are (a) the problem statement, (b) the amount of data to be operated

on, and (c) the parallel hardware and software resources available.

5. The execution of the large computation should meet performance requirements within

a specific time frame.
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Performance Assumptions

6. The performance of the parallel program mainly depends on the time it takes for all its

components to carry out coordinating or processing activities. Thus, a performance

model for such a parallel program can be represented as a scale-model that reflects

such coordinating and processing activities.

7. The coordination components organise the communication between processing com-

ponents, by issuing requests for processing and providing the data to be operated on.

Thus, coordination components spend most of their time coordinating and communi-

cating data between processing components.

8. The processing components carry out the operation on the provided data, and return a

result. Processing components, then, spend most of their time processing data.

9. The functionality of platform and coordination components can be represented by a

runnable implementation of an architectural pattern, that only represents the coordina-

tion among major components on the parallel resources available. The execution of

this implementation, using the data of the problem, produces the same pattern of

simultaneous communication and idling present in the execution of the real parallel

program, which uses such an architectural pattern. This is due to both, the runnable

implementation and the real parallel program share the same form, expressed in terms

of the architectural pattern used. However, no processing or operation on the data is

actually performed, due to scaling (see Section 4.1).

10.The functionality of processing components can be simulated by statistical compo-

nents. When requested for processing, the statistical components provide an approxi-

mated value related to the real-time behaviour of processing components. The

objective is to obtain time scaling through processing simulation (see Section 4.1).

The general assumptions set up the basic requirements for the application of the

Architectural Performance Modelling Method, whereas the performance assumptions are

used in the following sections for the calculation of performance estimates and the con-

struction of scale-models.

4.3.2 The Method

The Architectural Performance Modelling Method obtains the best performing architec-

tural pattern for a parallel system, using as input:

1. A statement of the problem to solve, described in terms of an algorithm and the data
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on which the algorithm is to be applied. Both, algorithm and data, are the elements of

a program which can be partitioned, and used to select an architectural pattern as an

initial coordination structure for the solution.

2. A specification of the known parallel platform (hardware and software) to be used.

For the actual purposes of the present thesis, the simulation models for all case studies

are developed and executed on a cluster of sixteen computers, using the Java Parallel

Virtual Machine (JPVM) environment (Ferrari, 1997; Geist, et al., 1994), which rep-

resent the available hardware and software resources. Moreover, all simulation mod-

els are programmed in the Java programming language (Smith, 2000; Hartley, 1998).

Nevertheless, these contextual conditions do not restrict that modelling and simula-

tion as proposed by the method could be developed and executed considering a differ-

ent hardware and software platform, in order to estimate the performance of a parallel

solution on such a platform.

The method uses information about the architectural description of the parallel sys-

tem and discrete-event simulation for respectively developing a Coordination Simulation

and a Component Simulation:

• The Coordination Simulation is an architectural description presented in terms of the

behaviour and form of the parallel system as described in the Structure, Dynamics and

Implementation sections of the Architectural Patterns for Parallel Programming (see

Chapter 5). This simulation is used to understand the coordination behaviour of a

solution based on a particular architectural pattern, allowing to consider and measure

performance information of the time it takes only to carry out communication and

synchronisation activities among software components.

• The Component Simulation is a discrete-event simulation used at the level of each

sequential software component, in order to take into consideration its sequential

behaviour as a value representing its processing time. So, such a simulation is devel-

oped as a queuing structure, capable of obtaining a probabilistic estimate of the time it

would take for a sequential software component to serve a single request of process-

ing, as a proxy of the system-specific processing, but without actually carrying out

any functionality. Because the property of interest is performance, this queuing struc-

ture needs only to produce a reasonable estimate of the component’s execution time

rather than allowing one to predict anything dependent on its behaviour. The sequen-

tial set of such estimates are gathered together into the Component Simulation Esti-
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mates (see Section 4.3.2). In order to produce such estimates, the queuing structure

has been selected as a fairly generic component, which can be parameterised to

account for system-dependent aspects. It requires two parameters, λ and μ, which

respectively represent the average arrival rate of requests to the sequential software

component, and the average service rate provided by the sequential component (see

Section 6.2.2).

Notice that, at prediction time, the architectural information available in a given

architectural description leads to an accurate Coordination Simulation. Nevertheless, for

parallel system’s estimation purposes, we do not know beforehand the precise processing

behaviour of the parallel system’s processing software components, and hence, we can-

not predict anything dependent on their behaviour. It is possible to obtain a value of λ for

each parallel software component, directly measuring it when data is “passed through”

the Coordination Simulation. However, and since the Architectural Performance Model-

ling Method is proposed as a means to get performance information before further imple-

mentation is available, there is a substantial difficulty to consider a value for μ in order to

execute each Component Simulation. Thus, in order to produce a reasonable estimate of

a parallel system’s performance, a simple approach is proposed so μ is obtained based on

its relation with λ and the average queue length Q (see Section 7.1.4). So, both Coordina-

tion and Component Simulations can be gathered together into an Architectural Perform-

ance Model, which takes into consideration communication and processing activities,

and which is able to obtain performance estimates given the constraints considered in the

hypothesis (see Section 1.3). 

Based on the previous ideas, the Architectural Performance Modelling Method has

the following steps:

1. Architectural Pattern Selection. One or several architectural patterns, describing

coordination organisations of parallel components, are selected as potential solu-

tions to the problem. These architectural patterns and the platform specification are

used to define the configurations for the parallel system, fixing the number of com-

ponents and the number of processors for each pattern.

2. Architectural Performance Model Construction. The objective of this step is the con-

struction of the model for the experimental performance simulation.

2.1. Coordination Simulation. Using the specification of the known parallel plat-

form and the information of the selected architectural patterns, a Coordina-
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tion Simulation is constructed for each one. The Coordination Simulation is

an executable instance of each architectural pattern on the specified parallel

platform, representing the coordination among components of the parallel

system.

2.2. Component Simulation. Based also on the platform specification and the infor-

mation from each architectural pattern, a Component Simulation is con-

structed. The Component Simulation is an executable simulation of the time

behaviour of a single component, representing its processing time.

2.3 Architectural Performance Model. The Architectural Performance Model for

experimental performance simulation is finally constructed. This model is an

executable program that gathers together the Coordination Simulation (rep-

resenting coordination among components) and the Component Simulations

(each one simulating the processing time of each component).

3. Performance Simulation. A single performance estimate for a given configuration of

the parallel system is obtained by executing the models, as follows:

3.1 Coordination Simulation Execution. The Coordination Simulation, represent-

ing the coordination among components of the parallel system, is executed a

number of times. From each execution, the time required for coordination

among components and the arrival rate of requests to each component are

measured. Hence, by performing a number of executions of this model, it is

possible to statistically obtain an average coordination time and an average

arrival rate of requests (λ) to each component.

3.2 Architectural Performance Model Execution. The average arrival rate of

requests (λ) to each component is used along with information from each

architectural pattern to derive the parameters for the Component Simula-

tions. This makes possible the execution of the Architectural Performance

Model, which is carried out a number of times in order to statistically obtain

a simulated average processing time.

4. Performance Estimate Calculation. Finally, the single performance estimate for the

given configuration of the parallel system is calculated, by adding the average

coordination time and the simulated average processing time (see Section 4.3.2).

The Architectural Performance Modelling Method produces average execution times

that quantify the effect of communicating and processing the program’s workload.
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4.3.3 Calculation of Performance Estimates

A performance model should be able to explain available observations and perhaps esti-

mate future circumstances, while abstracting away unimportant details. However, con-

ventional computer modelling techniques, which typically involve simulations,

introduce too many details to be of practical use to parallel program designers. In this

section, we introduce the fundamentals for the calculation of performance estimates

within the Architectural Performance Modelling, which provide an intermediate level of

detail (Ortega & Roberts, 1999c).

Let , , and  be the time spent processing, communicating, and idling,

respectively, on the ith component of a space-time view of a parallel program. Hence, the

average total execution time T (from Figure 4.1) can be defined as the sum of computa-

tion, communication, and idle times on an arbitrary component j (Foster, 1994),

or adding these times over all components, and dividing by the number of components N

(N > 0),

The last definition is often more useful, since it is typically easier to determine the

total execution time of a parallel program in terms of the time spent computing, commu-

nicating, and idling of individual components.

Our goal is to estimate the average total execution time based on the General

Assumption 2 (see Section 4.3.1). Thus, it is necessary to develop a mathematical

expression that specifies execution time as a function of the response times of platform,

coordination, and processing components. The objective is to keep the scale-models as

simple as possible, while providing acceptable accuracy. This is achieved by considering

that processing and communication are activities sharply separated among coordination

and processing components, which is the base for Performance Assumptions 7 and 8.

Even though this may not be always the case, our objective is to prove that such a suppo-

sition does not introduce a considerable error for performance estimation. So, our scale-

models can effectively be used to estimate the performance of a parallel program with

the proposed constraints as expressed by the General Assumption 4 (see Section 4.3.1).

Let us consider that the total processing, communicating and idling times are the

result of the contribution of all the components of the parallel software system, which
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spend their time processing, communicating or idling. Based on the Architectural

Description of Software (see Section 2.3.2), we can classify all components depending

on their particular objective in the software architecture, as platform, coordination or

processing components. From this classification, the expression for average total execu-

tion time can be presented in terms of these groups of components as:

where k is the number of platform components, m is the number of coordination compo-

nents, and n is the number of processing components, such that  and

. Notice that each summatory in the expression for total execution time repre-

sents respectively the times that the platform, coordination and processing components

take for processing, communicating and idling.

Based on Performance Assumption 6 (see Section 4.3.1) the average total execution

time is composed of the times spent on coordinating and processing activities by the par-

allel program components. Hence, the average total execution time can be analysed by

decomposing it into sub-expressions, representing those coordinating and processing

activities:

where  and  represent the real times spent for coordinating and process-

ing activities, respectively. The following subsections define such sub-expressions for

both times, and apply some simplifications in order to obtain expressions for coordina-

tion and processing simulation estimates. These simplifications are based on the already

discussed General and Performance Assumptions (see Section 4.3.1).

Obtaining Coordination Simulation Estimates

The execution of the real parallel program, using the data of the problem, produces a pat-

tern of simultaneous communication involving platform and coordination components.

So, let us define the real coordination time ( ) as the time spent due to this
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behaviour, which can be actually taken as part of the average total execution time expres-

sion, and represented by the following expression:

Since components in the coordination layer spend most of their time coordinating

and communicating data between processing components (see Performance Assumption

7), the time taken due to processing in coordination components can be considered

approximately zero. Basically, it is expected that this supposition would not introduce a

considerable error. So, this can be expressed as:

Thus, applying this simplification to the expression for , let us define a

Coordination Simulation time ( ) as an estimate of the execution time due only to

platform and coordination components (see Performance Assumption 9).

Obtaining Component Simulation Estimates

Subtracting  from the total execution time T expression, the remainder repre-

sents the time due to processing activities by processing components. So, let us define

the real processing time ( ) as that time spent due to processing activities, repre-

sented by the following expression.

Since components in the processing layer spend most of their time processing data

(see Performance Assumption 8), the time taken due to communicating in processing

components is considered approximately zero. Again, the basic supposition for this is

that such simplification does not introduce a considerable error. Hence, this can be

expressed as follows:
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Applying this simplification to the expression for , let us define a Compo-

nent Simulation time ( ), which represents estimates of the execution time due

only to processing components (see Performance Assumption 10).

Obtaining the Performance Estimates

Both simplifications to coordination simulation times and component simulation times

are due to modelling purposes. They provide a sharp cut between what means processing

and what means communicating. Furthermore, they end up adding an error to the per-

formance model, but as experimental results show later, these simplifications do not

induce major errors to the estimates, which is part of this thesis’ main objective. At the

end, performance estimates are approximations to the average total execution time of a

parallel system. In this sub-section, one approximation of the average total execution

time T is defined from the expressions for Coordination Simulation time and Component

Simulation time as follows:

Observe that this expression considers and contains the contributions of each one of

the groups of components (platform, coordination, and processing). Thus, the Architec-

tural Performance Modelling Method proposes to obtain estimates of the total execution

time from running the Coordination Simulation and Component Simulation.

4.4 Summary

In this chapter, the Architectural Performance Modelling Method is proposed as a

method for identifying the best performing architectural pattern of a parallel application,

based on performance estimation. The method requires a given problem to be solved

using certain parallel hardware and software resources, and the coordination of the paral-

lel program modelled by architectural patterns. A complete parallel system is modelled

as a network of interconnected simulation components, setting up a kind of scale-model

which is representative of the complete parallel application. This scale-model reflects the

coordinating and processing activities carried out within the parallel application, and per-

mits the calculation of performance estimates.
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Chapter 5

Architectural Patterns

for Parallel Programming

“How does one invent program structure? I do it by drawing pictures of it from different

viewpoints over and over again until a simple and convincing pattern emerges. Perhaps,

there are more systematic ways of inventing structure — I don't know. But I do recognize a

good program when I find one”

Per Brinch-Hansen

This chapter introduces (a) the concept of architectural pattern and its relation with Soft-

ware Architecture and Software Performance, and (b) the Architectural Patterns for Par-

allel Programming, which describe the coordination layer of an overall parallel software

architecture, and whose selection constitutes the first main step of the Architectural Per-

formance Modelling Method. The architectural patterns commonly used in parallel pro-

gramming introduced here are Pipes and Filters, Parallel Hierarchies, Communicating

Sequential Elements, Manager-Workers, and Shared Resource.

5.1 Architectural Patterns

5.1.1 Software Pattern Categories

Software patterns cover various levels of scale and abstraction. They range from soft-

ware patterns that help in structuring a software system into sub-systems, to software

patterns that support the refinement of sub-systems and components, and to software pat-

terns that are used to implementing particular design aspects in a specific programming

language. Based on a description such as this, software patterns are commonly grouped
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into three categories (see Section 2.2.1), each one consisting of software patterns having

a similar level of scale or abstraction (Buschmann, et al., 1996):

• Architectural Patterns. “An architectural pattern expresses a fundamental structural

organization schema for software systems. It provides a set of predefined subsystems,

specifies their responsibilities, and includes rules and guidelines for organizing the

relationship between them”.

• Design Patterns. “A design pattern provides a scheme for refining the subsystems or

components of a software system, or the relationships between them. It describes a

commonly-recurring structure of communicating components that solves a general

design problem within a particular context”.

• Idioms. “An idiom is a low-level pattern specific to a programming language. An

idiom describes how to implement particular aspects of components or the relation-

ships between them using the features of the given language”.

In the present work, we are concerned about architectural patterns as high-level soft-

ware patterns used for specifying the software architecture of parallel software systems.

In fact, architectural patterns identify frequently used architectural solutions, and they

are used as templates to describe concrete software architectures (Shaw, 1995; see Sec-

tion 2.2.1).

5.1.2 Definition and Description of Architectural Patterns

Architectural patterns are fundamental organisational descriptions of common top-level

structures observed in a group of software systems (Ortega-Arjona & Roberts, 1998a).

They specify properties and responsibilities of their sub-systems, and the particular form

in which they are organised, by expressing the relationships between them.

The selection of an architectural pattern is a fundamental decision during the design

of the overall structure of a software system (Buschmann, et al., 1996; Shaw, 1995). As

architectural patterns represent a means to capture and express design experience, their

use is expected to be beneficial during early stages of the software system life cycle

(Shaw, 1995). In fact, the initial attraction to architectural patterns is the promise of min-

imising the effects of imminent changes of requirements on the overall system structure. 

Architectural patterns are described using the general software pattern description

(see Section 2.2.1). Usually, such a description provides for several aspects of the archi-

tectural pattern (such as structure, behaviour, implementation, and so on) and include
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different kinds of diagrams (commonly using UML), which can be used to model differ-

ent points of view of the organisation of the software system. Moreover, an architectural

pattern is considered as a form-function relation between a software structure (what are

the sub-systems and components and how they are arranged into a form) and its behav-

iour (how the sub-systems and components interact to achieve a common function). This

description is consistent with the definition of Software Pattern provided in Section

2.3.1.

5.1.3 Architectural Patterns and Software Architecture

Software Architecture has been defined before as the discipline or study of designing

software systems, as the result of an “assembly-job” of software components (see Sec-

tion 2.2). In accordance with this definition, Software Architecture allows to analyse and

build software systems through assembly or composition of software components. Such

a composition, when based on a regular organisation of software components, provides

substantial benefits. These include better comprehension of complex software systems,

which aids both development and maintenance.

Architectural patterns are descriptions of such regular organisations of software

components. Simply put, architectural patterns allow software designers and developers

to understand complex software systems in larger conceptual blocks and their relations,

thus reducing the cognitive burden. Furthermore, architectural patterns provide several

“forms” in which software components can be structured or arranged, so the overall

structure of a software system arises. Software Patterns in general convey the very

essence of software design, and architectural patterns address one of the critical design

pieces of any software system: they generate the overall structure of such a system.

The concept of architectural pattern is similar to the concept of architectural style

(see Section 2.2.1): both provide descriptions of solutions as forms in which software

components can be arranged as part of a software system. Nevertheless, architectural

patterns are more problem-oriented than architectural styles (Buschmann, et al., 1996).

Architectural styles describe a family of software systems in terms of their structural

organisation, expressing a generic solution from a point of view that is independent of an

actual design situation. On the other hand, architectural patterns precisely describe an

actual design situation by providing not only a solution as a structural organisation, but

also (a) a context statement that describes a situation “when” such a solution is applica-
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ble, and (b) a problem statement that describes the “tension” or “conflict” among the ele-

ments of the context, which the solution attempts to “balance”. It seems important to

clarify that the original concept of architectural style, as originally proposed by Perry &

Wolf (1992), considered a rationale for describing the various choices made in defining

a software architecture, capturing the motivation for the selection of a particular architec-

tural style, and explaining the “underlying philosophical aesthetics” that motivate the

architect. Nevertheless, such part was dropped as people started doing research on soft-

ware architectures.

Architectural patterns also provide a vocabulary that may be used when designing

the overall structure of a software system, to talk about such a structure, and feasible

implementation techniques. As such, architectural patterns refer to concepts that have

formed the basis of previous successful software architectures. Architectural pattern

names constitute central terms of design vocabulary and experience in Software Archi-

tecture.

5.1.4 Architectural Patterns and Software Performance

The study of Software Architecture needs to go beyond the details of particular function-

ality, to address those aspects that affect software system performance. Several

approaches to the study of software performance have been proposed so far, in order to

include it as part of the software design (see Section 2.2.3) or to estimate it from archi-

tectural descriptions of software (see Chapter 3). Commonly, these last approaches are

based on descriptions such as software architecture specifications (see Section 3.2.1),

architectural patterns (see Section 3.2.2), UML diagrams (see Section 3.2.3), and appli-

cations and case studies (see Section 3.2.4).

Architectural patterns help the software designer to understand the overall organisa-

tion of software through multiple design diagrams or views. However, by themselves,

architectural patterns cannot answer a question on how a particular software design will

perform. The problem is that it is often necessary to know beforehand whether a software

system will deliver its performance requirements or not, or whether one scenario will

give a better performance than another.

Particularly, there has been some work done in an attempt to estimate a system’s per-

formance before the system is built, considering the software specification of architec-

tural patterns, and deriving their corresponding performance models (see Section 3.2.2).
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These approaches identify a direct correspondence between each architectural pattern

and its performance model, which can be immediately derived. Nevertheless, these

approaches are just some of the work attempting to incorporate software performance

estimation and architectural patterns. Such work in the performance estimation area sug-

gests that it is a useful thing to do with regard to architectural patterns. Our approach in

tackling this problem for parallel programming is by using a partial simulation to mimic

the execution of a real parallel program, hence enabling its performance to be analysed

and calculated beforehand. This involves the generation of a simulation program from

the architectural pattern specification.

5.2 Architectural Patterns for Parallel Programming

A parallel program is the specification of a set of processes executing simultaneously,

and communicating among themselves in order to achieve a common objective (see Sec-

tion 2.1). This definition is obtained from the research work in parallel programming

provided by E.W. Dijkstra (1968), C.A.R. Hoare (1978), P. Brinch-Hansen (1978), and

many others, who have established the main basis for parallel programming (see Section

2.1.1). The Architectural Pattern for Parallel Programming introduced in this work are

proposed keeping this definition in mind.

5.2.1 Parallel Software Design

Practitioners in the area of parallel programming recognise that the performance a paral-

lel program is able to achieve is affected by three main factors: the hardware platform,

the programming language, and the problem to solve (see Section 2.1.2). Nevertheless, it

is noticeable from a review of literature that most of research in parallel systems and par-

allel programming has normally been devoted to the first two factors: the hardware plat-

form and the programming language. It is just until late that several authors have focused

on parallel programming from the point of view of the problem to solve, proposing the

area of Parallel Software Design in order to study how and at what point the organisation

of a parallel program affects the development and performance of a parallel system.

As it has been exposed previously in Section 4.3.1, the term “problem to solve” in

parallel programming is really composed of two problems: the software problem and the

parallelisation problem. The software problem refers to the actual creation of a pro-

grammed solution to a problem, commonly described in terms of an algorithm of abstract
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operations applied to data objects. This solution, presented as a software program which

embodies the algorithm applied on the data, actually solves the software problem. On the

other hand, the parallelisation problem refers to describe such a solution as the simulta-

neous execution of communicating sequential processes (Dijkstra, 1968; Hoare, 1978;

Brinch-Hansen, 1978). This means that, once a solution to the software problem has been

found and described as an algorithm and data, the objective is to get a more efficient exe-

cution of such a solution as a parallel program.

Parallel Software Design proposes programming techniques to deal with the paral-

lelisation problem. The research in the area covers several approaches that provide forms

to organise software with relatively independent parts which efficiently make use of mul-

tiple processors. The goal is to solve the parallelisation problem (thus, solving the soft-

ware problem faster, or equivalently, to solve a larger software problem in the same

amount of time). Nevertheless, designing parallel programs can be frustrating:

• There are lots of issues to consider when parallelising a program. How to choose a

solution that is not too hard to program and that offers substantial performance com-

pared to uniprocessor execution?

• The overheads involved in synchronisation among multiple processors may actually

reduce the performance of a parallel program. How to anticipate and mitigate this

problem?

• Like many performance improvements, parallelising increases the complexity of a

program. How to manage such a complexity?

These are tough problems: we do not yet know how to solve an arbitrary problem

efficiently on a parallel system of arbitrary size. Hence, Parallel Software Design, at its

actual stage of development, does not (cannot) offer universal solutions, but tries to pro-

vide some simple ways to get started. By sticking with some common parallel “program

structures”, it is possible to avoid a lot of errors and aggravation.

Many approaches to Parallel Software Design have been presented up to date, pro-

posing organisational descriptions of top-level structures observed in parallel program-

ming. Some of these descriptions are: Outlines of the Program (Chandy & Taylor, 1992),

Programming Paradigms (Kleiman et al., 1996), Parallel Algorithms (Hartley, 1998),

Architectural Patterns for Parallel Programming (Ortega-Arjona & Roberts, 1998a),

High-level Design Strategies (Lewis & Berg, 2000), and Paradigms for Process Interac-

tion (Andrews, 2000).
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All these descriptions provide common overall structures in parallel programming

(such as, for example, “master-slave”, “pipeline”, “workpile”, and others) that represent

assemblies of parallel software components in the Software Architecture sense (see Sec-

tions 2.2 and 2.2.2) that execute and communicate simultaneously. Furthermore, these

descriptions support the design of parallel programs since all of them introduce struc-

tures (forms) that such assemblies have as part of the descriptions.

It is interesting to notice that all these descriptions present programming structures

as “flow” systems (Chandy & Taylor, 1992; Kleiman et al., 1996; Hartley, 1998; Ortega-

Arjona & Roberts, 1998a; Lewis & Berg, 2000; Andrews, 2000). Nevertheless, this

seems to be consistent with the general description of a parallel process, which is defined

to be composed of a group of (sequential) software components that are spatially distrib-

uted in order to simultaneously execute and communicate (see Sections 2.1, 4.3.1 and

Figure 4.1). This means that, commonly, all approaches tend to arrange their algorithms

and/or data into overall structures of parallel programs as flow systems. This, in fact, has

several advantages: (a) it produces software components not too difficult to program; (b)

it simplifies communications among such software components, considerably reducing

the overheads involved in synchronisation; and (c) it helps to understand the overall

description (in terms of structure and behaviour) of a parallel program. So, it is the gen-

eral practice to find overall structures of parallel programs as flow systems.

5.2.2 A Note on Relaxation Algorithms and Parallel Programming

A relaxation algorithm approaches a solution iteratively; in each iteration, a new result is

computed from the partial results of previous iterations. There are several examples of

relaxation algorithms: the Jacobi algorithm (Kleiman et al., 1996; Hartley, 1998;

Andrews, 2000), successive over-relaxation (SOR) algorithm (Andrews, 2000), and oth-

ers.

A relaxation algorithm in parallel programming can be programmed in two forms:

(a) as an iteration through time, in which the result of an algorithmic step in time t is

used to produce a new result in time t+1 (Kleiman et al., 1996). Normally, many overall

structures of parallel programs can be proposed to manage this kind of relaxation, where

several results are simultaneously computed; and (b) as a feedback through space, which

introduces cycles in the very structure of a parallel system, normally in the form of com-

munication between spatially distributed software components (Kleiman et al., 1996).
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Generally, it is not advisable to introduce cycles as part of the overall structure of parallel

programs (Hyde, 1994). There are three main reasons for this: 

• Communication cycles in a parallel program structure produce the possibility of a

deadlock, so most parallel programmers advise to avoid them always when possible

(see Section 2.1.4). It may seem a simplistic solution to deadlock, but it is also widely

known that, effectively, parallel programs without cycles cannot deadlock (Kleiman,

1996; Hyde, 1994).

• Usually, communication cycles in the structure of a parallel program require to

enforce sequencing among process and communication operations (Kleiman, et al.,

1996; Hyde, 1994). Hence, their inclusion diminishes the possibility of simultaneous

operations, which is the main base for parallel processing.

• Communication cycles are normally introduced only as part of the structure of a par-

allel program. Cycles do not generate a complete parallel software architecture by

themselves, but only a part of it. Hence, their introduction is made only once the over-

all structure of a parallel program has been previous proposed at an architectural

level, and the use of communication cycles is justified (Kleiman, et al., 1996).

Hence, in the general practice of parallel programming, it is normally not found (or

often not even allowed) the use of feedback at the Software Architecture level.

5.2.3 Basics of the Architectural Patterns for Parallel Programming

The most important step in designing a parallel program is to think carefully about its

overall structure. There are many descriptions about how to organise a parallel program

(Chandy & Taylor, 1992; Kleiman et al., 1996; Hartley, 1998; Ortega-Arjona & Roberts,

1998a; Lewis & Berg, 2000; Andrews, 2000). From all these descriptions, the Architec-

tural Patterns for Parallel Programming stand out (Ortega-Arjona & Roberts, 1998a),

since they have the following advantages:

1. The Architectural Patterns for Parallel Programming (as any Software Pattern) pro-

vide a description that links a problem statement (in terms of an algorithm and the

data to be operated on) with a solution statement (in terms of a organisation structure

of communicating software components) (see Sections 2.3.1 and 5.1.2). This is an

advantage during the initial stages of parallel software design, since an architectural

pattern description aids as a first criterion to decide whether a software structure can

be potentially used for a parallel program or not. Other approaches that provide
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descriptions of overall structures used in parallel programming focus mainly on only

describing such structures, and perhaps some of their important features, but do not

provide a way for linking it with the parallelisation problem at hand.

2. The partition of the problem to solve is a key for the success or failure of a parallel

program. Hence, the Architectural Patterns for Parallel Programming have been

developed and classified based on the kind of partition applied to the algorithm and/or

the data present in the problem statement. In particular, the patterns for data access

and the algorithm order indicate the way in which processing has to be carried out.

Partitioning for parallel processing is strongly affected by the order and dependence

among instructions (as elementary parts of the algorithm) and/or data (as basic part of

the data), independently of the actual problem to solve (see Sections 2.1.3, 4.3.1, and

5.2.1). As only the algorithm or data can be partitioned, we only have the following

cases: (a) partitioning only the algorithm, (b) partitioning only the data, (c) partition-

ing both, algorithm and data, and (d) no partitioning at all. The Architectural Patterns

for Parallel Programming provide different software structures for the first three

cases, referring to different kinds of parallelism (functional, domain, and activity, see

Sections 2.1.3 and 5.2.7). The last case, in which no partition can be achieved, refers

to a sequential problem with no parallelism at all.

3. As a consequence of the previous two points, the Architectural Patterns for Parallel

Programming can be selected depending on characteristics found in the algorithm

and/or data, which drive the selection of a potential parallel structure by observing

and studying the characteristics of order and dependence among instructions and/or

datum. This selection criteria seems simple for the experienced parallel software

designer. Nevertheless, it is not so for the novice or common software designer. Thus,

the objective here is to help these software designers during the selection of a parallel

structure, making such a selection as simple as possible (see Section 5.3). In the case

of other approaches describing the overall structure of parallel programs, they do not

present any selection criteria. Normally, these approaches proceed as follows: a prob-

lem is stated to be solved using parallel programming, and next, the parallel solution

is described. As a result, it is not clear neither how to go from the problem description

to the solution description, nor how to connect or relate both descriptions together.

4. The Architectural Patterns for Parallel Programming introduce parallel structures as

forms in which software components can be assembled or arranged together, consid-
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ering the different partitioning ways of the algorithm and/or data. Each form can be

characterised by how the work is divided among parallel software components, and

whether each component executes the same code (see Section 5.2.7). The forms rep-

resent regular organisations of software components, aiming to allow software

designers to understand complex parallel software systems, and therefore, reducing

the cognitive burden.

Nevertheless, even though the Architectural Patterns for Parallel Programming have

these advantages, they also present disadvantages: (a) they do not describe, represent, or

produce a complete parallel program in detail, and (b) they do not produce performance

information (see Section 5.1.4).

It is important to consider here that at the time this PhD project was originally devel-

oped, there were neither architectural patterns discovered for parallel programming, nor

an available method able to transform such kind of architectural description into a simu-

lation program for performance estimation. Since then, there have been several efforts

trying to address the lack of performance estimation features in architectural descrip-

tions, such as those presented in Chapter 3. Moreover, the aim of this PhD project was to

produce a method that allows software performance estimation to be obtained from an

architectural pattern specification. Therefore, to achieve this goal, first it was necessary

to discover and describe the various overall structures used in parallel programming in a

pattern form, and then to propose a method that should be able to generate simulation

programs from such architectural pattern descriptions. The results of this work are the

Architectural Patterns for Parallel Programming, as originally presented by Ortega-

Arjona and Roberts (1998a), and summarised from Section 5.2.8 to Section 5.2.12.

The architectural patterns here are proposed as a way of helping a programmer to

select a starting point when designing the coordination organisation of a parallel pro-

gram. The architectural patterns in this work are introduced using the POSA form

(Buschmann et al., 1996), presenting only the relevant sections with information for the

Architectural Performance Modelling Method. Such sections are Problem, Forces, Solu-

tion, Structure, Participants, Dynamics, and Implementation. Since all the Architectural

Patterns for Parallel Programming are starting points for designing parallel programs,

also a general context and general implementation sections are presented in the follow-

ing sections. Nevertheless, for a complete exposition of the Architectural Patterns for
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Parallel Programming, refer to Ortega-Arjona & Roberts (1998a), Ortega-Arjona (2000),

Ortega-Arjona (2003), and Ortega-Arjona (2004).

5.2.4 General Context

Start the design of the coordination organisation for a parallel system, using a specific

programming language for a particular parallel hardware. Consider the following con-

textual assumptions (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2000; Ortega-

Arjona, 2003; Ortega-Arjona, 2004):

• The problem to solve, expressed as an algorithm and data, involves tasks of a scale

that would be unrealistic or not cost-effective for other systems to handle.

• The parallel platform and programming environment to be used are known, offering a

reasonable fit to the parallelism found in the problem. 

• The language that will be used, based on a certain programming paradigm, is already

determined and a compiler is available for the parallel platform.

In general, the existence of an available parallel platform and a parallel program-

ming language are considered as a basic context condition when starting the design and

implementation of a parallel program. They are determinant of the performance that can

be achieved (see Section 2.1.2), and also influence the design of software. Once fixed,

the decision to use one architectural organisation or another relies mainly on the charac-

teristics of order and dependence among instructions and/or data found in the problem

description. This work focuses more closely on these characteristics. Each architectural

pattern represents a form to identify how operations can be performed in parallel and/or

how data can be operated simultaneously (Ortega-Arjona & Roberts, 1998a; Ortega-

Arjona, 2000; Ortega-Arjona, 2003; Ortega-Arjona, 2004).

5.2.5 General Implementation

Also, due to the general context, the implementation of the Architectural Patterns for

Parallel Programming share the same steps, intended to describe an exploratory approach

to the architectural design. This method organises the implementation process of a paral-

lel coordination based on four stages (Foster, 1994; Culler et al., 1997; Ortega-Arjona &

Roberts, 1998a; Ortega-Arjona, 2000; Ortega-Arjona, 2003; Ortega-Arjona, 2004): 

1. Partitioning. The computation to be performed or the data operated are decomposed

into operations or data pieces, defining possible components for the parallel program.
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During this stage, practical hardware-dependent issues are ignored. The attention is

focused on recognising the opportunities for parallel execution. In general, architec-

tural pattern components are expected to be implemented by sub-components, per-

haps using design patterns.

2. Communication. The communication to coordinate process execution is determined,

defining appropriate communication structures between processing components. In

general, architectural communication structures can be also based on design patterns.

3. Agglomeration. The components and communication structures recognised in the pre-

vious steps are evaluated in accordance with performance requirements. In the case of

parallel systems, usually components are recombined several times into larger compo-

nents, aiming to maximise processor utilisation and reduce communication costs.

4. Mapping. Components are assigned to real processors, trying to satisfy the results of

the agglomeration stage. As a general rule, each component is expected to be assigned

to a processor, attempting to maximise processor utilisation and minimise communi-

cation costs. Mapping can be defined static or dynamic, depending directly on hard-

ware characteristics. 

The approach presented here is intended to deal with the implementation issues from

an architectural point of view. During the first two stages, attention is focused on concur-

rency and scalability characteristics. In the last two stages, attention is moved to locality

and other performance-related issues. Nevertheless, it is preferable to present each stage

as general considerations for parallel design, instead of providing details about the pre-

cise implementation of participants. These implementation details are described more

precisely as references to design patterns for concurrent, parallel and distributed systems

from several other authors (Schmidt, 1995; Schmidt, 1998a; Schmidt, 1998b).

Further references about features of parallel platforms and parallel languages can be

found in Culler et al. (1997), Foster (1994), Perrot (1992), Pfister (1995), Philippsen

(1995), and Skillicorn and Talia (1996). Also, good advice and guidelines about platform

and language selection for performance, related to speed-up and scalability, can be found

in Pancake (1996) and Pancake and Bergmark (1990).

5.2.6 A Note on Notation

In the following sections, a box-and-channel notation is used to describe the Structure of

each architectural pattern. The box-and-channel notation consists of components with
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named ports that are defined in terms of the connector types they provide or require.

Both send and receive ends of the connectors are part of the component description, and

the connectors themselves are named and typed separately as parts of the architecture

description. All the different kinds of components and connectors are enclosed com-

pletely by a boundary. This boundary wraps up the complete scope of the software sys-

tem, separating it from the surrounding environment. Any element outside the boundary

is connected to any part of the system via a connection port. Figure 5.1 shows a key for a

generic box-and-channel notation.

Box-and-channel notations are used, for example, by Bennett (1997) and by Selic et

al. (1994) in the ROOM method. Other similar notations were used by Magee and

Kramer (1995).

5.2.7 Classification of Architectural Patterns for Parallel Programming

Our Architectural Patterns for Parallel Programming are classified following the charac-

teristics of parallel systems as the classification criteria (Ortega-Arjona & Roberts,

1998a). Previously, Pancake (1996), Foster (1994), and Carriero & Gelernter (1988)

have studied and proposed classifications according to the characteristics of parallel

applications, and their performance. All of them agree that in parallel programming, the

 Figure 5.1 Key for a generic box-and-channel notation
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nature of the parallelisation problem (described as an algorithm and data) is tightly

related to the structure and behaviour of the parallel program that solves it. Therefore,

our Architectural Patterns for Parallel Programming are defined and classified according

to the requirements of order of data and operations, and the nature of their processing

components (Ortega & Roberts, 1998a).

Classification based on the order of data and operations

Requirements of order dictate the way in which a parallel process has to be performed,

and therefore, impact on its software design. Following this, it is possible to consider that

the coordination of most parallel applications fall into one of three forms of parallelism:

functional parallelism, domain parallelism, and activity parallelism (Carriero & Gelern-

ter, 1988; Foster, 1994; Chandy & Taylor, 1992; Pancake, 1996), which depend on the

requirements of order of operations and data in the problem (Ortega-Arjona & Roberts,

1998a; Ortega-Arjona, 2000; Ortega-Arjona, 2003; Ortega-Arjona, 2004).

• Functional parallelism can be found in problems where a computation can be

described in terms of a series of time-step ordered operations, on a series of ordered

values or data with predictable organisation and interdependencies. As each step rep-

resents a change of the input for value or effect over time, a high amount of communi-

cation between components in the solution, in the form of a flow of data or operations,

should be considered. Conceptually, a single data transformation is performed repeat-

edly (Carriero & Gelernter, 1988; Foster, 1994; Pancake, 1996).

• Domain parallelism involves problems in which a set of almost independent opera-

tions is to be performed on ordered local data. Because each component in the solu-

tion is expected to execute a relatively autonomous computation, the amount of

communication between them can be variable, following fixed and predictable paths

that can be represented as a network. It is difficult to conceive the computation as a

flow of data among processing stages or sequential steps in an algorithm (Carriero &

Gelernter, 1988; Foster, 1994; Pancake, 1996).

• Activity parallelism involves problems that apply independent operations as sets of

non-deterministic transformations, perhaps repeatedly, on values of a data structure.

Activity parallelism can be considered between the extremes of allowing all data to be

absorbed by the components or all processes to be divided into components. Many

components share access to pieces of a data structure. As each component performs
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independent computations, communication between processing components is not

required. However, the amount of communication is not zero. Communication is

required between a component that controls the access to the data structure and the

properly processing components (Carriero & Gelernter, 1988; Pancake, 1996).

Classification based on the nature of processing elements

The nature of processing components is another classification criteria that can be used

for parallel systems. Generally, components of parallel systems perform coordination

and processing activities. Considering only the processing characteristic of the compo-

nents, parallel systems are classified as homogenous systems and heterogeneous systems,

according to the same or different processing nature of their components. This nature

exposes properties that have tangible effects on their number in the system and the kind

of communications among them (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona,

2000; Ortega-Arjona, 2003; Ortega-Arjona, 2004).

• Homogeneous systems are based on identical components interacting in accordance

with simple sets of behavioural rules. They represent instances with the same behav-

iour. Individually, any component can be swapped with another without noticeable

change in the operation of the system. Usually, homogeneous systems have a large

number of components, which communicate using data exchange operations (Ortega-

Arjona & Roberts, 1998a; Ortega-Arjona, 2000; Ortega-Arjona, 2004).

• Heterogeneous systems are based on different components with specialised behav-

ioural rules and relations. Basically, the operation of the system relies on the differ-

ences between components, and therefore, no component can be swapped with

another. In general, heterogeneous systems are composed of fewer components than

homogeneous systems, and communicate using function calls (Ortega-Arjona & Rob-

erts, 1998a; Ortega-Arjona, 2003).
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Based on these classification criteria, the five architectural patterns commonly used

for defining the coordination organisation of parallel systems programming are classified

as shown in Table 5.1 (Ortega & Roberts, 1998a):

Notice that in Table 5.1, there is not a pattern considered for domain parallelism and

heterogeneous processing. The reason is not that there are no architectural patterns for

such classification, but more likely, that the parallel programs that would be considered

under such classification simply do not have a regular structure which could be identified

by a single architectural pattern. These would require to include several organisations

which solve many interesting problems, such as those commonly used in simulation. So,

the present thesis focuses more precisely on those categories which can be identified to

be represented as a regular structure, and described using a single architectural pattern.

5.2.8 Pipes and Filters

The Pipes and Filters pattern extends the Pipes and Filters pattern (Buschmann et al.,

1996; Shaw, 1995a; Shaw & Garlan, 1996) with aspects of functional parallelism. Each

parallel component performs simultaneously a different step of the computation, follow-

ing a precise order of operations on ordered data that is passed from one computation

stage to another as a flow through the structure. The extension presented here focuses not

only on a step by step computation, but more precisely on how to exploit the simultane-

ity of actions present among stages, by overlapping operations through time. Thus, the

extension is needed to obtain a parallel solution, based on Pipes and Filters, that executes

more efficiently on a parallel platform (Ortega-Arjona & Roberts, 1998a).

Problem

The application of a series of ordered but independent computations is required, perhaps

as a series of time-step operations, on ordered data. Conceptually, a single data object is
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transformed. If the computations were carried out serially, the output data set of the first

operation would serve as input to the operations during the next step, whose output

would in turn serve as input to the subsequent step-operations (Ortega-Arjona & Roberts,

1998a).

Forces

The following forces should be considered for a parallel version of the Pipes and Filters

pattern (Ortega-Arjona & Roberts, 1998a):

• Maintain the correct order of operations.

• Preserve the order of shared data among all operations.

• Consider the introduction of parallelism, in which different step-operations can proc-

ess different pieces of data at the same time.

• Improvement in performance is achieved when execution time decreases.

Solution

Parallelism is obtained by overlapping operations on different pieces of data through

time. The operations produce data output that depend on preceding operations on its data

input, as incrementally ordered steps. Data from different steps are used to generate

change of the input over time. The first set of components begins to compute as soon as

the first data are available, during the first time-step. When its computation is finished,

the result data is passed to another set of components in the second time-step, following

the order of the algorithm. Then, while this computation takes place on the data, the first

set of components is free to accept more new data. The results from the second time-step

components can also be passed forward, to be operated on by a set of components in a

third-step, while now the first time-step can accept more new data, and the second time-

step operates on the second group of data, and so on (Ortega-Arjona & Roberts, 1998a).

Structure

This pattern is called Pipes and Filters since data is passed as a flow from one computa-

tion stage to another along a pipeline of different processing elements. The key feature is

that data is operated on simultaneously by different stages, and results are passed just one

way through the structure. The complete parallel execution incrementally builds up,
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when data becomes available at each stage (Ortega-Arjona & Roberts, 1998a). Different

components simultaneously exist and process during the execution time (Figure 5.2).

Participants

• Filter. The responsibilities of a filter component are to generate data or get input data

from a pipe, to perform an operation on its local data, and to send output result data to

one or several pipes (Ortega-Arjona & Roberts, 1998a).

• Pipe. The responsibilities of a pipe component are to transfer data between filters,

sometimes to buffer data or to synchronise activity between neighbouring filters

(Ortega-Arjona & Roberts, 1998a).

Dynamics

Due to the parallel execution of the components of the pattern, the following simple typ-

ical scenario is proposed to describe its basic run-time behaviour. As all filters and pipes

are simultaneously active, they accept data, operate on it (in the case of filters), and send

it to the next step. Pipes synchronize the activity between filters. This approach is based

on the dynamic behaviour exposed by the Pipes and Filters pattern in Buschmann et al.,

1996). In this example scenario (Figure 5.3), the following steps are followed (Ortega-

Arjona & Roberts, 1998a):

 Figure 5.2 Pipes and Filters pattern
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• Pipe A receives data from a Data Source or another previous filter, synchronising and

transferring it to the Filter N.

• Filter N receives the package of data, performs operation Op.n on it, and delivers the

results to Pipe B. At the same time, new data arrives to the Pipe A, which delivers it

as soon as it can synchronise with Filter N. Pipe B synchronises and transfers the

data to Filter M.

• Filter M receives the data, performs Op.m on it, and delivers it to Pipe C, which

sends it to the next filter or Data Sink. Simultaneously, Filter N has received the new

data, performed Op.n on it, and synchronising with Pipe B to deliver it.

• The previous steps are repeated over and over until no further data is received from

the initial Data Source or previous filter.

Implementation

The implementation process is based on the four stages mentioned above in the General

Implementation (see Section 5.2.5) (Ortega-Arjona & Roberts, 1998a).

• Partitioning. The computation is decomposed, placing the ordered operations into a

sequence of different stages, in which orderly data is received, operated on, and

passed to the next stage. Attention focuses on recognising opportunities for simulta-

neous execution between subsequent operations, to assign and define potential filter

components. Initially, filter components are defined by gathering operation stages,

 Figure 5.3 Scenario of Pipes and Filters pattern
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considering the characteristics of granularity and load-balance (Foster, 1994). As each

stage represents a transformational relation between input/output data, filters can be

composed of a single processing element (for instance, a process, task, function,

object, etc.) or a subsystem of processing elements. Design patterns (Gamma et al.,

1994; Buschmann et al., 1996; Coplien & Schmidt, 1995; Vlissides et al., 1996) can

be useful to implement the latter ones; particularly, consider the Active Object pattern

(Lavender & Schmidt, 1996) and the “Ubiquitous Agent” pattern (Jezequel & Pache-

rie, 1997).

• Communication. The communication required to coordinate the simultaneous execu-

tion of stages is determined by considering communication structures and procedures

to define the pipe components. Common characteristics that should be carefully con-

sidered are the type and size of the data to be passed, and the synchronous or asyn-

chronous coordination schema, trying to reduce the costs of communication and

synchronisation. A synchronous coordination is commonly used in Pipes and Filters

pattern systems. The implementation of pipe components obeys the features of the

programming language used. If the programming language has defined the necessary

communication structures for the size and type of the data, a pipe in general can be

usually defined in terms of a single communicating element (for instance, a process, a

stream, a channel, etc.). However, in case more complexity in data size and type is

required, a pipe component can be implemented as a subsystem of elements, using

Design Patterns. Especially, patterns like the Broker pattern (Buschmann et al., 1996),

the Composite Messages pattern (Sane & Campbell, 1995), and those defined by

Crane et al. (1995) can help to define and implement pipe components. 

• Agglomeration. The filter and pipe structures defined in the previous stages should be

evaluated with respect to the performance requirements and implementation costs.

Once initial filters are defined, pipes are considered simply to allow data flow

between filters. If an initial approach does not accomplish the expected performance,

the conjecture-test approach can be used to propose another agglomeration schema.

Recombining the operations by replacing pipes between them modifies the granular-

ity and load balance, aiming to balance the workload and to reduce communication

costs (Foster, 1994).

• Mapping. Usually, mapping is specified as static for Pipes and Filters pattern systems.

As a “rule of thumb”, these systems may have a good performance when imple-
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mented using shared-memory machines, or can be adapted to distributed-memory

systems, if the communication network is fast enough to pipe data sets from one filter

to the next (Pancake, 1996; Pfister, 1995).

5.2.9 Parallel Hierarchies

The Parallel Hierarchies pattern is a parallel extension of the Layers pattern approach

(Buschmann et al., 1996; Shaw, 1995a; Shaw & Garlan, 1996) with elements of func-

tional parallelism. The order of operations on data is the most important feature. The

extension is necessary to avoid delays due to components waiting or busy during execu-

tion. Parallelism is introduced when two or more components of a layer are able to

simultaneously exist and perform the same operation. Components can be created stati-

cally, waiting for calls from higher layers, or dynamically, when a call triggers their crea-

tion (Ortega-Arjona & Roberts, 1998a).

Problem

It is necessary to perform a computation repeatedly, composed of a series of ordered

operations on a set of ordered data. Consider a program whose output may be the result

of just a single complex computation as a series of conceptually ordered simple opera-

tions, executed not for value but for effect, at different levels. A recurrent operation at a

high level requires the execution of one or more operations at lower levels. If this pro-

gram is carried out serially, it could be viewed as a chain of subroutine calls, evaluated

one after another (Ortega-Arjona & Roberts, 1998a).

Forces

The following forces should be considered for the Parallel Hierarchies pattern (Ortega-

Arjona & Roberts, 1998a):

• Perform the execution of ordered operations as a single computation.

• Data is shared among layers.

• The same group of operations can simultaneously be performed several times on dif-

ferent pieces of data.

• Operations may be different in size and level of complexity.

• Dynamic creation and destruction of components is preferred over static, to achieve

load balance.



138

• Improvement in performance is achieved when execution time decreases.

Solution

Parallelism is obtained by allowing the simultaneous execution of more than one

instance per layer through time. In a Layer pattern system, when a computation may

involve the execution of several operations at different levels or layers. These operations

are usually triggered by a function call, and data is shared in the form of arguments for

these function calls. During the execution of operations in each layer, usually the higher

layers have to wait for a result from lower layers. However, if each layer is allowed to

simultaneously have more than one component, they can be executed in parallel and

service other new requests. Therefore, at the same time, several ordered sets of opera-

tions can be carried out by the same system, and several computations can be overlapped

in time (Ortega-Arjona & Roberts, 1998a).

Structure

This pattern is composed of conceptually-independent entities, ordered in the shape of

hierarchies of layers. Each layer, as an implicit different level of abstraction, is composed

of several components that perform the same operation. To communicate, layers use

function calls, referring to each other as elements of some composed structure. The same

computation is performed by different groups of functionally related components. Com-

ponents simultaneously exist and process during the execution time (Figure 5.4) (Ortega-

Arjona & Roberts, 1998a).

 Figure 5.4 Parallel Hierarchies pattern
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Participants

• Layer. The responsibilities of a layer component are to provide operations or func-

tions to more complex level layers, and to delegate more simple subtasks to layers in

less complex levels. During run-time, more than one component per layer is allowed

to execute concurrently with others (Ortega-Arjona & Roberts, 1998a).

Dynamics

As the parallel execution of layer elements is allowed, a typical scenario is proposed to

describe its basic run-time behaviour. All layer elements are active at the same time,

accepting function calls, operating, and returning or sending another function call to ele-

ments in lower level layers. If a new function call arrives from the client, a free element

of the first layer takes it and starts a new computation (Ortega-Arjona & Roberts, 1998a).

As stated in the problem description, this pattern is used when it is necessary to

repeatedly perform a computation, as series of ordered operations. The scenario pre-

sented here takes the simple case when two computations, namely Computation 1 and

Computation 2, have to be performed. Computation 1 requires the operations Op.A,

which requires the evaluation of Op.B, which needs the evaluation of Op.C. Computa-

tion 2 is less complex than Computation 1, but needs to perform the same operations

Op.A and Op.B. The parallel execution is as follows (Figure 5.5) (Ortega-Arjona & Rob-

erts, 1998a):

 Figure 5.5 Scenario for Parallel Hierarchies pattern



140

• The Client calls a component Layer A1 to perform Computation 1. This component

calls to a component Layer B1, which similarly calls a component Layer C1. Both

components Layer A1 and Layer B1 remain blocked waiting to receive a return mes-

sage from their respective sub-layers. This is the same behaviour as the sequential

version of the Layers pattern.

• Parallelism is introduced when the Client issues another call for Computation 2.

This cannot be serviced by Layer A1, Layer B1 and Layer C1. Another instance of

the component in Layer A, called Layer A2 —that either can be created dynamically

or be waiting for requests statically— receives it and calls another instance of Layer

B, Layer B2, to service this call. Due to the homogeneous nature of the components

of each layer, every component in a layer can perform exactly the same operation.

That is precisely the advantage of allowing them to operate in parallel. Therefore, any

component in Layer B is capable of serving calls from components in Layer A. As the

components of a layer are not exclusive resources, it is in general possible to have

more than one instance to serve calls. Coordination between components of different

layers is based on a kind of client/server schema. Finally, each component operates

with the result of the return message. The main idea is that all computations are per-

formed in a shorter time.

Implementation

The implementation process is based on the four stages mentioned before in General

Implementation (see Section 5.2.5) (Ortega-Arjona & Roberts, 1998a).

• Partitioning. Initially, it is necessary to define a basic Layer pattern system which will

be used with parallel instances: the computation to be performed is decomposed into a

set of ordered operations, hierarchically defined and related, determining the number

of layers. Following this decomposition, the component representative of each layer

can be defined. For a concurrent execution, the number of components per-layer

depends on the number of requests. Several design patterns have been proposed to

deal with layered systems. Advice and guidelines to recognise and implement these

systems can be found in Buschmann et al. (1996) and Coplien & Schmidt (1995).

Also, consider the patterns used to generate hierarchies, like A Hierarchy of Control

Layers (Aarsten et al., 1996) and the Layered Agent Pattern (Kendall et al., 1996).
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• Communication. The communication required to coordinate the parallel execution of

layer components is determined by the services that each layer provides. The idea

behind this pattern is to allow for several simultaneous procedure calls, so several

sequential invocations occur simultaneously. Characteristics that should be carefully

considered are the type and size of the shared data to be passed as arguments and

return values, the interface for layer components, and the synchronous or asynchro-

nous coordination schema. In general, an asynchronous coordination is preferred over

a synchronous one. The implementation of communication structures between com-

ponents depends on the features of the programming language used. Usually, if the

programming language has defined the communication structures (for instance, func-

tion calls or remote procedure calls), the implementation is very simple. However, if

the language does not support communication between remote components, the con-

struction of an extension in the form of a communication subsystem should be pro-

posed. Design patterns can be used for this. Particularly, patterns like the Broker

pattern (Buschmann et al., 1996), the Composite Messages pattern (San & Campbell,

1995), the Service Configurator pattern (Jain & Schmidt, 1996) and the Visibility and

Communication between Control Modules and Actions Triggered by Events (Aarsten

et al., 1996) can help to define and implement the required communication structures.

• Agglomeration. The hierarchical structure is evaluated with respect to the expected

performance. Usually, systems based on identical hierarchies present a good load-bal-

ance. However, if necessary, using the conjecture-test approach, layer components

can be refined by combination or decomposition of operations, modifying their granu-

larity to improve performance or to reduce development costs.

• Mapping. An approach to mapping a parallel hierarchies program into a parallel plat-

form is to execute each hierarchy on a processor, but if the number of requests is

large, some hierarchies would have to block, keeping the client(s) waiting. Another

mapping proposal attempts to place every layer on a processor. This simplifies the

restriction about the number of requests, but if not all operations require all layers,

this may overload some processors, introducing load-balance problems. The most

realistic approach seems to be a combination of both, trying to maximise processor

utilisation and minimise communication costs. In general, mapping of layers to proc-

essors is specified statically, allowing an internal dynamic creation of new compo-

nents to serve new requests. As a “rule of thumb”, a Parallel Hierarchies pattern
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system will perform best on a shared-memory machine, but good performance can be

achieved if it can be adapted to a distributed-memory system with a fast communica-

tion network (Pancake, 1996; Pfister, 1995).

5.2.10 Communicating Sequential Elements

The Communicating Sequential Elements pattern is a domain parallelism pattern in

which each component performs the same operations on different pieces of regular,

ordered data (Foster, 1994; Chandy & Taylor, 1992). Operations in each component

depend on partial results in neighbour components. Usually, this pattern is conceived as a

logical structure, reflecting the particular order present in the problem (Ortega-Arjona &

Roberts, 1998a; Ortega-Arjona, 2000).

Problem

A parallel computation is required that can be performed as a set of operations on

ordered data. Results cannot be constrained to a one-way flow among processing stages,

but each component executes its operations influenced by data values from its neigh-

bouring components. Because of this, components are expected to intermittently

exchange data. Communications between components follow fixed and predictable

paths. Consider, for example, a dynamics problem simulation: the data represents a

model of a real system, where any change or modification in one region influences areas

above and below it, and perhaps to a different extent, those on either side. Over time, the

effects propagate to other areas, extending in all directions; even the source area may

experience reverberations or other changes from neighbouring regions. If this simulation

was executed serially, it would require that computations be performed across all the data

to obtain some intermediate state, and then, a new iteration should begin (Ortega-Arjona

& Roberts, 1998a; Ortega-Arjona, 2000).

Forces

The following forces should be considered (Ortega-Arjona & Roberts, 1998a; Ortega-

Arjona, 2000):

• Preserve the precise order of data distributed among processing elements. This order

provides the base for result interpretation.
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• Computations are performed semi-autonomously, on local pieces of data. The objec-

tive is to obtain the best possible benefit from domain parallelism.

• Every element performs the same operations, in number and complexity.

• Partial results are usually communicated among neighbour processing elements.

• Improvement in performance is achieved when execution time decreases. The main

objective is to carry out the computation in the most time-efficient way.

Solution

Parallelism is introduced as multiple participating concurrent components, each one

applying the same operations on a different data subset. Components communicate par-

tial results by exchanging data, usually through communication channels. No data

objects are directly shared among components; each one may access its own private data

subset only. A component communicates by sending data objects from its local space to

another. This communication may have different variants: synchronous or asynchronous,

exchange of a single data object or a stream of data objects, and one to one, one to many,

many to one or many to many communications. Often the data of the problem can be

conceived in terms of an ordered logical structure. The solution is presented as a network

that may reflect this logical structure in a transparent and natural form (Ortega-Arjona &

Roberts, 1998a; Ortega-Arjona, 2000).

Structure

In this pattern, the same operation is simultaneously applied in effect to different pieces

of data. However, operations in each element depend on the partial results of operations

in other components. The structure of the solution involves a regular logical structure,

conceived from the data structure of the problem. Therefore, the solution is presented as

a network of elements that follows the shape imposed by this structure. Identical compo-

nents simultaneously exist and process during the execution time (Figure 5.6) (Ortega-

Arjona & Roberts, 1998a; Ortega-Arjona, 2000).

Participants

• Sequential element. The responsibilities of a processing element are to perform a set

of operations on its local data, and to provide a general interface for sending and
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receiving messages to and from other elements (Ortega-Arjona & Roberts, 1998a;

Ortega-Arjona, 2000).

• Communication channels. The responsibilities of a communication channel are to

represent a medium to send and receive data between elements, and to synchronise

communication activity between them (Ortega-Arjona & Roberts, 1998a; Ortega-

Arjona, 2000).

Dynamics

A typical scenario to describe the basic run-time behaviour of this pattern is presented,

where all the sequential elements are active at the same time. Every sequential element

performs the same operations, as a piece of a processing network. In the most simple

case (a one-dimensional structure), each one communicates only with a previous and

next others (Figure 5.7). The processing and communicating scenario is as follows

(Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2000):

• Initially, all components Element N-1, Element N, Element N+1, etc. read different

sub-sets of data. Then, every component communicates its edge data through the

available communication channels (Here, Channel A and Channel B). Then all com-

ponents synchronise and receive edge data from their previous and next neighbours 

• The computation is started when all components Element N-1, Element N, Element

N+1, etc. perform Op.1 at the same time.

 Figure 5.6 Communicating Sequential Elements
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• To continue the computation, all components send their partial results through the

available communication channels (Here, Channel A and Channel B). Then all com-

ponents synchronise again, and receive the partial results from their previous and next

neighbours.

• Once synchronisation and communications are finished, each component continues

computing the next operation (in this case Op.2). The process repeats until each com-

ponent has finished its computations.

Implementation

The implementation process is based on the four stages mentioned above in the General

Implementation (see Section 5.2.5) (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona,

2000).

• Partitioning. The ordered logical structure of data is a natural candidate to be initially

decomposed into a network of data sub-structures or pieces. In general, we can ini-

tially consider dividing the data structure into a set of data pieces in an arbitrary way,

as the regular logical structure is usually considered homogeneous (see Section 5.2.7),

and its importance relies only on its order. Thus, data pieces may have different size

and shape. However, as we are aiming for an efficient computation, we normally

divide the regular data structure into a set of data pieces with similar size and shape.

The objective is to load-balance the processing among all the sequential elements.

 Figure 5.7 Interaction Diagram of the Communicating Sequential 

Elements for a one-dimensional case
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Trying to expose the maximum concurrency, we define the basic sequential element

that processes a unique sequence of operations on its assigned piece of data. Hence,

computations on each sequential element present the same complexity per time step,

and the total number of sequential elements is equal to the number of data pieces.

Therefore, a sequential element is represented as a single processing element (for

instance, a process, task, function, object, etc.) or a subsystem of processing elements,

which may be designed using Design Patterns (Gamma et al., 1994; Buschmann et

al., 1996; Coplien & Schmidt, 1995; Vlissides et al., 1996). Some Design patterns

that can be considered for implementing sequential components are the Active Object

pattern (Lavender & Schmidt, 1996), and the “Ubiquitous Agent” pattern (Jezequel &

Pacherie, 1997).

• Communication. The communication issues are related to the form in which process-

ing components exchange messages. In this pattern, the sequential elements are con-

nected using communication channels to compose a network that follows the shape of

the data structure. Each sequential element is expected to exchange partial results

with its neighbours from time to time through such channels. Thus, channels must

perform data exchange and coordinate the operation execution appropriately. An effi-

cient communication depends on the amount and format of the data to be exchanged,

and the synchronisation schema used. Both synchronous and asynchronous schemes

can be found in several domain parallel systems. However, a synchronous schema is

commonly preferred in this pattern because all sequential elements are designed to

perform the same operation on the same amount of data during a time step, in a syn-

chronous way. An important issue to consider here is how communication channels

are defined. In general, this decision is linked with the programming language used.

Some languages define a type “channel” where it is possible to send and to receive

values. Any sequential element is defined to write on the channel, and to read from it.

No further implementation is necessary. Conversely, other languages do not define the

channel type, or precise ways of data exchange. Thus, we must design and implement

channels in such a way that allows data exchange between elements. As the use of

channels depends on the language, decisions about their implementation are delayed

to other refining design stages. From an architectural point of view, channels are

defined whether they are implicit in the language or they must be explicitly created.

Design Patterns that can help with the implementation of channel structures are the
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Composite Messages pattern (Sane & Campbell, 1995) and the Service Configurator

pattern (Jain & Schmidt, 1996).

• Agglomeration. The structure of sequential elements and channels defined in previous

steps is evaluated with respect to performance. Often, in this kind of structure,

agglomeration is directly related with the way data is divided among sequential ele-

ments, this is, the granularity. As each sequential element performs the same opera-

tions, changes in the granularity involve only the size of the amount of data pieces in

the network to be processed per component. In the case of this pattern, performance is

impacted due to redundant communications and the amount of communications in a

dimension or direction.

• Mapping. Usually, the number of processors in a parallel platform is considerably less

than the number of processing elements. Thus, a number of processing elements must

be assigned to a processor. To maximise processor utilisation and minimise communi-

cation costs, the important feature to consider is load-balance. In domain parallelism,

computational efficiency decreases due to load imbalances. If the design is to be used

extensively, it is worthwhile to improve its load balance. Approaches include cyclic

mapping or dynamic mapping. As a “rule of thumb”, systems based on the Communi-

cating Sequential Elements pattern will perform best on a SIMD (single-instruction,

multiple-data) computer, if array operations are available. However, if the computa-

tions are relatively independent, a respectable performance can be achieved using a

shared-memory system (Pancake, 1996).

5.2.11 Manager-Workers

The Manager-Workers pattern is a variant of the Master-Slave pattern (Buschmann et al.,

1996) for parallel systems, considering an activity parallelism approach where the same

operations are performed on ordered data. The variation is based on the fact that compo-

nents of this pattern are proactive rather than reactive (Chandy & Taylor, 1992). Each

processing component simultaneously performs the same operations, independent of the

processing activity of other components. An important feature is to preserve the order of

data (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2004).
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Problem

The same operation is required to be repeatedly performed on all elements of some

ordered data. Data can be operated without a specific order. However, an important fea-

ture is to preserve the order of data. If this computation is carried out serially, it should be

executed as a sequence of serial jobs, applying the same computation to each datum one

after another. The goal is to take advantage of the potential simultaneity in order to carry

out the whole computation as efficiently as possible (Ortega-Arjona & Roberts, 1998a;

Ortega-Arjona, 2004).

Forces

The following forces are found (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2004):

• Preserve the order of data. However, the specific order of operation on each piece of

data is not fixed.

• The operation can be performed independently on different pieces of data.

• Data pieces may have different sizes. This means that the independent computations

on the pieces of data should adapt to the data size to be processed, in order to obtain

automatic load-balancing.

• The solution has to scale over the number of processing elements. Changes in the

number of processing elements should be reflected by the execution time.

• The coordination of the independent computations has to take up a limited amount of

time in order not to impede performance of the processing elements.

• Mapping the processing elements to processors has to take into account the intercon-

nection among the processors of the hardware platform.

• Improvement in performance is achieved when execution time decreases.

Solution

Parallelism is introduced by having multiple data sets processed at the same time. The

most flexible representation of this is the Manager-Workers pattern approach. This struc-

ture is composed of a manager component and a group of identical worker components.

The manager is responsible of preserving the order of data. On the other hand, each

worker is capable of performing the same independent computation on different pieces

of data. It repeatedly seeks a task to perform, performs it, and repeats; when no tasks

remain, the program is finished. The execution model is the same, independent of the
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number of workers (at least one). If tasks are distributed at run time, the structure is nat-

urally load balanced: while a worker is busy with a heavy task, another may perform sev-

eral shorter tasks. This distribution of tasks at runtime copes with the fact that data pieces

may exhibit different size. To preserve data integrity, the manager takes care of what part

of the data has been operated on, and what remains to be computed by the workers. Also,

the manager component could optionally be an active component, in order to deal with

data partitioning and gathering, so such tasks can be done concurrently while receiving

data requests from the workers. Hence, manager operations need capabilities for syn-

chronisation and blocking. Moreover, the manager could be also responsible for the map-

ping as well, in addition to starting the appropriate number of workers. Mapping requires

experiments at execution time and experience, but performing the mapping (according to

a pre-determined policy) can be considered as another responsibility of the manager

(Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2004).

Structure

The Manager-Workers pattern is represented as a manager, preserving the order of data

and controlling a group of processing elements or workers. Usually, only one manager

and several identical worker components simultaneously exist and process during the

execution time. In this pattern, the same operation is simultaneously applied in effect to

different pieces of data. Operations in each worker component are independent of opera-

tions in other components. The structure of the solution involves a central manager that

distributes data among workers by request. Therefore, the solution is presented as a cen-

tralised network (Figure 5.8), the manager being the central common component

(Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2004).

Participants

• Manager. The responsibilities of a manager are to create a number of workers, to par-

tition work among them, to start up their execution, and to compute the overall result

from the sub-results from the workers (Ortega-Arjona & Roberts, 1998a; Ortega-

Arjona, 2004).

• Worker. The responsibility of a worker is to seek for a task, to implement the compu-

tation in the form of a set of operations required, and to perform the computation

(Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2004).
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Dynamics

A typical scenario to describe the run-time behaviour of the Manager-Worker pattern is

presented, where all participants are simultaneously active. Every worker performs the

same operation on its available piece of data. As soon as it finishes processing, it finishes

processing, it returns a result to the manager, requiring for more data. Communications

are restricted to only that between the manager and each worker. No communication

between workers is allowed (Figure 5.9). In this scenario, the steps to perform a set of

computations are as follows (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2004):

 Figure 5.8 Manager-Workers pattern.

 Figure 5.9 Scenario for the Manager-Workers pattern.
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• All participants are created, and wait until a computation is required to the manager.

When data is available to the manager, this divides it, sending data pieces by request

to each waiting worker.

• Each worker receives the data and starts processing an operation Op. on it. This oper-

ation is independent of the operations on other workers. When the worker finishes

processing, it returns a result to the manager, and then, requests for more data. If there

is still data to be operated, the process repeats.

• The manager is usually replying to requests for data from the workers or receiving

their partial results. Once all data pieces have been processed, the manager assembles

a total result from the partial results and the program finishes. The non-serviced

requests of data from the workers are ignored.

Implementation

The implementation process is based on the four stages described previously in the Gen-

eral Implementation (see Section 5.2.5) (Ortega-Arjona & Roberts, 1998a; Ortega-

Arjona, 2004).

• Partitioning. The ordered data to be operated on by the common computation is

decomposed into a set of data pieces. This partitioning criteria of the ordered data is a

clear opportunity for parallel execution, and it is used to define the partitioning and

gathering activity of the manager component. On the other hand, the same computa-

tion to be performed on different data pieces is used to define the structure of each one

of the worker components. Sometimes, the manager is also implemented to perform

the computation on data pieces as well. Usually, the structure of the manager compo-

nent can be reused if it is designed to deal with different data types and sizes, delimit-

ing its behaviour to divide, deliver, and gather data pieces to the worker components.

It is possible to implement either manager or workers using a single sequential com-

ponent approach (for instance, a process, a task, a function, an object, etc.), or to

define a set of components that perform manager or worker activities. Usually, con-

currency among these components can be used, defining different interfaces for dif-

ferent actions. Design Patterns (Gamma et al., 1994; Buschmann et al., 1996; Coplien

& Schmidt, 1995; Vlissides et al., 1996) can help to define and implement such inter-

faces. Patterns that particularly can help with the design and implementation of the

manager and worker components are the Active Object pattern (Lavender & Schmidt,
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1996) (which allows to create a manager and workers able to execute concurrent oper-

ations on data) and the Server Configurator pattern (Jain & Schmidt, 1996) (which

allows the link and unlink of worker implementations at run-time in case that in a par-

ticular application, they are permitted to be created and destroyed dynamically). In the

case of the worker components, other Design Patterns that may provide information

about their implementation are the “Ubiquitous Agent” pattern (Jezequel & Pacherie,

1997) and the Object group pattern (Maffeis, 1996).

• Communication. The communication structure that coordinates the execution between

the manager and worker should be defined. As workers are just allowed to communi-

cate with the manager to get more work, defining an appropriate communication

structure between manager and worker components is a key task. Important parame-

ters to consider are the size and format of data, the interface to service a request of

data, and the synchronisation criteria. In general, a synchronous coordination is com-

monly used in Manager-Worker pattern systems. The implementation of communica-

tion structures depends on the programming language used. If the language contains

basic communication and synchronisation instructions, communication structures can

be implemented relatively easily. However, if it is possible to reuse the design in more

than one application, it would be convenient to consider a more flexible approach

using configurable communication sub-systems for the exchange of different types

and sizes of data. Design Patterns can help to support to the implementation of these

structures; especially, consider the Composite Messages pattern (Sane & Campbell,

1995), the Service Configurator pattern (Jain & Schmidt, 1996), and the Visibility and

Communication between Control Modules and Client/Server/Service patterns

(Aarsten et al., 1995; Aarsten et al., 1996).

• Agglomeration. The data division and communication structure defined previously

are evaluated with respect to the performance requirements. If necessary, the size of

data pieces is changed, modifying the granularity of the system. Data pieces are com-

bined or divided into larger or smaller pieces to improve performance or to reduce

communication costs. Due to inherent characteristics of this pattern, the process is

automatically balanced among the worker components, but granularity is modified in

order to balance the process between the manager and the workers. If the operations

performed by the workers are too simple or workers receive relatively small amount

of data, workers may remain idle while the manager is busy trying to serve their
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requests. On the contrary, if worker operations are too complex, the manager will

have to keep a large buffer of pending data to be processed. It is noticeable that load-

balance between manager and workers can be achieved simply by modifying the

granularity of data division. 

• Mapping. In general the number of manager and worker components is a lot bigger

than the number of available processors. So, it is common to place a similar number

of worker components on each processor. To keep the structure as balanced as possi-

ble, the manager component can be executed on a dedicated processor, or at least on a

processor with a reduced number of working components. The competing forces of

maximising processor utilisation and minimising communication costs are almost

totally fulfilled by this pattern. Mapping can be specified statically or determined at

run-time, allowing a better load-balance. As a “rule of thumb”, parallel systems based

on the Manager-Workers pattern will perform reasonably well on a MIMD (multiple-

instruction, multiple-data) computer, but may be difficult to adapt to a SIMD (single-

instruction, multiple-data) computer (Pancake, 1996).

5.2.12 Shared Resource

The Shared Resource pattern is a specialisation of the Blackboard pattern (Buschmann et

al., 1996), lacking a control component and introducing aspects of activity parallelism.

In the Shared Resource pattern, computations are performed without a prescribed order

on ordered data. Commonly, components perform different computations on different

data pieces simultaneously (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2003). 

Problem

It is necessary to apply a computation on elements of a common centralised data struc-

ture. Such a computation is carried out by several sequential components executing

simultaneously. The data structure should be incrementally operated and concurrently

shared among the components. The details of how the data structure is constructed and

maintained are irrelevant to the components. All the components know is that they can

send and receive data through the data structure. The integrity of the internal representa-

tion, considered as the consistency and preservation of the data structure, is important.

However, the order of operations on the data is not a central issue (Ortega-Arjona &

Roberts, 1998a; Ortega-Arjona, 2003).
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Forces

The following forces are found (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2003):

• The integrity of the data structure must be preserved. This integrity provides the base

for result interpretation.

• Each component performs simultaneously and independently a computation on differ-

ent pieces of data. The objective is to obtain the best possible benefit from activity

parallelism.

• Every component may perform different operations, in number and complexity. How-

ever, no specific order of data access by component is defined.

• Improvement in performance is achieved when execution time decreases. Our main

objective is to carry out the computation in the most time-efficient way.

Solution

Introduce parallelism as multiple participating sequential components. Each component

executes simultaneously, capable of performing different and independent operations. It

also accesses the data structure when needed via a shared resource component, which

maintains the integrity of the data structure by defining the synchronising operations that

sequential components can do. Parallelism is almost complete among components: any

component can be performing different operations on a different piece data at the same

time, without any prescribed order. Communication can be achieved only as function

calls to require a service from the shared resource. Components communicate exclu-

sively through the shared resource, by each one indicating its interest in a certain data.

The shared resource should provide such data immediately if no other component is

accessing it. Data consistency and preservation are tasks of the shared resource. The

integrity of the internal representation of data is important, but the order of operations on

it is not a central issue. The main restriction is that no piece of data is accessed at the

same time by different components. The goal is to make sure that an operation carried

out by one component goes on without interference from other components. The Shared

Resource pattern is an activity parallel variation of the Blackboard pattern (Buschmann

et al., 1996) without a control instance that triggers the execution of the sources (the con-

current components of the Blackboard pattern). An important feature is that the execu-
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tion does not follow a precise order of computations (Ortega-Arjona & Roberts, 1998a;

Ortega-Arjona, 2003).

Structure

In this pattern, the different operations are applied in effect simultaneously to different

pieces of data by sharer components. Operations in each sharer component are independ-

ent of operations in other components. The structure of the solution involves a shared

resource that controls the access of different sharer components to the central data struc-

ture. Usually, the shared resource and several different sharer components simultane-

ously exist and operate during the execution time. Therefore, the solution is presented as

a centralised network, with the shared resource as the central common component (Fig-

ure 5.10) (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2003).

Participants

• Shared resource. The responsibility of a shared resource is to co-ordinate access of

sharer components, preserving the integrity of data (Ortega-Arjona & Roberts, 1998a;

Ortega-Arjona, 2003).

• Sharer component. The responsibilities of a sharer component are to perform its inde-

pendent computation until requiring a service from the shared resource. Then, the

sharer component has to cope with any access restriction imposed by the shared

resource. Since its computations are independent, all sharer components are able to

execute in parallel (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona, 2003).

 Figure 5.10 Shared resource pattern.
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Dynamics

A typical scenario to describe the basic run-time behaviour of the Shared Resource pat-

tern is presented. All participants are simultaneously active. Every sharer component

performs a different operation, requiring the shared resource for data. If data is not avail-

able, the sharer can request for another piece of data. As soon as data is made available

from the shared resource, the requesting sharer component continues its computations.

Communications between sharer components are not allowed. The shared resource is the

only common communication means among the shared components. The functionality of

this general scenario is explained as follows (Figure 5.11) (Ortega-Arjona & Roberts,

1998a; Ortega-Arjona, 2003):

• For this scenario, let us consider a simple Shared resource which is able to perform

only a couple of operations, Op.R and Op.W, in order to respectively allow reading or

writing of data. Each sharer component starts processing, performing different, inde-

pendent operations, and requesting the Shared resource to execute a read or write

operation.

• Consider the basic operation: a sharer component, Sharer A, is performing Op.A1,

and requests the Shared resource to perform a read operation Op.R. If no other sharer

component contests for reading or writing data, the Shared resource is able to imme-

diately serve the request from Sharer A, reading data.

 Figure 5.11 Scenario of Shared resource pattern
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• Things become more complex when one sharer component is reading or writing data

of the Shared resource, and another sharer component requires to read or write the

same data. Consider, for example, that Sharer B is performing Op.B2, which requests

a writing operation Op.W to the Shared resource. If while the Shared resource is

serving this operation, one or more other sharer components (in this scenario, Sharer

C and Sharer D) issue calls to the Shared resource, requesting for a read or write

operation, the Shared resource should be able to continue until completion of its

actual operation, deferring the calls for later execution, or even ignoring them. If this

is the case, any sharer component should be able to reissue its call, requesting for an

operation on the same or other data until it is carried out.

• Another complex situation that may arise is if two or more sharer components issue

calls requesting the same data to the Shared resource at precisely the same time.

Consider, for example, the previous situation in the scenario: as the Sharer C and

Sharer D calls could not be serviced by the Shared resource, they have to re-issue

their calls, doing it at the very same time. In this particular case, the Shared resource

should be able to resolve the situation by servicing only one call (in this scenario, the

writing request from Sharer C), and deferring or ignoring all other calls for later (as it

is the case of the reading request from Sharer D). Again, the sharer components

whose calls were deferred or ignored should be able to reissue them, contesting again

for the data piece serviced by the Shared resource.

Implementation

The implementation process is based on the four stages mentioned earlier in the General

Implementation (see Section 5.2.5) (Ortega-Arjona & Roberts, 1998a; Ortega-Arjona,

2003).

• Partitioning. The computation to be performed can be viewed as the effect of differ-

ent independent computations on the data structure. Each sharer component is defined

to perform an independent computation on data from the shared resource. Sharer

components can be executed simultaneously due to their independent processing

nature. However, the shared resource implementation should reflect a division and

integrity criteria of the data structure, following the basic assumption that no piece of

data is operated at the same time by two different sharer components. Therefore,

sharer components may be implemented by a single entity (for instance, a process, a
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task, an object, etc.) that performs a defined computation, or a sub-system of entities.

Design patterns in general (Gamma et al., 1994; Buschmann et al., 1996; Coplien &

Schmidt, 1995; Vlissides et al., 1996) may help with the implementation of the

sharers components as sub-systems of entities. Also, patterns used in concurrent pro-

gramming like the Object group pattern (Maffeis, 1996), the Active Object pattern

(Lavender & Schmidt, 1996), and Categorize Objects for Concurrency pattern

(Aarsten et al., 1995) can help to define and implement sharer components.

• Communication. The communication to co-ordinate the interaction of sharer compo-

nents and shared resource is represented by an appropriate communication interface

that allows access to the shared resource. This interface should reflect the form in

which requests are issued to the shared resource, and the format and size of the data as

argument or return value. In general, an asynchronous coordination schema is used,

due to the heterogeneous behaviour of the sharer components, whose requests can be

deferred or ignored by the shared resource. The implementation of a flexible interface

between sharer components and shared resource can be done using Design Patterns

for communication, like the Service Configurator pattern (Jain & Schmidt, 1996), the

Composite Messages pattern (Sane & Campbell, 1995), and the Compatible Hetero-

geneous Agents and Visibility and Communication between Agents patterns (Aarsten

et al., 1996). Other Design Patterns like the Double-Checked Locking pattern

(Schmidt & Harrison, 1996), the Thread-Specific Storage pattern (Harrison &

Schmidt, 1997) and those presented by MacKenney (1996) deal with issues about the

safe use of threads and locks, and may provide help to implement the expected behav-

iour of the shared resource component.

• Agglomeration. The components and communication are evaluated against perform-

ance requirements. If necessary, operations can be recombined and reassigned to cre-

ate different sets of sharer components with different granularity and load-balance.

Usually, due to the independent nature of the sharer components, it is difficult to

achieve a good performance initially, but at the same time, it is easy to make changes

on the sharer components without affecting the whole structure. The conjecture-test

approach is used intensively, modifying both granularity and load-balance of sharer

components to observe which combination can be used to improve performance.

However, especial care should be taken with the load-balance between sharer compo-

nents and a shared resource. The operations of the shared resource should be lighter
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than any sharer computation, to allow a fast response of the shared resource to

requests. Most of the computation activity is meant to be performed by the sharer

components. 

• Mapping. As the number of processors is commonly limited and less than the number

of components, any mapping strategy makes difficult and complex to load-balance the

whole structure. A partial solution is to determine mapping at run-time by load-bal-

ancing algorithms. As a “rule of thumb”, Shared Resource systems present a good

performance when implemented on a MIMD (multiple-instruction, multiple-data)

computer. Also, it would be very difficult to implement them for a SIMD (single-

instruction, multiple-data) computer (Pancake, 1996; Pfister, 1995).

5.3 Selection of Architectural Patterns

The initial selection of one or several architectural patterns is guided mainly by the prop-

erties used for classifying them. However, it is important to notice that a particular archi-

tectural pattern, or its combination with others, is not a complete parallel software

application. Its objective is just to describe and provide a stable coordination organisa-

tion for a software system, as a first step on the design and implementation of parallel

software systems (Ortega-Arjona & Roberts, 1998a).

Based on the classification schema and the pattern description, a procedure for

selecting an architectural pattern can be specified as follows (Ortega & Roberts, 1998a):

1. Analyse the design problem and obtain its specification. Analyse and specify, as pre-

cisely as possible, the problem in terms of its characteristics of order of data and com-

putations, the probable nature of its processing components, and performance

requirements. It is important to also consider the context conditions about the chosen

parallel platform and language (see step 5) that may influence the design. This stage is

crucial to set up most of the basic forces to deal with during the design. 

2. Select the category of parallelism. In accordance with the problem specification,

select the category of parallelism —functional, domain or activity parallelism— that

best describes it.

3. Select the category of the nature of the processing components. Select the nature of

the process distribution —homogeneous or heterogeneous— among components that

best describes the problem specification. The nature of process distribution indirectly
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reflects characteristics about the number of processing components and the amount

and kind of communications between them in the solution.

4. Compare the problem specification with the architectural pattern’s Problem section.

The categories of parallelism and nature of processing components can be simply

used to guide the selection of an architectural pattern. In order to verify that the

selected pattern copes with the problem at hand, compare the problem specification

with the Problem section of the selected pattern. More specific information and

knowledge about the problem to be solved is required. Unless problems were encoun-

tered up to this point, the architectural pattern selection can be considered as com-

pleted. The design of the parallel software system continues using the selected

architectural pattern’s Solution section as a starting point. On the other hand, if the

architectural pattern selected does not satisfactorily match aspects of the problem

specification, it is possible to try to select an alternative pattern, as follows.

5. Select an alternative architectural pattern. If the selected pattern does not match the

problem specification at hand, try to select another pattern that alternatively may pro-

vide a better approach when it is modified, specialised or combined with others.

Checking the Examples, Known Uses and Related Patterns sections of other pattern

descriptions may be helpful for this. If an alternative pattern is selected, return to the

previous step to verify it copes with the problem specification. 

If the previous steps do not provide a result, even after trying some alternative pat-

terns, stop searching. The architectural patterns here do not provide a coordination

organisation that can help to solve this particular problem. It is possible to look at other

more general pattern languages or systems (Gamma et al., 1994; Coplien & Schmidt,

1995; Buschmann et al., 1996) to see if they contain a pattern that can be used. Or the

alternative is trying to solve the design problem without using software patterns.

5.4 An Example of Selecting an Architectural Pattern for 

Parallel Programming: The Two-dimensional Wave Equation

This section introduces the Two-dimensional Wave Equation problem, as a problem used

to illustrate how the selection process of an Architectural Pattern for Parallel Program-

ming is carried out. The following sections present and describe the actual problem (the

software problem, as explained in Sections 4.3.1 and 5.2.1), an algorithmic solution for

the Two-dimensional Wave Equation (the parallelisation problem, as described in Sec-
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tions 4.3.1 and 5.2.1), and the steps of the process towards the selection of an Architec-

tural Pattern.

5.4.1 Problem Description — The Two-Dimensional Wave Equation

The Two-dimensional Wave Equation (Dobson & Wadsworth, 1996) is an expression to

calculate the motion of a wave on the surface of a fluid medium, for example, a pressure

wave on water. Let us assume that the fluid medium is homogeneous, this is, it has a uni-

form mass per unit of area. If a point in the area of the fluid is displaced upwards or

downwards a small amount, then the tension forces will tend to return the point to its

original position, producing a wave motion of the fluid surface. The mathematical equa-

tions that govern this motion can be derived from some basic principles of physics (Dob-

son & Wadsworth, 1996). This problem represents the software problem, to be solved

through an algorithm and data to be processed (see Section 4.3.1).

5.4.2 Algorithmic Solution for the Two-Dimensional Wave Equation

The simplest method for deriving a numerical solution to the Two-dimensional Wave

Equation is the method of finite differences. This method is based on a relaxation algo-

rithm (see Section 5.2.2). In two-dimensions, the Two-dimensional Wave Equation has

the discrete form:

where three grids A, B, and C are used to hold the values of the simulation at different

time steps. Grid B holds the values of points at time t; grid A at time t-1; and grid C holds

the new values for time t+1. The new value of a point (i,j) is computed as a function of its

past value and those of its immediate four neighbours. Thus, the proposed numerical

solution to the Two-dimensional Wave Equation is now computed by simply calculating

the position value for each point (i,j) in C at a given time step, and for as many time steps

as desired. Notice that this numerical solution is actually a relaxation algorithm which

approaches the whole solution iteratively (see Section 5.2.2).

Moreover, initially the Two-dimensional Wave Equation may seem a trivial problem,

which can be solved using a simple uniprocessor system. This would normally be the

case depending on the requirements of the problem. Nevertheless, a simple analysis
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shows that the time to solve the Two-dimensional Wave Equation rapidly grows as the

requirements change. The total time required to sequentially execute this solution

depends directly on the number of points in which the surface is divided, the number of

time steps needed to describe the position of all points at a particular time step, and their

changes of position through time. The larger number of points and number of steps, the

longer it takes to compute the solution. A sequential approach than obtains a single new

position for each point at each time step is not the most time-efficient way to compute

the motion of all points.

Suppose, for example, that it is needed to model the position values for a surface

divided into 1,000 points, considering time steps of 5 milliseconds, during a time frame

of 10 seconds. The total number of operations (commonly, floating-point operations)

required is 2,000,000. Simply changing the requirement for the number of points to

10,000 and the time step to 1 millisecond, the total number of operations required now is

100,000,000, that is, 50 times more. Notice that naive changes to the requirements

(which are normally requested when performing this kind of simulations) produce dras-

tic (exponential) increments of the number of operations required, which at the same

time affects the time required to calculate this numerical solution.

However, we can potentially compute the numerical solution to the Two-dimen-

sional Wave Equation in a more efficient way by (a) using a group of software compo-

nents that exploit the two-dimensional logical structure of the surface, and (b) allowing

each software component to simultaneously calculate the position value for all points of

C at a given time step. This is the parallelisation problem to solve.

5.4.3 Selecting an Architectural Pattern for the Two-dimensional Wave 

Equation

Based on the problem description and algorithmic solution presented in the previous sec-

tions, the procedure for selecting an architectural pattern for a parallel solution to the

Two-dimensional Wave Equation problem is presented as follows:

1. Analyse the design problem and obtain its specification. Analysing the problem

description and the algorithmic solution provided, it is noticeable that the calculation

of the Two-dimensional Wave Equation is a step-by-step process. Such a process is

based on calculating the next position of each point on the surface through each time

step. The calculation uses as input the actual position, the previous position, and the
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actual position of the four neighbours point of the cord, and provides the position of

the point at the next time step. 

2. Select the category of parallelism. Observing the form in which the algorithmic solu-

tion partitions the problem, it is clear that the surface is partitioned into points, and a

computations should be executed simultaneously on different points. Hence, the algo-

rithmic solution description implies the category of domain parallelism (see Section

5.2.1).

3. Select the category of the nature of the processing components. Also, from the algo-

rithmic description of the solution, it is clear that the position of each point of the sur-

face is obtained using exactly the same calculations. Thus, the nature of the

processing components of a probable solution for the Two-dimensional Wave Equa-

tion, using the algorithm proposed, is certainly an homogeneous one (see Section

5.2.2).

4. Compare the problem specification with the architectural pattern’s Problem section.

An Architectural Pattern that directly copes with the categories of domain parallelism

and the homogeneous nature of processing components is the Communicating

Sequential Elements (CSE) pattern (see Table 5.1). In order to verify that this archi-

tectural pattern actually copes with the Two-dimensional Wave Equation problem, let

us compare the problem description with the Problem section of the CSE pattern.

From the CSE pattern description, the problem is defined as “A parallel computation

is required that can be performed as a set of operations on ordered data. Results can-

not be constrained to a one-way flow among processing stages, but each component

executes its operations influenced by data values from its neighbouring components.

Because of this, components are expected to intermittently exchange data. Communi-

cations between components follow fixed and predictable paths”. Observing the algo-

rithmic solution for the Two-dimensional Wave Equation, it can be defined in terms of

calculating the next position of the surface points as ordered data. Each point is oper-

ated almost autonomously. The exchange of data or communication should be

between neighbouring points on the surface. So, the CSE is chosen as an adequate

solution for the Two-dimensional Wave Equation, and the architectural pattern selec-

tion is completed. The design of the parallel software system should continue, based

on the Solution section of the CSE pattern. 
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5.5 Summary

In this chapter we introduce the concept of architectural pattern, and its relation with

Software Architecture and Software Performance. Also, the Architectural Patterns for

Parallel Programming are introduced as part of the original work developed for this PhD

thesis. These architectural patterns describe common coordination organisations in paral-

lel software systems, as the coordination layer of an overall parallel software architec-

ture. Their selection constitutes the initial step of the Architectural Performance

Modelling Method.

The Architectural Patterns for Parallel Programming have the common objective of

solving the parallelisation problem. This problem refers to describe an available algo-

rithmic solution to a software problem as the simultaneous execution of communicating

sequential processes. This means that, once a solution to the software problem has been

found and described as an algorithm and data, the objective is to get a more efficient exe-

cution of such a solution as a parallel program.

In this chapter, the Two-dimensional Wave Equation is introduced as a case example

used throughout the remaining chapters. The Two-dimensional Wave Equation repre-

sents a problem whose solution (a) mainly depends on the requirements of resolution in

time (number of steps) and space (number of points), and (b) is developed as a relaxation

algorithm. Even though at first sight it may seem a trivial problem, our purpose here is to

introduce an example to illustrate and evaluate the Architectural Performance Modelling

Method. Hence, the criteria used to select this problem is that it actually shows how to

apply architectural patterns within the Architectural Performance Modelling Method,

and not whether it is a complex large-scale problem.

The architectural patterns are presented here along with the guidelines on their clas-

sification and selection, in order to help the software designer with deciding which coor-

dination organisation is potentially useful to solve a given problem. The architectural

patterns described here are (Ortega-Arjona & Roberts, 1998a): Pipes and Filters, Parallel

Hierarchies, Communicating Sequential Elements (Ortega-Arjona, 2000), Manager-

Workers (Ortega-Arjona, 2004), and Shared Resource (Ortega-Arjona 2003).
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Chapter 6

Architectural Performance Model

Construction

“When we mean to build, we first survey the plot, then draw the model”

Shakespeare

Following after the selection of an Architectural Pattern for Parallel Programming, the

Architectural Performance Modelling Method continues with the construction of an

Architectural Performance Model. This model is used to simulate the behaviour of a par-

allel program, based on the generic description of parallel programs provided in Section

4.3.1. 

An Architectural Performance Model is composed of two types of simulations:

Coordination Simulation and Component Simulation. These simulation models reflect

the basic supposition of considering that communication and processing are activities

sharply separated among coordination and processing components (see Sections 1.4 and

4.3.2). Even though this may not be always the case, our objective is to prove that such a

supposition does not introduce a considerable error for performance estimation. So, our

scale-model can effectively be used to estimate the performance of a parallel program

with the proposed constraints (see Section 4.3.1).

The Coordination Simulation captures the essential communication aspects of the

parallel software behaviour, and it is based on a selected architectural pattern (see Chap-

ter 5). The Component Simulation represents the processing behaviour of components,

and it is developed based on the Active Object pattern (Lavender and Schmidt, 1996;

JOLT, 1999; Schmidt et al., 2000) and elements of Queuing Theory (Kleinrock, 1975;

Lazowska et al., 1984; Law & Kelton, 1991).

It is important to mention that, for the actual purposes of the present thesis, all simu-

lation models are developed and executed on a cluster of sixteen computers, using the
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JPVM environment (Ferrari, 1997; Geist, et al., 1994), representing the available hard-

ware and software resources. Also, all simulation models are programmed using the Java

programming language (Smith, 2000). However, these conditions do not prevent that

modelling and simulation as proposed by the method could be developed for a different

hardware and software platform, in order to estimate the performance of a parallel solu-

tion on such a platform.

6.1 Coordination Simulation

6.1.1 Definition

For the actual purposes, a Coordination Simulation is defined as a scale-model imple-

mentation of functional execution of a parallel application to the level of creation of

independent communicating software components, and the coordination among them. A

Coordination Simulation is considered a partial, runnable implementation of a parallel

program that exhibit only the communication and coordination among software compo-

nents, based on a selected architectural pattern. The previous selection of such architec-

tural pattern reflects the characteristics of order and precedence of steps in the algorithm

and/or data found in the problem at hand, which directly affect its parallelisation (see

Chapter 5).

6.1.2 Description

The Coordination Simulation consists of interactions that reflect the top-most communi-

cation level used to capture essential aspects of the parallel execution, and to derive

parameters for the execution of an Architectural Performance Model. As part of the

Architectural Performance Modelling Method (see Section 4.3.3), it is constructed using

information from the selected architectural pattern (see Chapter 5), whose Structure and

Dynamics sections define the communication structure of the prospective parallel pro-

gram. Moreover, the Participants and Implementation sections of the architectural pat-

tern provide information to develop the parallel program’s communicating software

components (see Sections 2.1 and 2.2). The Coordination Simulation is used to obtain

initial estimates of the time spent in communication and synchronisation activities of its

software components, as well as to derive parameters for the (sequential) processing

components in a workload scenario.
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6.1.3 Implementation

The Coordination Simulation is constructed from the Implementation section of the

selected architectural pattern (see Section 5.2.5). It is created as a skeleton of code repre-

senting the structural communication relations among parallel components, and executed

using the given data and available hardware an software resources only to show the com-

munication and synchronisation interactions among sequential software components. 

The implementation of a Coordination Simulation is based on an exploratory

approach to design, in which hardware-independent features are early considered, and

hardware-specific issues are delayed in the process (Foster, 1994). The Coordination

Simulation, as a runnable implementation, is constructed through four stages of Parti-

tioning, Communicating, Agglomeration and Mapping (see Section 5.2.5).

6.1.4 Operation

In general, the Coordination Simulation operates for a typical workload scenario, which

specifies the basic partitioning and communication operations of the data to be processed

by the (sequential) processing components. It also specifies the frequency with which

those operations occur, representing the flow of data through a parallel program that exe-

cutes on a particular platform. Thus, it is possible to measure from the Coordination Sim-

ulation the actual time it requires only to coordinate and communicate data among

components. This time represents a lower bound on the response time due exclusively to

the coordination activity of a parallel program. It is an initial indicator of whether the

proposed parallel system will meet performance goals.

The Coordination Simulation also allows simulation parameters to be obtained for

the execution of the Architectural Performance Model. As the workload scenario speci-

fies the frequency with which operations occur, it is possible to measure the inter-arrival

times, and thereby obtain their average (expressed as 1/λ, where λ is the arrival rate, see

Section 6.2.2) between request for operation that coordination components issue. These

values are used later, when obtaining the parameters for the Component Simulation (see

Section 6.2.2). 

6.1.5 Example: CSE and the Two-dimensional Wave Equation

In this section, we continue developing the Two-Dimensional Wave Equation example

introduced in Chapter 5, using the Communicating Sequential Elements architectural
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pattern as a selected organisation for its coordination layer (see Section 5.4). The objec-

tive now is to show how the information from the architectural pattern is used to develop

the Coordination Simulation.

In the example, the main idea of the Communicating Sequential Elements pattern is

that all data (representing the position of each point on the surface) is partitioned and

assigned to a group of communicating sequential elements (see Section 5.2.10).

The construction of the Coordination Simulation for this problem is carried out fol-

lowing the steps provided in the Implementation section of the Communicating Sequen-

tial Elements Pattern (see Section 5.2.10), as follows:

• Partitioning. The Communication Sequential Elements pattern describes a coopera-

tion between identical sequential elements, which communicate partial results by

exchanging values through channels with their neighbours. In our example, the data

structure (representing the surface) is the natural candidate to be initially decomposed

into a two-dimensional array of points. As defined by the pattern, all communicating

elements will have the same structure, which is expected to perform the same compu-

tation (in this case, the position of each point). However, for the actual purposes of

Coordination Simulation construction, the basic communicating element implementa-

tion only focuses on partitioning the data structure and on referencing to its neigh-

bouring elements, and not on the processing activity to be carried out. The code for

class TwoDWave is shown in Figure 6.1, and developed in Java. TwoDWave uses sev-

eral declarations of data types within the JPVM environment (Ferrari,1997). Accord-

ing with the description of the CSE pattern (see Section 5.2.10), the class TwoDWave is

in charge of partitioning the two-dimensional array. Hence, this should be reflected by

the Coordination Simulation, due to it exhibiting only the communication and coordi-

nation among software components, based on the selected architectural pattern (see

Section 6.1.1). So, its most relevant attributes used to organise and perform the parti-

tioning activities are described as follows (Ferrari, 1997):

• nprocs. An int value, whose purpose is to define the number of processes to be

created into the JPVM environment.

• procdim. An int value that specifies the size of the two-dimensional mesh of

processes.

• tids and childTids. Two arrays of jpvmTaskId values, which are used to store

the task identifiers of all workers.
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• my_id, my_x, and my_y. Three int values which specify the location of the local

two-dimensional array in the mesh of processes.

• east_id, west_id, north_id, and south_id. Four int values holding the num-

bers of the process neighbours on each side.

• N. An int value defining the size of the total square grid of points (N×N).

• Np. An int value defining the size of the square sub-grid of points (Np×Np).

• X. A two-dimensional array of double values, holding the present and next values

of the points within the local sub-grid.

• B. A two-dimensional array of double values, holding the past values of the points

within the local sub-grid.

• tmpBorder. An array of double values, which temporary hold the values to be sent

to or received from the neighbouring sub-grids.

• iteration. An array of int value, which keeps record of the number of iterations

so far.

• start_time and end_time. Two double values, which hold the timing informa-

tion of the program’s execution.

• Communication. Communication is defined using JPVM methods for sending and

receiving data to and from the neighbouring elements. Two methods of the code of the

class TwoDWave shown in Figure 6.2, carry out these communication activities, based

on the JPVM environment (Ferrari, 1997).

Figure 6.1 Relevant attributes of the class TwoDWave 

import jpvm.*;

class TwoDWave{
...
static int     nprocs  = DEFAULT_NUM_PROCS;
static int     procdim;
static jpvmTaskId   tids[];
static jpvmTaskId   childTids[];
static int     my_id = -1, my_x = -1, my_y = -1;
static int     east_id,  west_id;
static int     north_id, south_id;
static int     N;
static int     Np;
static double  X[][];
static double  B[][];
static double tmpBorder[];
static int     iteration = 0;
static double  start_time, end_time;
...

}
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The methods that implement the communication between sequential elements (see

Section 5.2.10) as described by the CSE architectural pattern are described as follows:

• void send_borders(). This method is used to send the array x to the four neigh-

bouring elements. Notice that the code used for the northern neighbour has to be

repeated for the rest of the neighbours, considering the adequate values for the

array x. The method makes use of jpvm.pvm_send(), to actually send the array.

• void recv_borders(). This method is used to receive data from the four neigh-

bouring elements, and store it in the array x. Notice again that the code used for the

northern neighbour has to be repeated for the rest of the neighbour, considering the

adequate values for the array x. The method makes use of jpvm.pvm_recv(), to

actually receive the array.

Figure 6.2 Communication methods for the Two-dimensional Wave Equation

import jpvm.*;

class TwoDWave{
...
static void send_borders(double x[])throws jpvmException{

...
jpvmBuffer buf;
if(north_id!=NOBODY) {

...
/* Send out northern border */
for(i=0;i<how_many;i++)tmpBorder[i] = x[Np];
buf = new jpvmBuffer();
buf.pack(tmpBorder,how_many,1);
jpvm.pvm_send(buf,tids[north_id],RED_SOUTH_TAG);

}
...

}
static void recv_borders(double x[])throws jpvmException{

...
jpvmMessage m;
if(north_id!=NOBODY) {

...
m = jpvm.pvm_recv(tids[north_id],RED_NORTH_TAG);
m.buffer.unpack(tmpBorder,how_many,1);
for(i=0;i<how_many;i++)x[Np+1] = tmpBorder[i];

}
else {
if(iteration<=1)
  for(i=0;i<(Np+2);i++) x[Np+1]=0.0;
}
...

}
...

}
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• Agglomeration and Mapping. Finally, for the Coordination Simulation execution,

tasks are created and connected as determined by the data structure representing the

complete surface. Each communicating element considers four neighbours with

which exchange partial results. The Coordination Simulation is executed on the given

platform, representing how the data is divided among the communicating elements,

how the communicating elements exchange data, and how they iteratively carry out

the whole computation. The parts of the Java code in the main() function of the paral-

lel application, which creates and spawns the elements within the JPVM environment

(Ferrari, 1997), is presented in Figure 6.3.

The main() function starts creating a jpvmEnvironment declared as jpvm. This is

the basic component for creating the rest of the tasks within JPVM (Ferrari, 1997).

From jpvm, all the services of the environment can be obtained, like the creation and

spawning of elements (using the method pvm_spawn()). From this point onwards, the

software components are expected to execute.

Figure 6.3 Main elements of the main function for the Two-dimensional Wave Equation

import jpvm.*;

class TwoDWave{
...
public static void main(String args[]) {

try {
jpvm = new jpvmEnvironment();
...
tids = new jpvmTaskId[nprocs];
childTids = new jpvmTaskId[nprocs-1];
tids[0] = my_tid;
my_id = my_x = my_y = 0;

/* Spawn workers */
if(nprocs>1) {

jpvm.pvm_spawn("TwoDWave",nprocs-1,tids);
tids[nprocs-1] = tids[0];
for(i=0;i<(nprocs-1);i++)childTids[i] = tids[i];
tids[0] = my_tid;
...

}
...

}
catch (jpvmException jpe) {

error("jpvm Exception - "+jpe.toString());
}
catch (Exception e) {

error("Exception - "+e.toString());
}

}
...

}
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In summary, these implementation steps set up the Coordination Simulation for the

Two-dimensional Wave Equation, using the Communicating Sequential Elements pat-

tern. The Coordination Simulation will be used later, for the development of the Archi-

tectural Performance Model (see Section 6.3). The Coordination Simulation only carries

out the partitioning of the data, and allows for the communication exchange among

instances of the class TwoDWave as described by the Communicating Sequential Elements

pattern, but actually does not perform any processing on the values that describe the

motion of the points on the surface. This is a consequence of the basic supposition that

communication and processing are activities sharply separated among coordination and

processing components (see Sections 1.4 and 4.3.2). Hence, the execution of the Coordi-

nation Simulation is used to measure the actual time it takes to coordinate and communi-

cate data among components (see Section 7.2, “Coordination Simulation Execution”).

This time represents a lower bound on the response time due exclusively to the coordina-

tion activity, and it is an initial indicator of whether the proposed parallel software archi-

tecture will meet performance goals (see Section 6.1.4). Moreover, the execution of the

Coordination Simulation also allows to obtain measurements to derive the simulation

parameters for the Component Simulations (see Section 7.2), and thus, for the execution

of the Architectural Performance Model (see Section 7.3). As the workload scenario

specifies the frequency with which operations occur, it is possible to measure the inter-

arrival times between request for operation that coordination components issue, and

obtain their average (expressed as 1/λ) (see Section 7.3.1, “Obtaining the Simulation

Parameters for the Component Simulations”). The processing activity triggered by such

requests is expected to be simulated, using the Component Simulation model, which is

explained as follows.

6.2 Component Simulation

6.2.1 Definition

The Component Simulation is defined as a representation of the time in which a free-

standing sequential and operational unit of the application provides functionally. The

Component Simulation is considered as the representation of the time that would take to

a processing (sequential) component of a parallel software system to use the input data in

order to produce an output result.



173

6.2.2 Description

The Component Simulation is an executable simulation of the time behaviour of a single

component, representing only its processing time. As part of a parallel program, it repre-

sents the time consumed by a sequential software component, according with the defini-

tion of a parallel program (see Section 2.1.5). One way in which the Component

Simulation could represent the time consumed by a sequential processing component is

implementing it using the structure of an active object (Agha, 1990; Agha et al.,1993a;

Agha et al., 1993c, Frolund, 1996). Hence, for our purposes the Component Simulation

will only reflect the sequential behaviour of a software component through time, using

the Active Object pattern (Lavender and Schmidt, 1996; JOLT, 1999; Schmidt et al.,

2000) as a structural base for its implementation. This pattern represents the elements of

an active object, whose behaviour depends on the messages exchanged by the partici-

pants of the pattern, and the configuration used to compose them as an active object.

Nevertheless, in order to simulate the sequential execution through time, some

parameters for the Component Simulation are needed. These parameters are obtained

from elements of Queuing Theory (Kleinrock, 1975; Lazowska et al., 1984; Law & Kel-

ton, 1991; Bolch et al., 1998). In the following sections, the description of the Active

Object pattern and its combination with elements of Queuing Theory is described, in

order to develop the Component Simulation.

The Active Object Behavioral Pattern

The Active Object Behavioral Pattern (or simply, Active Object pattern) was originally

proposed by Lavender and Schmidt (1996), latter extended as part of the JOLT project

(JOLT, 1999), and finally introduced as part of the software patterns presented in the

POSA 2 book (Schmidt et al., 2000). This design pattern is proposed and used to imple-

ment active objects. In essence, the Active Object pattern decouples method execution

from method invocation, allowing one or more independent objects to interleave their

access to a single object. Using the Active Object pattern, a method is executed in

another sequence of method calls, separated from the one that originally invoked it. In

this section, a brief description of the Active Object pattern is presented, using the POSA

form (Buschmann et al., 1996).
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Context

Use the Active Object pattern during the design and implementation of a concurrent pro-

gram, where objects are required to execute using separate sequences of method calls

(Lavender & Schmidt, 1996; JOLT, 1999; Schmidt et al., 2000).

Problem

The concurrent execution of several objects is required in a software program. Each

object is expected to execute at its own rate, residing in an individual thread of control,

and communicating with other objects. As several objects execute simultaneously, each

object has to guarantee a synchronised execution of its methods, controlling access to its

state by methods invoked by other objects (Lavender & Schmidt, 1996; JOLT, 1999;

Schmidt et al., 2000).

Solution

A set of objects performs the activities of the Active Object pattern, decoupling method

invocation from method execution: when a message is sent to an active object, it is

received through its client interface, which accepts messages to be processed by the

active object. The scheduler, a scheduling mechanism, is in charge of the queue of

incoming messages in the active object’s associated activation queue, in which messages

are stored in the form of method objects until they can be dispatched. A method object is

a representation of the method invoked by a message. In general, if no other criteria is

specified, messages are dispatched based on an arrival order criteria. When a message

can be dispatched, the scheduler removes its associated method object from the activa-

tion queue and invokes the real method in the object resource representation. This per-

forms the expected behaviour in response to the message, manipulating the instance

variables that represent the state of the active object (Lavender & Schmidt, 1996;

Schmidt et al., 2000).

Class Diagram and Participants

The class diagram of the Active Object pattern is illustrated in Figure 6.4.

The participants of the Active Object pattern are (Lavender & Schmidt, 1996;

Schmidt et al., 2000):

• Client interface. The client interface is a method interface presented to client applica-
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tions. When a method defined by the client interface is invoked, this triggers the con-

struction and queuing of a method object.

• Method objects. A method object is constructed by the scheduler for any input mes-

sage requiring a synchronised method execution. Each method object contains the

context information necessary to execute an invoked method operation and return any

result of that execution through the client interface.

• Activation queue. The activation queue is a priority queue, storing input messages as

method invocations represented by method objects. The activation queue is controlled

and managed by the scheduler.

• Scheduler. The scheduler is an object that manages the activation of method objects

requiring execution. It is in charge of inserting and removing method objects from the

activation queue, and deciding which method object is to be executed at certain time.

The execution of a method object is based on mutual exclusion and condition syn-

chronisation constraints.

• Resource representation. The resource representation object is the implementation of

the methods defined in the client interface. It represents the resource modelled as an

active object. It may also contain other methods used by the scheduler to compute

runtime synchronisation conditions that determine the execution order.

Dynamics

The collaborations in the Active Object pattern are shown in Figure 6.5. 

 Figure 6.4 Class diagram of the components of a generic Active Object.
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The collaborations between objects are defined based on three stages, as follows

(Lavender & Schmidt, 1996; Schmidt et al.,2000):

1. Method object construction. In this stage, the client application invokes a method

defined by the client interface. This triggers the construction of a method object,

which maintains context value information about the method as well as anything else

required to execute the method and return a result. After its creation, the method

object requests the scheduler to be queued on the active object’s activation queue,

waiting for its eventual execution. The scheduler inserts it and a result handle, or

future, is returned to the client.

2. Scheduling/execution. In this phase, the scheduler consults the activation queue to

determine which method object matches established synchronisation constraints. The

scheduler removes the method object from the activation queue, and calls the resource

representation to dispatch it. A call is made to the actual method of the resource repre-

sentation with the information contained in the method object. The method is exe-

cuted, updating the state of the resource representation to create a result.

3. Return result. Finally, the result value is returned when the method finishes executing.

Again, using the information contained in the method object, the result is passed to

the future that returns it to the client. The future and method object involved will be

garbage-collected when they are no longer needed.

This completes a brief description of the essential structural and behavioural details

about the Active Object pattern. This information is used later to implement the Compo-

nent Simulation. However, for a more complete description, refer to the original work by

 Figure 6.5 Dynamics in the Active Object pattern

Client Client

Interface
Scheduler Activation

Queue

Represen-

tation

method()

cons()

insert()

remove()

dispatch()

return()

reply_to_future()

future() queue()

Method
Object

M
et
ho
d 
ob
je
ct

co
ns
tr
uc
ti
on

Sc
he
du
li
ng
/

ex
ec
ut
io
n

R
et
ur
n

re
su
lt



177

Lavender & Schmidt (1996), the extended work by the JOLT project (JOLT, 1999), or

the latest description of this pattern, which can be found in the POSA 2 book (Schmidt et

al., 2000).

Some Basics on Queuing Theory — Stochastic Queue Models

A simple description of an active object, based exclusively on the active object’s struc-

ture, does not provide a complete picture of the behaviour through time of a sequential

software component. It is also necessary to address the underlying stochastic nature of its

elements. Requests for service arriving at the active object’s message queue can often be

modelled as a random process. The amount of computation required each time by a

processing activity (or job) can also be commonly modelled as a random process. 

The area of mathematics known as Queuing Theory encompasses the set of analyti-

cal models that most adequately can describe this kind of random processes (Kleinrock,

1975; Law & Kelton, 1991; Lazowska et al., 1984; Bolch, et al., 1998). Queuing Theory

analyses structures in many areas where real systems are very complex mechanisms, and

tractable mathematical models must often be simplified approximations to the real sys-

tem. Simulation models are used in conjunction with queuing structures to accurately

model these systems, describing the performance as a function of a number of parame-

ters, and providing approximate quantitative answers about the behaviour of a system

(Lazowska et al., 1984; see also Sections 3.1 and 3.2). Both queuing and simulation

models play an essential role in the behaviour modelling of several systems. However, to

get information through simulation often takes many hours of computation, and even

then, the behaviour of a complex system over a range of configurations is still not as

clear as when an analytical solution is available (Law & Kelton, 1991).

This section analyses in detail a fundamental queuing structure that has a wide appli-

cation in the analysis of sequential computing systems. This structure is known as a sin-

gle station queueing system (Bolch, et al., 1998), which consists of a queueing buffer of

finite or infinite size, and one (or more) identical servers. Such an elementary queueing

system is also referred to as a service station, or simply, as a node. As any queueing

structure, this structure has the following elements (Kleinrock, 1975; Law & Kelton,

1991; Stone et al., 1975; Bolch, et al., 1998):

• An arrival mechanism. In general, this is a process that generates requests to be serv-

iced by the active object, modelling the time between the arrival of different requests,
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or interarrival time. The model discussed in this section assumes that the interarrival

times are random variables, drawn from an arrival-time distribution function.

• Service mechanisms. After a request arrives, the primary objective of the active object

is to service it. This service requires some time, and like interarrival times, the time to

service a request or service time can also be modelled as random variables with a

service-time distribution function.

• Queuing discipline. When requests for a service arrive at an active object faster that

they can be serviced, a line or queue forms, and a policy is needed to determine the

order in which outstanding requests will be processed.

In the following subsections we make a number of assumptions concerning these

characteristics, in order to develop the Component Simulation that describes the sequen-

tial software component’s behaviour through time.

Interarrival-time Distribution —The Poisson Arrival Process

The simplest arrival mechanism to mathematically model interarrival times, in a single

processor/single process computing system, is the Poisson (completely random) arrival

process (Law & Kelton, 1991; Stone et al., 1975; Bolch, et al., 1998). The most impor-

tant property of this process is that events are taken from a very large population, where

each member is independent of the others. This means for our purpose that the arrival at

a present instant does not depend on the arrival, or non-arrival, at past or future instants.

This lack of dependence on the past and future is commonly called Markovian or memo-

ryless property. The simplicity of the mathematical analysis of the Poisson arrival proc-

ess relies precisely on this property. To analyse a Poisson process, let λ be the average

arrival rate of the Poisson process. Consider a time line with marks at several epochs or

points in time that denote arrivals. The fundamental assumption that during a gap of time

δt an arrival is independent of all other arrivals can be stated with the following two pos-

tulates (Lazowska et al., 1984; Stone et al., 1975):

• The probability of an arrival between the epochs t and t + δt is λδt + o(δt), where

o(δt) denotes a quantity of smaller order of magnitude than δt. (More precisely,

.) 

• The probability of more than one arrival between epochs t and t + δt is o(δt).

o δt( )
δt

-------------
δ t 0→
lim 0=
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A mathematically derived expression for Pn(t), as the probability of n arrivals during

an interval of duration t, is (Lazowska et al., 1984; Stone et al., 1975):

From this expression, it can be observed that the exponential function can be used to

model the required Markovian property of the Poisson arrival process, based exclusively

on the average arrival rate λ.

Service-time Distributions — The Exponential Service-time Distribution

Following the same consideration about the memoryless or Markovian property that the

Poisson process enjoys, an expression for service-time distributions for a single proces-

sor/single process computing system can be obtained (Law & Kelton, 1991; Stone et al.,

1975). Let μ be the average rate of service completions by an active object. Making a

similar assumption to the one used in the Poisson arrival process, consider f(t) as the

probability of the completion of service between epochs t and t + δt. Similarly to the

interarrival-time distribution, the mathematical expression derived for this probability is

(Lazowska et al., 1984; Stone et al., 1975):

Again, it can be observed that using the exponential function as the service-time dis-

tribution of an active object maintains the required Markovian property.

Modelling an Active Object as a Simple Queue Structure

The Active Object is a simple programming structure whose behaviour through time can

be modelled using a simple queue structure (Ortega-Arjona & Roberts, 2001). The queue

structure proposed to model the behaviour through time of an active object is simple: a

Poisson arrival process, and a single active object with exponential service time (Bolch

et al., 1998). Figure 6.6 represents this case.

The fact that the model is simple does not imply it is of little use. On the contrary,

this model should be considered as a good initial approximation to the modelling of a

sequential software component. The basic assumptions for the model development are

(Ortega-Arjona & Roberts, 2001):

1. the arrival of messages forms a Poisson process with an average arrival rate of λ mes-

Pn t( ) λt( )n

n!
------------e

λt–
=

f t( ) μe
μt–

= t 0>
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sages per second; 

2. the processing time per message is an exponentially distributed random variable with 

a service time average of μ messages per second; and 

3. for simplicity, a first-in, first-out (FIFO) queue discipline is considered. 

Using this information, the model must answer a number of questions when describ-

ing the time behaviour of a sequential software component, for instance (Ortega-Arjona

& Roberts, 2001):

• How much time can the sequential software component spend processing a number of

messages?

• What fraction of time will the software component be idle?

• What is the average response time seen by requests that are handled by the sequential

software component?

To analyse this simple queuing structure, and answer the previous questions, it is

necessary to develop an expression (in terms of λ and μ) for the probability of the com-

ponent to be in certain state. This expression should be based on the basic considerations

of the Poisson process and the exponential service-time distribution (Ortega-Arjona &

Roberts, 2001).

Let pn be the probability of the active object being in state En at epoch t, that is, hav-

ing n messages in service or waiting for service. The expression for pn is as follows (Law

& Kelton, 1991; Stone et al., 1975), where ρ = λ / μ:

It is possible to make some observations about this expression (Ortega-Arjona &

Roberts, 2001). For instance, observe that this equation is not useful for ρ = 1. Further-

more, as the analysis of this queuing structure is performed for the steady state behav-

iour, this equation is meaningful only for ρ < 1: as ρ is defined as the relation λ / μ, when

λ > μ, requests arrive at a faster rate than the active object can service them. This means

 Figure 6.6 Simple queuing structure: a single active object with exponential inter-

arrival and service times

pn ρn
1 ρ–( )= n 1 2 …, ,=
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that there is no steady state solution for ρ > 1, because the arrival process is considered to

saturate the active object, and its message queue grows without bound. The ratio ρ has an

important role in general Queuing Theory, and it is commonly referred to as the traffic

intensity of the queuing system (Kleinrock, 1975; Bolch et al., 1998).

Applying this result to the questions about the active object’s performance, it can be

observed that the expression for pn is considered to directly answer the first question

about the probable time required to process a number of messages. The second question

can be answered considering that the active object is idle when n = 0. Since p0 indicates

the active object has no outstanding messages to process it is idle for (1 - ρ) of the time.

The third question can be answered by the important fact that the active object is NOT

idle with probability ρ. This result transcends the simple queuing case: in any single

queuing structure, the average response or utilization equals the ratio of the arrival rate to

the service rate (Ortega-Arjona & Roberts, 2001).

This completes out a brief introduction to the description of a simple queuing struc-

ture that models the behaviour through time of a sequential software component. This

description is used as follows for the implementation of the Component Simulation.

6.2.3 Implementation

The implementation of the Component Simulation is based on elements related to the

information of structure and behaviour from the Active Object pattern, and the steps to

take for a discrete-event simulation. These elements are summarised as follows (Ortega-

Arjona & Roberts, 2001):

Structure and Behaviour from the Active Object pattern

For our actual purposes, the Component Simulation should be able to simulate the

processing behaviour through time of the Active Object’s participants. This is achieved

by taking the behaviour from the Active Object pattern (see Section 6.2.2), and propos-

ing attributes and methods that represent the behaviour through time of its participants.

Let us state some general characteristics of execution that the Component Simula-

tion will have, reflecting an active object’s behaviour (Ortega-Arjona & Roberts, 2001):

1. At any specific time, only one job is serviced by the sequential component. If jobs

arrive for service and there is already a job being serviced, the arriving jobs enter a

FIFO queue.
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2. Once a job is being processed, the sequential component’s processing time can be cal-

culated, simulating that the job receives service or, if the component is “busy”, an idle

time is obtained.

3. Upon receiving the total amount of simulated processing and idling time for a particu-

lar job, another job is serviced if the job queue is not empty.

From these characteristics, let us consider the following basic elements for the Com-

ponent Simulation implementation (Ortega-Arjona & Roberts, 2001):

• The arriving jobs form a Poisson process with mean arrival rate lambda.

• The computation time required by a job is a exponentially distributed random variable

with mean mu.

• All queuing in the implementation is FIFO.

These basic elements are used in the Component Simulation implementation, when

defining the attributes of the simulation.

Discrete-event Simulation

The type of simulation considered to be appropriate for the study and modelling of

sequential computing systems is the discrete-event simulation (Law & Kelton, 1991;

Bolch et al., 1998). Its most important feature is precisely that time is not considered a

continuous variable incremented by uniform intervals. The execution of an event is rep-

resented by updating only the state of the simulation to reflect the occurrence of the

event. After the event has occurred, the simulation is advanced to the time of the next

event, and the process is repeated. Hence, the value obtained from the simulation com-

monly has no direct correspondence with the actual simulation time.

For the implementation of the Component Simulation, let us consider the use of dis-

crete-event simulation to model a queuing structure (Ortega-Arjona & Roberts, 2001).

Usually, when simulating a queue structure, its parameters —inter-arrival time of jobs,

length of processing time required by jobs, and so on— are considered as random varia-

bles. Therefore, an important point for a discrete-event simulation of a queue structure is

to generate a random variate from an arbitrary distribution. So, the simulation is carried

out by the following steps (Stone et al., 1975):

• Generate random variates.

• Create, modify and generally describe jobs that move through the simulation.

• Delimit and sequence the phases of a job.
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• Facilitate the queuing of jobs.

• Collect, generate and display summary statistics.

These steps are used in the Component Simulation implementation, defining the

methods of the simulation (Ortega-Arjona & Roberts, 2001).

The Implementation of the Component Simulation

Based on previous considerations, a Component Simulation is implemented consisting of

two classes: ActiveObjectSimulator and Markovian, as shown in Figure 6.7 (Ortega-

Arjona & Roberts, 2001). The interaction between these two classes allows the simula-

tion of the time taken by the processing behaviour of a sequential software component,

but executing event-time simulations instead of actual execution of the methods defined

for the Active Object pattern.

The class ActiveObjectSimulator simulates the processing behaviour of a sequen-

tial software component as a simple queuing structure with exponential interarrival and

service times (Bolch et al., 1998; see also Section 6.2.2). Its most relevant attributes and

methods are (Ortega-Arjona & Roberts, 2001):

• clock indicates the current epoch in time being simulated.

• actorbusy is a boolean variable that is true if the active object is busy servicing a job.

• arrival is an array of the times when each job arrived to the active object for service.

• activeobjecttime is an array that stores the total amount of processing time

required to complete servicing each job.

 Figure 6.7 Class diagram of the Component Simulation.
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• eventtime is an array of times in which the event associated with the job is scheduled

to occur. Some jobs will not have an event time if they are queued waiting to be serv-

iced on the active object.

• type is an array which specifies the state for jobs that have an event pending.

• linkof is an array used to link the state of each job with the next state.

• The job queue jobQ and the active object queue activeobjectQ are the FIFO queues.

Internally, in the class, there are pointers to their heads as well as their tails to facili-

tate respectively the addition and deletion of jobs, from these queues.

• The queue freeQ is simply a list of unused job descriptions. Jobs are taken from this

queue scheduling them upon arrival, or adding them to the free queue upon departure.

For simplicity, this queue is implemented here as a stack, or last-in, first-out queue.

• The method Simulate() constitutes the main loop of the simulation model, initialis-

ing the state of the simulation and beginning the simulation by scheduling the arrival

of the first job. The major operations of the simulation are called from this method.

For each event, the simulation updates the state of the model, schedules a future event

or queues a request when the unit is busy, and collects summary statistics.

• The following methods are used to control the execution of the simulation, reflecting

the different events when the active object is processing or idling, and considering

how time is spent on each event. There are three types of events: NewJob() represents

the arrival of a new job to the active object; JobComplete() expresses that the job

has completed all its processing time, and the active object searches for more queued

jobs or it remains idle waiting for new jobs; Idle() is a special method that can be

invoked in any situation in which the active object is not found in a processing state.

• A set of procedures facilitates the maintenance of the queues in the model. The

Schedule() method adds a job to the queue of pending events; the Queue() method

adds a job to one of the three FIFO queues jobQ and activeobjectQ. The Dis-

patch() method simulates the processing of a job on the processor.

The class Markovian represents the stochastical and memoryless property of the

behaviour through time of a sequential software component, and its members are pre-

sented as follows (Ortega-Arjona & Roberts, 2001):

• The methods Negexp() and Lognormal() generate random variates with the indi-

cated distributions. The kernel of each of these procedures is a uniform random

number generator Random(). The random number generator is not defined since it is
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generally machine dependent.

As the class Markovian is used to obtain distributed random variables with the indi-

cated distributions, it is important to understand how it generates exponentially distrib-

uted random variables for the interarrival and service times. Let {ei} be a sequence of

number randomly distributed with the distribution function F(x):

If {νi} is a sequence of uniformly distributed random variables obtained from a ran-

dom generator, then it is possible to generate {ei} as a sequence of exponentially distrib-

uted random variables with distribution function F(x) with the relation (Ortega-Arjona &

Roberts, 2001):

6.2.4 Operation

A Component Simulation is an implementation that simulates the behaviour of a sequen-

tial software component based on the structure of an active object as a queueing system,

which provides statistical-based information about its execution through time. It pro-

duces probable processing times, based on mean inter-arrival times and mean service

time (Ortega-Arjona & Roberts, 2001).

The Component Simulation is developed considering the simulation of active

objects, in Object-Oriented terms. So, a sequential software component is represented by

one object that simulates the time of processing activity (and potential idling) of such a

component. The simulation per sequential software component is event-driven, which

means that time is not considered as a continuous variable incremented in uniform inter-

vals, but is always advanced to the time of the next event (see Section 6.2.3). There is no

need to wait long periods of time during the actual simulation time of a single sequential

software component, since its objective is only to obtain a probabilistic value which rep-

resents it. Thus, the Component Simulation is able to produce simple values of probable

residence time (processing times plus potential delays). This values are used later in

Chapter 7, when calculating the overall response times of the Architectural Performance

Model (see Section 7.4).
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6.2.5 Summary

For the purposes of this thesis, the basic supposition is that communication and process-

ing are activities sharply separated among coordination and processing components (see

Sections 1.4 and 4.3.2). The coordination components are represented by the Coordina-

tion Simulation, which represents the main simultaneous activities carried out by a paral-

lel program (see Sections 2.1.5 and 5.2). On the other hand, the Component Simulation

is a probabilistic queueing implementation, whose solely purpose is to represent the

processing time of a sequential software component (see Section 2.1.5, 2.2 and 5.2).

Since such a software components is defined to execute sequentially, it can be modelled

as a single processor/single process queuing system, known as a single station queueing

system (Bolch et al., 1998). In Queueing Theory terms, a Component Simulation is a M/

M/1 queueing system (Law & Kelton, 1991; Stone et al., 1975; Bolch, et al., 1998), used

to simulate the processing time of a sequential software component.

6.3 Architectural Performance Model

Once the Coordination Simulation and the Component Simulation have been described

and implemented, it is possible to introduce the concept of an Architectural Performance

Model, which relies on both types of simulations to early estimate the performance of

parallel software designs.

6.3.1 Definition

An Architectural Performance Model is considered as a scale-model representing a par-

allel software system, whose communication organisation is based on an architectural

pattern, and in which the time taken by the behaviour of each of its sequential software

component is simulated as a queueing system. This is achieved by using several Compo-

nent Simulation instances, whose implementation is inserted into the Coordination Simu-

lation. Hence, Component Simulations are used to simulate the sequential behaviour of

processing components (see Section 6.2), while the communication and coordination

activities (and therefore the architectural pattern used, and thus, the characteristics of

order and precedence of steps in the algorithm and/or data found in the problem at hand)

are taken into account by the Coordination Simulation (see Section 6.1). Thus, an Archi-

tectural Performance Model is obtained from pre-defined coordinating components shar-
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ing the same physical platform, and simulated processing components which generate a

statistical response time of the parallel system (see Section 1.3, “The Hypothesis”).

6.3.2 Description

The Architectural Performance Model is based on the Architectural Description of Soft-

ware (see Section 2.3.2), which is used to determine simulations that represent the activ-

ities of software components. The term “software components” refers to pieces of

software, put together in a “container”, representing code that takes some time to be

(sequentially) processed by a processor, in the Software Architecture sense (see Section

2.2). Moreover, the Architectural Performance Model reflects the basic supposition of

considering that communication and processing are activities sharply separated among

coordination and processing components (see Sections 1.4 and 4.3.2). Hence, the per-

formance (response time) of a parallel software system depends mainly on the times

taken by its software components to carry out their coordinating or processing activities.

Such a classification of software components allow us mostly to consider the simultane-

ity and separation of those coordination and processing activities. Even though this may

not be always the case, our objective is to prove that such a supposition does not intro-

duce a considerable error for performance estimation. So, the Architectural Performance

Modelling Method can effectively be used to estimate the performance of a parallel pro-

gram with the proposed constraints (see Section 4.3.1).

Based on the Architectural Description of Software (see Section 2.3.2), the Architec-

tural Performance Model is described as the composition in code terms of the Coordina-

tion Simulation and the Component Simulation (as shown in Figure 6.8) considering

that:

• The Coordination Simulation is a partial, runnable implementations that represent the

top-level information of a particular parallel software system (see Section 6.1), and

• The Component Simulation is a representation of the time taken by the behaviour of

constituent processing components of a particular parallel software system (see Sec-

tion 6.2).

6.3.3 Implementation

The Architectural Performance Model for a particular parallel program is directly con-

structed by gathering together the code implementations of a Coordination Simulation
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(see Section 6.1.3) and several Component Simulations (see Section 6.2.3). For example,

in the case of the Two-dimensional Wave Equation, the Architectural Performance

Model is created by inserting a call to the method Simulate() of the class ActiveOb-

jectSimulator at the point where the operation to obtain the new value of a point on the

surface should be placed. This simple implementation procedure using both simulations

produces Architectural Performance Models that are flexible enough for experimenta-

tion, easy to understand and modify, with a high potential for reuse.

6.3.4 Operation

Executing the Architectural Performance Model means executing the code of a Coordi-

nation Simulation together with several instances of Components Simulations. Already,

the Coordination Simulation execution have produced a particular response time (TCoord-

Sim, see Section 4.3.2) due to the flow of data through the coordination structure, which

only distributes and exchanges data (see Section 6.1). Furthermore, from this execution,

it is possible to obtain the performance parameters (λ and Q, see Section 7.3.1) required

for the simulation within each instance of Component Simulation. 

On the other hand, instances of the Component Simulation are used to simulate the

time taken by sequential processing components (see Section 6.2). The simulation results

produced only represent the time taken by each sequential software component, and they

Figure 6.8 The Architectural Performance Model described in terms of 

the Architectural Description of Software.
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are used to calculate the response time (TCompSim, see Section 4.3.2) due to a simulated

execution of the sequential parts of the parallel program.

Thus, executing the Architectural Performance Model is like executing a representa-

tion (which executes the coordination and simulates the processing) of the prospective

real parallel program. Measurements from this model can be operated and used, then, to

obtain performance estimates of the execution of such a real parallel program. This issue

is explained in the following Chapter 7.

6.3.5 Example: CSE and the Two-dimensional Wave Equation

Continuing the example based on the Two-dimensional Wave Equation, its Architectural

Performance Model is implemented. As it is mentioned in Section 6.3.3, the implementa-

tion of the Architectural Performance Model consists of inserting in the code of the class

TwoDWave a call to the method Simulate() of the class ActiveObjectSimulator, at the

point where the operation to obtain the new value of a point on the surface should be

placed. Hence, an invocation to the code for the Component Simulation, using the class

ActiveObjectSimulator and the class Markovian, is inserted into the skeleton of code

provided by the Coordination Simulation for the CSE pattern, in order to simulate the

processing behaviour of sequential software components.

Notice that the Architectural Performance Model is developed based on the supposi-

tion of considering that communication and processing are activities sharply separated

among coordination and processing components (see Sections 1.4 and 4.3.2). Our objec-

tive here is to test that such a supposition does not introduce a considerable error for per-

formance estimation. If this is so, then the Architectural Performance Model can

effectively considered as a scale-model, used to estimate the performance of a parallel

program with the proposed constraints (see Section 4.3.1).

During execution, the Coordination Simulation produces a particular flow of data

through the coordination structure, distributing data and requests for processing. Each

time data or requests are issued to a Component Simulation, this triggers its execution,

generating a statistical value of residence time (processing times plus expected queuing

delays). This value is considered as part of the total processing time of the parallel pro-

gram. However, there is still a problem for setting up the parameters lambda and mu for

the Component Simulations, so they can produce an adequate processing time. This

problem is addressed by observing certain characteristics and relations between these
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two parameters. The proposed solution is presented in the Architectural Performance

Model execution, in Chapter 7.

6.4 Summary

The Architectural Performance Modelling Method requires the construction of an Archi-

tectural Performance Model for parallel performance estimation. This model is com-

posed of two types of simulations: Coordination Simulation and Component Simulation.

The Coordination Simulation captures essential communication and coordination

aspects of the organisation of the parallel program. It is defined as a scale-model imple-

mentation of functional execution of a parallel application to the level of creation of

independent communicating software components, and the coordination among them.

During execution, the Coordination Simulation represents the set of interactions that

reflect the top-most organisation of communication and coordination level of the parallel

program In general, the Coordination Simulation is defined and constructed using the

information contained in a selected architectural pattern.

The Component Simulation represents a simple but useful form to simulate the time

behaviour of any sequential software component, based on the Active Object pattern,

and introducing elements of Queuing Theory for processing simulation. The Active

Object pattern is proposed as a structural base for the development of a Component Sim-

ulation, describing a sequential software component’s behaviour in terms of processing

and idling times. In order to introduce time parameters, the Component Simulation is

based on the implementation of a simple queuing structure. 

Finally, an Architectural Performance Model is implemented from inserting the code

implementation of the Component Simulation into the skeleton of code provided by the

Coordination Simulation. This way, both simulations can be executed together as a rep-

resentation of the parallel program to be simulated. The actual process of executing the

Architectural Performance Model to obtain performance estimations is presented in

Chapter 8.



191

Chapter 7

Performance Simulation

and Calculation

“Tous les Problèmes de Géométrie se peuvent facilement réduire a tels termes, qu’il

n’est besoin paraprés que de connoistre la longeur de quelques lignes droites, pour les

construire”

“Any problem in geometry can easily be reduced to such terms that a knowledge of

the lengths of certain straight lines is sufficient for its construction”

Descartes

After the Architectural Performance Model construction, the Architectural Performance

Modelling Method continues with two steps: the performance simulation, and the per-

formance calculation. The performance simulation is carried out by first executing the

Coordination Simulation, and second the Architectural Performance Model, for gather-

ing measurements from the coordination and data from the processing simulation. The

performance calculation uses such measurements and data in order to actually calculate

the performance estimates, as the final outcome of the Architectural Performance Model-

ling Method.

Again, both performance simulation and calculation activities are carried out based

on the supposition of considering that communication and processing activities are

sharply separated among software components (see Sections 1.4 and 4.3.3). The objec-

tive is to test that such a supposition does not introduce a considerable error for perform-

ance estimation. So, the Architectural Performance Modelling Method can effectively be

used to obtain the best performing architectural pattern by estimating the performance of

a parallel program, based on the description provided in Section 4.3.1.
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7.1 Performance Simulation

During performance simulation, the implementations of the Coordination Simulation and

the Architectural Performance Model are executed, so data and measurements can be

gathered for the performance calculation. The reasons for carrying out the performance

simulation in two steps are (a) to obtain the time required for coordination among com-

ponents from the Coordination Simulation, and (b) to solve the problem of obtaining the

simulation parameters (lambda and mu) for the Component Simulations.

During the performance simulation, and for a given configuration of the parallel sys-

tem, a single performance estimate is obtained by first executing the Coordination Simu-

lation, and second, executing the Architectural Performance Model. The following

sections present a description of each execution, as well as its outcome as part of the

Architectural Performance Modelling Method.

7.1.1 Coordination Simulation Execution

Executing the Coordination Simulation means exclusively to compile and run the code

of the Coordination Simulation. The Coordination Simulation execution is carried out

considering typical workload scenarios, which specify the number of operations to be

executed in response to pre-defined events, and the type and amount of data to be proc-

essed. Thus, a workload scenario also specifies the frequency with which those opera-

tions occur, representing the flow of data through a parallel program executing on a

particular platform. This makes it possible to measure from the Coordination Simulation

execution the actual time it takes to coordinate and communicate data among compo-

nents. This coordination time represents a lower bound on the response time due exclu-

sively to the coordination activity, along with initial indications of whether the proposed

architecture will meet performance goals.

During the Coordination Simulation execution, the code of the Coordination Simula-

tion is executed a number of times. From each execution, the time required for coordina-

tion among components and the arrival rate of requests to each component are measured.

By performing a number of executions, it is possible to statistically obtain an average

coordination time (TCoordSim) and an average arrival rate of requests to each coordination

software component (1/λ). TCoordSim is used later for performance calculation (see Sec-

tion 7.2.3), and 1/λ is used for obtaining simulation parameters for the Architectural Per-

formance Model execution (see Section 7.1.4).
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7.1.2 Example: CSE and the Two-dimensional Wave Equation

Continuing with the example using CSE and the Two-dimensional Wave Equation, this

section briefly describes the Coordination Simulation execution. The measurements

obtained from executing the CSE Coordination Simulation are shown: TCoordSim and 1/λ

are calculated, using a simple statistical procedure.

In this example, TCoordSim is considered as the lowest time required to execute a

CSE-based parallel program on the platform provided, due only to the partitioning and

communication activities among coordination components. Also, because the Coordina-

tion Simulation is executed using a particular data workload, the inter-arrival times

between request for operation can be measured per component, in which any processing

operations have to occur, and therefore, imply a limit for service times (see Section

7.1.4). Actually, the average inter-arrival time is commonly expressed as 1/λ, where λ is

the average arrival rate of messages per second.

For the Two-dimensional Wave Equation example, and using the CSE pattern, Table

7.1 summarises TCoordSim and 1/λ, obtained from experimenting and measuring on the

Coordination Simulation execution. Several measurements are taken for different

amounts of data (256×256, 304×304, and 336×336), executing on an available platform

of a JPVM environment (Ferrari, 1997; Geist et al., 1994) on a cluster of sixteen proces-

sors (computers), considering the execution on 1, 2, 4, 8, and 16 processors. The map-

ping relation between processes and processors is one process (software component) per

processor. The measurements are operated using the t-test statistical technique for small

samples (Weiss, 1999) considering samples of 10 executions and a confidence interval of

95%.

No. 

of 

Procs

256×256 304×304 336×336

TCoordSim

(milliseconds)

1/λ
(msecs.)

TCoordSim

(milliseconds)

1/λ
(msecs.)

TCoordSim

(milliseconds)

1/λ
(msecs.)

1 921120.2±1275.469 35.9±1.22 1441497±17270.65 35.3±1.33 2925767±19558.71 36.3±0.828

2 818376.5±1066.469 35.8±1.33 1407031±15504.74 35.9±1.384 2495871±20860.18 35.8±1.161

4 457638.4±816.729 34.7±1.09 801649.3±2082.392 35.7±1.628 1395761±19198.88 35.0±1.489

8 281449.7±1606.1 35.3±0.78 505780.6±2281.59 35.5±0.73 854484.7±1740.182 36.7±1.575

16 238785.5±2016.597 35.1±1.5 446920.7±2377.028 36.1±1.788 718673.6±2653.318 36.2±1.484

Table  7.1 Average coordination times and 1/λ values from the Coordination Simulation execution
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These TCoordSim and 1/λ (for each parallel configuration and data amount) are used

in the following sections for performance calculation and for setting up the Component

Simulations’ parameters during the Architectural Performance Model execution.

7.1.3 Architectural Performance Model Execution

Executing the Architectural Performance Model means to compile and run together the

code of the Coordination Simulation (representing coordination and platform compo-

nents) and several instances of Components Simulations (representing processing com-

ponents). Nevertheless, the objective of this execution is to observe and record the

probable execution time due only to sequential software components, which will have to

perform the processing, but are not actually available. Thus, executing the Architectural

Performance Model is like executing a kind of representation of the prospective real par-

allel program. Data and measurements from this execution can be used as performance

estimates of the execution of the sequential components of the real parallel program.

However, for the Architectural Performance Model execution, it is first necessary to

derive some parameters for the Component Simulations. For this, the average arrival rate

of requests (1/λ) from the Coordination Simulation execution is used along with infor-

mation from the selected architectural pattern to derive the parameters for each Compo-

nent Simulation. So, the Architectural Performance Model execution can be carried out a

number of times, in order to obtain the simulated processing times per sequential compo-

nent (tCompSim) that are used later to derive the simulated average processing time

(TCompSim). Finally, TCompSim is added to TCoordSim (obtained from the Coordination

Simulation execution, see Section 7.1.1), in order to calculate a single performance esti-

mate (T) (see Sections 4.3.3 and 7.2.3), as an average approximation of the time taken by

the parallel program execution given some constraints (see Sections 1.3 and 4.3.1).

7.1.4 Obtaining the Simulation Parameters for the Component Simulations

In the Architectural Performance Modelling Method, the time taken by each sequential

software component is simulated by a Component Simulation, which take into account

time parameters such as the mean arrival rate (λ) and the mean service rate (μ) (see Sec-

tions 6.2.2 and 6.2.3). In order to carry out a precise performance estimation, the method

requires parameter values for both λ and μ to be set up.
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In the case of λ, it has been pointed out that during Coordination Simulation execu-

tion, it is possible to measure the time intervals between requests for processing (1/λ)

that coordination components issue (see Section 7.1.1). Moreover, according to the cal-

culation of performance estimates (see Section 4.3.3), these time intervals are independ-

ent of the processing components, and in fact, represent “time slots” in which all

sequential processing activity has to be carried out (see Section 4.3.1). The average of all

these time intervals is actually 1/λ, and therefore, λ can be directly obtained from the

Coordination Simulation execution by measuring the interval times between requests

from the coordination components (see Section 7.1.1). Notice that such “time slots” are

actually provided by and dependent of the architectural pattern used.

In the case of μ, the procedure is not so simple, because at this stage there is no

sequential processing code, and thus, without information about the activity of process-

ing components, it is simply not possible to propose a value for μ beforehand. Neverthe-

less, as λ has already been obtained from measuring the Coordination Simulation, two

relations between μ and λ can be useful for restricting the set of values that can be con-

sidered as possible sequential processing times (see Section 6.2.2):

From the simple queue structure used for the Component Simulation implementation

(see Section 6.2.2), the relation λ < μ, guarantees that the activity of the processing struc-

ture is stable. In operational terms, this means that the processing component can safely

carry out its sequential processing activity, because it is able to provide a result before

another request is issued. If this is the case, then it means that the mean service time for

sequentially processing a request is less than the mean arrival time of the requests (this

is, ). This relation implies that any sequential processing activity should “fit” into

the available “time slot” between requests. If this is the case, this relation between λ and

μ ensures that the processing and communicating activities, in which a sequential soft-

ware component is involved, are independent from each other. In any other case, the

component would tend to indefinitely increase the queue of requests (if ) or

present an undefined activity (if ). Moreover, it may be obvious, but it seems
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μ
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necessary to state that any processing activity would produce a mean service time for

sequential processing, which is always greater than zero (this is, ).

From the previous analysis, two limits for the mean service time are set up for the

stable case: 

Thus, for the stable operation of the sequential processing component, the mean

service time for processing (1/μ) is always between zero and the average of time inter-

vals between requests (1/λ), which has been already measured from the Coordination

Simulation execution (se Section 7.1.1). This is an important result, because it means

that if stable processing is expected from a sequential software component, its processing

code should be made in such a way that its average processing time (1/μ) must not

exceed the time between request arrivals. Moreover, this average processing time 1/μ can

be manipulated through changing the granularity relation at the processing, coordination,

or platform layer of the parallel program. This is further explained in Section 8.4.

By now, given this relation between λ and μ, it is noticeable that it is always possible

to express  as a fraction of . Notice that this fraction is actually the given def-

inition of ρ (see Section 6.2.2). Multiplying each term of the relation by λ allows to

expresses the relation in terms of ρ as:

This means that the processing time of a sequential software component can be taken

into consideration by obtaining a value of ρ that is between 0 and 1, which means that μ

is always a fraction of λ. The problem now is to propose a value of ρ for the Architec-

tural Performance Model execution, such that the Component Simulations actually

reflect the behaviour of the sequential software components.

It is already known (see Section 6.2.2) that for any queuing system, the number of

messages in service or waiting for service at any moment (n) is a probabilistic function

of λ and μ. This means that it is not possible to know before the code is available how

much time a processing service requires to be completed, but actually, we know that it is

related to the number of messages in service or waiting for service in the queue. This

number of messages is related to another element of Queuing Theory: the average queue

length Q. Moreover, this average queue length Q is not arbitrarily chosen, but it can be

1
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observed and taken from the expected dynamic behaviour of the coordination, expressed

by the selected architectural pattern.

An expression for Q is found in terms of ρ from the expression of pn (see Section

6.2.2) as follows (Stone et al., 1975):

From this expression, a value of ρ can be obtained from Q:

By obtaining the number of Q messages in service or possibly waiting for service by

each sequential software component, it is possible to calculate a value of ρ. This value

represents an approximation that can be used to obtain potential values of μ, based on the

measured values of λ, for that sequential software component. The time taken to process

a service, then, is only a fraction of the time between requests, and also depends on the

number of requests issued during such a period of time. Furthermore, the average queue

length Q is the number of messages that arrive to a processing component at any time

Q npn
0 n ∞<≤
∑=

1 ρ–( ) nρn

1 n ∞<≤
∑=

ρ 1 ρ–( ) nρn 1–

1 n ∞<≤
∑=

ρ 1 ρ–( )
ρd

d ρn( )
1 n ∞<≤
∑=

ρ 1 ρ–( )
ρd

d ρn

1 n ∞<≤
∑

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ρ 1 ρ–( )
ρd

d ρ
1 ρ–
------------

⎝ ⎠
⎛ ⎞=

Q
ρ

1 ρ–
------------=

Q
ρ

1 ρ–
------------=

Q 1 ρ–( ) ρ=

Q Qρ– ρ=

Q ρ Qρ+=

Q 1 Q+( )ρ=

ρ Q

1 Q+
-------------=



198

during execution, and depends on the way the coordination components cooperate, and

therefore, depends on the architectural pattern selected.

In summary, we can obtain the parameters λ and μ for the Component Simulations

by:

• measuring λ from the Coordination Simulation execution, considering the interarrival

time between requests as 1/λ, and

• observing from the dynamic behaviour of the architectural patterns the average queue

length Q as the number of messages in service or waiting for service in each process-

ing component. Using this value, a probable ρ is calculated and used to obtain μ 

Both simulation parameters λ and μ are used by the Component Simulations during

the Architectural Performance Model execution.

7.1.5 Example: CSE and the Two-dimensional Wave Equation

In this section, the simulation parameters λ and μ are obtained by continuing with the

example of the Two-dimensional Wave Equation. From the Coordination Simulation

execution, using the interval times between requests (1/λ) in Table 7.1, the value of λ for

each configuration and amount of data is obtained.

The value of μ is obtained by considering , or, in terms of the actual Com-

ponent Simulation parameters, mu = ρlambda. At this point, the task is to find an

approximation to the value of ρ, in such a way that the Component Simulations actually

simulate the behaviour of the processing components. Analysing the interaction diagram

in the Dynamics section for a two-dimensional case of the CSE pattern (see Figure 5.7 in

Section 5.2.10), observe that for each processing component (the participants of this

architectural pattern) the average queue length Q should be at least four messages at any

time. These four messages represent the data exchange between neighbouring compo-

nents, which have to be performed before any processing is started (see Section 6.1.5).

The rationale is as follows: if less than three message arrive, the sequential element can-

not continue its normal operation; if more than four messages arrive, this means that

there is a problem with the coordination, which is not operating as it should be.

Considering a normal operation, at least four messages are in service or waiting for

service during the execution of the Coordination Simulation. Thus, the approximate

value of ρ for this coordination structure is as follows:

μ λ ρ⁄=

ρ Q

Q 1+
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This means that from the total time between requests (1/λ) to a sequential software

component, and since at most 4 messages can be in service or waiting for service, the

total service time (1/μ) could be at most 4/5 of 1/λ for such a component. The rest of the

time, the component remains idle (see Section 4.3.1). So, using this approximation value

of ρ for the Architectural Performance Model execution, the simulated processing times

per each sequential component (tCompSim) are obtained, considering the different cases of

data size, number of processors, and number of software components. These times are

used in the performance estimate calculation to obtain the average processing time

TCompSim, as described in the next step of the Architectural Performance Modelling

Method.

7.2 Performance Estimate Calculation

The performance estimate calculation consists of taking the average coordination times

(TCoordSim) measured from the Coordination Simulation execution, and adding them with

the average processing times (TCompSim) simulated in the Architectural Performance

Model execution (see Section 4.3.3). Nevertheless, in order to carry out this operation, it

is necessary to calculate TCompSim from the simulated processing times per each sequen-

tial component (tCompSim) of the parallel program.

7.2.1 Calculating the simulated average processing time (TCompSim)

The calculation of the simulated average processing time (TCompSim) from the simulated

processing times per each sequential component (tCompSim) requires further clarification.

Obviously, the way in which TCompSim is calculated depends on the selected architectural

pattern, since the distinction among architectural patterns is based on the form in which

each pattern distributes and allows the execution of the sequential processes that com-

pose the parallel program (see Sections 4.3.1 and 5.2.3). Moreover, the selected architec-

tural pattern imposes how and how many requests for service arrive to each sequential

component, since it is used to develop a coordination which distributes and communi-

cates among the sequential components (see Sections 2.1, 4.3.1, 5.2 and 5.2.3). Notice

that both these actions depend on the classification of the Architectural Patterns for Par-

allel Programming, regarding the type of parallelism they exhibit (see Section 5.2.7).

Hence, the calculation of TCompSim depends on the order of data and operations that
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describe each architectural pattern:

• Functional Parallelism. Architectural Patterns based on a functional parallelism

approach base the simultaneous execution of their sequential software components on

the overlapping of sequential actions. Both, Pipes and Filters (see Section 5.2.8) and

Parallel Hierarchies (see Section 5.2.9), depend on allowing simultaneous execution

of operations on different data items. Thus, based on such a description, the following

expression is proposed for calculating TCompSim from the simulated processing times

of a kth sequential component (tCompSim-k):

where  represents the ith simulated processing time of the kth sequen-

tial component. The sum of the n simulated processing times provides of a representa-

tion of the time for sequential execution (the only kind of execution at the processing

component level, see Section 2.3.2) of the kth component. Such kth component is

selected from the set of N sequential software components, by considering the

sequential component whose sum of simulated processing times is the maximum

value. So, it is considered that this kth component is a representative of the worst case

for functional parallelism, in which the performance of the whole parallel process is

as fast as its slowest component (Ortega-Arjona & Roberts, 1998a).

• Domain Parallelism. Communicating Sequential Elements is the only domain paral-

lelism Architectural Pattern (see Section 5.2.10), and it is based on the simultaneous

execution of its sequential software components performing the same sequential

action on different pieces of data. Hence, the calculation of TCompSim from a simulated

processing time of a kth sequential component (tCompSim-k) for the CSE pattern is

expressed as:

where  represents the maximum simulated processing time of the kth

sequential component, which is obtained from the set of all simulated processing

times of all N sequential software components. Commonly, due to the defined behav-

iour of this pattern, the coordination and synchronisation of sequential components

yield that the sum of simulated processing times of a given sequential software com-

TCompSim ti( )
CompSim k–

i 1=

n
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ti( )
CompSim k–

TCompSim timeSteps tCompSim k–( )=

tCompSim k–( )
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ponent tend to have a very similar value. Hence, the approach here is to consider that

all simulated processing times have the same magnitude, equal to the longest tComp-

Sim-k, which reflects the worst case representation of the sequential execution (the

only kind of execution at the processing component level, see Section 2.3.2) (Ortega-

Arjona & Roberts, 1998a; Ortega-Arjona, 2000) of such a kth component. Notice that,

in the case of domain parallelism, the total sum of the simulated processing times

depends on the number of time steps (timeSteps) that the sequential components are

allowed to carry out their operations. However, since we are considering only one

simulated processing time for the worst case, a simplification is possible in which it is

only necessary to multiply the simulated time tCompSim-k by the number of time steps.

• Activity Parallelism. Architectural Patterns that expose activity parallelism are based

on the simultaneous overlapping execution of their sequential software components

on different data. Manager-Workers (see Section 5.2.11) and Shared Resource (see

Section 5.2.12) organise their sequential software components so they simultaneously

and independently execute their operations on different data items. Based on such a

description, the following expression is proposed for calculating TCompSim from the

simulated processing times of a kth sequential component (tCompSim-k):

where  represents the ith simulated processing time of the kth sequen-

tial component. As with functional parallelism, the sum of the n simulated processing

times provides of a representation of the sequential execution (the only kind of execu-

tion at the processing component level, see Section 2.3.2) of the kth component. This

kth component is chosen from the set of N sequential software components, consider-

ing to be the sequential component whose sum of simulated processing times results

the maximum value. Hence, this simulated processing time of the kth component rep-

resents the worst case for executing simultaneous operations. So, commonly the per-

formance of the whole parallel process is initially considered as fast as its slowest

component (Ortega-Arjona & Roberts, 1998a). Nevertheless, notice that in activity

parallelism, a sequential software component is allowed to execute its operations on

different data a certain number of times (timeSteps). So, such a worst case execution is

considered to be sequentially carried out a number of times, increasing the time for

TCompSim timeSteps ti( )
CompSim k–
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sequential execution. This is reflected in the expression by multiplying the sum of the

n simulated times by the number of times such kth sequential software component

executes.

7.2.2 Calculating TCompSim for the Two-dimensional Wave Equation

The Architectural Performance Model developed for the Two-dimensional Wave Equa-

tion is executed, and the simulated processing times are obtained and stored into a file, so

they can be used to calculate the average processing times (TCompSim). The simulated

processing times are obtained executing the Architectural Performance Model on a clus-

ter of sixteen computers, considering each time 1, 2, 4, 8, and 16 processors, and differ-

ent amounts of data (256×256, 304×304, and 336×336). Notice that, as part of the

Architectural Performance Model, each Component Simulation model is set to use a 1/μ

value derived from the 1/λ values obtained from measuring the coordination simulation

(see Table 7.1) and Q = 4/5 (see Section 7.1.5). Table 7.2 shows the values of TCompSim

obtained from the simulated processing times.

For this example, the calculation of TCompSim depends on the order of data and oper-

ations that describe the CSE pattern (see Section 5.2.10), as it is explained above. So,

calculating TCompSim depends on the maximum simulated processing time of the kth

sequential component . Using this value, TCompSim is statistically obtained

for the different combinations of number of processors and amounts of data. 

7.2.3 Calculating estimates of the Total Execution Time

A single performance estimate is a time value that represents an approximation to the

No. of 

Processors

256×256 304×304 336×336

TCompSim

(milliseconds)

TCompSim

(milliseconds)

TCompSim

(milliseconds)

1 1125715.4±20157.9 2662864±22889.97 3256332±17300.12

2 563161.2±2354.831 1335341±23620.32 1622570±15311.73

4 281639.8±1737.596 665380.5±2668.964 812512.8±2558.968

8 141131.2±2739.212 332583.2±2540.849 496460.5±2896.881

16 70707.5±2358.05 166357.1±2395.897 203565.3±1738.195

Table 7.2 Average (simulated) processing times from the Architectural Performance 

Model execution

tCompSim k–( )
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total execution time for a given and particular configuration of the parallel system in

question. As the result of the Architectural Performance Modelling Method, it is finally

calculated by adding the average coordination time (TCoordSim) and the simulated aver-

age processing time (TCompSim). Let T be one approximation of the total execution time

for a given and particular configuration of the parallel system in question. In the Archi-

tectural Performance Modelling Method, T is defined from the expressions for Coordina-

tion Simulation time and Component Simulation time as follows (see Section 4.3.3):

This expression considers and contains the contributions of each one of the groups of

components (platform, coordination, and processing, see Section 2.3.2), and it is used

for the final performance estimate calculation. Nevertheless, all the time values for TCo-

ordSim and TCompSim are probabilistic values (see Section 4.3.1), so such addition should

be carried out using the following statistical sum expression (Weiss, 1999):

This mathematical expression takes into consideration our basic supposition that the

coordination and processing times are the probabilistic values (or more precisely, param-

eters) of two independent populations (Weiss, 1999).

The Architectural Performance Modelling Method concludes with this step, produc-

ing performance estimates that are obtained from the Coordination Simulation execution

and the Architectural Performance Model execution.

7.2.4 Calculating estimates T for the Two-dimensional Wave Equation

For the example of the Two-dimensional Wave Equation, the performance estimate cal-

culation is carried out for each configuration and amount of data. The result is a set of

performance estimates, as approximations to the performance behaviour of the real par-

allel program. Table 7.3 shows the results of adding TCoordSim (from Table 7.1) and

TCompSim (from Table 7.2), for each parallel configuration proposed.

7.3 Summary

This chapter presents the two steps of the Architectural Performance Modelling Method:

the performance simulation and the performance calculation. The performance simula-

T TCoordSim TCompSim+≈

T TCoordSim TCompSim+( ) σCoordSim

2 σCompSim

2
+( )±≈
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tion is actually the execution of the simulations and model obtained in the previous step,

in order to gather data and make measurements. The performance calculation takes such

data and measurements, and actually calculates the performance estimates as the final

outcome of the Architectural Performance Modelling Method.

Nevertheless, now it arises the question whether the Architectural Performance

Modelling Method actually obtains performance estimates that are approximations to the

execution times of a real implementation of the parallel program executing on the paral-

lel hardware, and based on the organisation described by the same architectural pattern.

Hence, it is required to evaluate the Architectural Performance Modelling Method

against what it is supposed to model, this is, the real parallel program (see Section 4.3.1).

In order to do this, a statistical procedure is carried out between the obtained estimates

and measurements of the execution time from the real parallel program. This is discussed

and shown in the following Chapter 8.

No. of 

Processors

256×256 304×304 336×336

T

(milliseconds)

T

(milliseconds)

T

(milliseconds)

1 2046835.6±20254.79 4104361±39803.13 6182099±36194.96

2 1381537.7±2956.032 2742371±38290.13 4118442±35692.21

4 739278.2±2418.911 1467030±4610.96 2208274±21593.9

8 422580.9±4281.527 838363.8±4743.892 1260945±4336.072

16 309493±4226.21 613277.8±4703.481 922238.9±4130.285

Table 7.3 Average total execution times (estimates) for the Two-dimensional Wave 

Equation
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Chapter 8

Evaluation of the Method

“E cosi’ si possono fare un numero infinito di esperimenti. E plasmare le propie

regole.”

“And thus you can make an infinite number of experiments. And form your rule.”

Leonardo Da Vinci.

This chapter presents an evaluation of the Architectural Performance Modelling Method

for identifying the best performing architectural pattern by estimating the performance of

a parallel program that behaves as described in Section 4.3.1. First, some considerations

and assumptions are defined for the evaluations. Second, the performance estimates of

the Architectural Performance Modelling Method are evaluated for the Two-dimensional

Wave Equation example. Third, the method is evaluated for the early selection of an

architectural pattern, when comparing potential parallel solutions. Three experimental

examples are used to compare three different architectural patterns. Finally, some con-

clusions, a comparison with the related work (presented in Chapter 3), an evaluation of

the cost, and an analysis of applicability of the method in the general case are discussed.

8.1 Considerations and Assumptions for the Evaluations

The objective of this evaluation is to verify if the Architectural Performance Modelling

Method produces estimates that are accurate enough to describe the performance behav-

iour of a parallel software system. More precisely, the aim is to verify how accurate the

estimates are, when compared with the actual performance values measured from the

real parallel software system. The objective is to test if the method provides an accepta-

ble accuracy. Remember that our basic consideration is that processing and communica-

tion are activities sharply separated among coordination and processing components (see

Sections 1.4 and 4.3.2). Even though this may not be always the case, our objective in

this research work is to prove that such a supposition does not introduce a considerable
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error for performance estimation. So, the scale-models developed using the Architectural

Performance Modelling Method can effectively be used to estimate the performance of a

parallel program with the proposed constraints (see Section 1.3).

In all the evaluations presented here, some considerations and assumptions have

been taken in order to reduce their complexity and make them easier to be understood.

Such considerations and assumptions are derived from the basic constraints: the method

has as input (a) given parallel hardware and software resources, and (b) an architectural

pattern that describes the overall coordination of the parallel program (see Section 1.3):

• Architectural Performance Models and real parallel programs are executed using the

Java Parallel Virtual Machine (JPVM) standard (Ferrari, 1997; Geist et al., 1994).

Low-level hardware details such as memory hierarchies and the topology of the proc-

essor interconnection network are considered to be solved by the JPVM environment,

executing on a cluster of computers.

• Time measurements and observations on the Coordination Simulation execution and

the Architectural Performance Model execution are carried out using the method Sys-

tem.currentTimeMillis(), available from the libraries of the Java programming

language (Smith, 2000; Hartley, 1998). This method actually reads the time stamp of

the hardware real time clock, allowing to measure overall execution times of the sim-

ulation and the real program, when executing on the given cluster platform.

8.2 Evaluating the Architectural Performance Modelling 

Method for the Two-dimensional Wave Equation

8.2.1 Execution Time

For the Two-dimensional Wave Equation problem, the evaluation is carried out by com-

paring the estimates of the Architectural Performance Modelling Method (see Section

7.2.4) against real average execution times. So, in order to do this, an implementation of

the real parallel program has to be created. As the process to obtain and develop a coor-

dination based on the selection of an architectural pattern for parallel programming (see

Sections 5.2.3, and 5.3) is the same as that used as part of the method (see Section 4.3.3),

it would be redundant to start the whole process once more. Hence, we use the Coordina-

tion Simulation already coded, only replacing the Component Simulations by real

processing components. This way, the real program is executed a number of times, so the
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real average execution time can be statistically obtained from the measured execution

times. For the Two-dimensional Wave Equation problem, Tables 8.1, 8.2, and 8.3 present

the numerical values of the performance estimates, and compares them with the real

average execution times, obtained from the real parallel system.

Figure 8.1 shows a graphical comparison of the estimates and the real average exe-

cution times.

No. of 

Processors
Estimate

(ρ = 0.75)

(milliseconds)

Real System

(milliseconds)

1 2046835.6±20254.79 2046886±3771.24

2 1381537.7±2956.032 1380765±15508.46

4 739278.2±2418.911 738850.1±1368.391

8 422580.9±4281.527 422684.5±2293.336

16 309493±4226.21 309678.6±1748.871

Table  8.1 Performance estimates and real average execution times for the 

Two-dimensional Wave Equation example (using a 256×256 array).

No. of 

Processors
Estimate

(ρ = 0.75)

(milliseconds)

Real System

(milliseconds)

1 4104361±39803.13 4104664±19475.29

2 2742371±38290.13 2742885±9524.33

4 1467030±4610.96 1466505±23778.03

8 838363.8±4743.892 838641.2±2255.117

16 613277.8±4703.481 613625.6±2359.494

Table  8.2 Performance estimates and real average execution times for the 

Two-dimensional Wave Equation example (using a 304×304 array).

No. of 

Processors
Estimate

(ρ = 0.75)

(milliseconds)

Real System

(milliseconds)

1 6182099±36194.96 6181554±16267.74

2 4118442±35692.21 4117611±21311.85

4 2208274±21593.9 2207884±13553.03

8 1260945±4336.072 1259470±13176.48

16 922238.9±4130.285 922352.3±2774.776

Table  8.3 Performance estimates and real average execution times for the 

Two-dimensional Wave Equation example (using a 336×336 array).
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Figure 8.1 Comparisons between performance estimates and real average execution times 

for the Two-dimensional Wave Equation problem. 
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Graphically, from Figure 8.1 is clear that all performance estimates and real average

execution times are not distinguishable. Hence, it is necessary to carry out a further sta-

tistical comparison, in order to evaluate how accurate the method is. Thus, for compari-

son purposes, the error between each estimate and each real average execution time is

obtained, using a t-test criteria (Weiss, 1999). Tables 8.4 shows the errors between per-

formance estimates and real average execution times. Each error is calculated for a con-

fidence interval of 95%, using the expression:

where  and  are the means of the samples,  is the superior percen-

tile point α/2 of the t distribution with n1+n2-2 degrees of freedom, n1 and n2 are the

sample’s sizes, and  is an estimate of the common variance  calculated

by:

where  and  are the individual sample variances.

A statistical test t0 commonly used to compare two sets of samples is (Montgomery,

1991): 

In order to use this statistical test, it is necessary to compare the value of t0 with the t

distribution with n1+n2-2 degrees of freedom, allowing a decision on whether the equiv-

alence between the performance estimates and real average execution times should not

be considered significant. The equivalence should be rejected if:

The use of this procedure is justified by Montgomery (1991). In this example, the supe-

rior percentile point for a confidence interval of 95% (  = 0.025) of the t distribution

with  degrees of freedom is t0.025,18 = 2.101.
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Notice that the range between the best and the worst estimates is about 44.5 millisec-

onds (for the smallest error) to 1474.9 milliseconds (for the largest error). From this

observation, we conclude that for the present example, the estimates are actually a close

representation of the real average execution times. However, from the statistical compar-

ison, some estimates have to be rejected, since they do meet the rejection criteria. The

rejected estimates are those whose t0 value is marked with (*). As a result, from a total of

15 comparisons, 3 results should be rejected. That is, there is actual equivalence in 80%

of the experiments. Therefore, the Architectural Performance Modelling Method pro-

duces representative performance estimates of the real parallel program’s average execu-

tion times. The conclusion from this example is that they can be used to support

performance modelling during early parallel software design.

8.2.2 Speed-up and Efficiency

From the results obtained in the previous section between performance estimates and

real execution times, in this section the values for speed-up and efficiency are derived as

further measures of the performance analysis for the Two-dimensional Wave Equation

example. Such measures are commonly calculated from the execution times in order to

analyse the performance of a parallel program as the number of processors increase (see

Section 2.1.5). Tables 8.5, 8.6, and 8.7 present the values of speed-up and efficiency for

the estimates and the real time measures for the Two-dimensional Wave Equation, using

respectively two-dimensional arrays of 256×256, 304×304, and 336×336.

No. 

of 

Procs

256×256 304×304 336×336

Error

(milliseconds)
t0

Error

(milliseconds)
t0

Error

(milliseconds)
t0

1 50.4±130.8094 0.1619 302.5±205.469 0.6186 545.5±193.2962 1.1858

2 772.7±114.6744 2.8314* 513.8±184.5345 1.1699 830.7±201.4888 1.7324

4 428.1±51.9353 3.4637* 525±142.1913 1.5514 389.2±158.2128 1.0337

8 103.6±68.4291 0.6362 277.4±70.6019 1.651 1474.9±111.6793 5.5494*

16 185.6±65.2334 1.1955 347.8±70.9238 2.0606 113.4±70.1264 0.6795

Table  8.4 Errors between the estimates and real average execution times, and values of their 

statistical test t0 for the Two-dimensional Wave Equation example
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Figure 8.2 shows the comparisons between the speed-up and efficiency for the esti-

mates and real average execution times for the Two-dimensional Wave Equation prob-

lem.

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.4828±0.016 1.4824±0.016 74.1422±0.8 74.1214±0.8

4 2.7704±0.0065 2.7704±0.0065 69.2596±0.1614 69.2592±0.1614

8 4.8429±0.0248 4.8426±0.0248 60.536±0.3105 60.5323±0.3105

16 6.6102±0.0359 6.6097±0.0359 41.3135±0.2246 41.3107±0.2246

Table  8.5 Speed-up and efficiency values for estimates and real time execution times for the Two-

dimensional Wave Equation example (using a 256×256 array).

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.4966±0.0077 1.4965±0.0042 74.8323±0.3856 74.8238±0.2096

4 2.7977±0.0189 2.7989±0.033 69.9434±0.4713 69.9736±0.8257

8 4.8957±0.021 4.8944±0.0115 61.1960±0.2622 61.1796±0.1437

16 6.6925±0.0179 6.6892±0.0119 41.8281±0.1121 41.8073±0.0746

Table  8.6 Speed-up and efficiency values for estimates and real time execution times for the Two-

dimensional Wave Equation example (using a 304×304 array).

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.5012±0.005 1.5013±0.006 75.0584±0.251 75.0655±0.298

4 2.7998±0.0121 2.7999±0.0127 69.9944±0.3029 69.9983±0.3177

8 4.9027±0.0124 4.9091±0.0421 61.2832±0.1554 61.3633±0.5264

16 6.7033±0.0146 6.702±0.0179 41.8955±0.0913 41.8876±0.1119

Table  8.7 Speed-up and efficiency values for estimates and real time execution times for the Two-

dimensional Wave Equation example (using a 336×336 array).
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From Figure 8.2, it is noticeable that, graphically, no difference is perceptible

between estimates and real times. Hence, the comparison has to be carried out using the

same statistical procedure based on a t-test criteria (Weiss, 1999) as in the previous sec-

tion. The errors between the speed-up and efficiency for each estimate and each real

average execution time are obtained. Thus, Tables 8.8 shows the errors between the

speed-up values of the performance estimates and real average execution times, whereas

Table 8.9 shows the errors between the efficiency values of the performance estimates

and real average execution times.

Figure 8.2 Comparisons between speed-up and efficiency for the estimates and real aver-

age execution times for the Two-dimensional Wave Equation problem. 
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From both, Tables 8.8 and Table 8.9, it can be observed that there is no value for t0

greater than 2.101, which (in terms of the t-test criteria) means that the speed-up and effi-

ciency produced by the Architectural Performance Model are statistically similar to the

actual speed-up and efficiency of the real parallel system. The performance analysis

based on obtaining speed-up and efficiency for the Architectural Performance Model

reinforces the fact that this model can be used as a representative performance estimates

of the real parallel program’s average execution times. Both, speed-up and efficiency of

the model can be used as a complementary criteria for selecting a parallel solution

among several potential solutions, as it is presented in the following sections.

8.3 Evaluating the Architectural Performance Modelling 

Method for Comparing Architectural Patterns

In this section, another evaluation is proposed for the Architectural Performance Model-

ling Method. The objective of this evaluation is to show the application of the method for

No. 

of 

Procs

256×256 304×304 336×336

Speed-up

Error
t0

Speed-up

Error
t0

Speed-up

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0013±0.1465 0.0037 0.0004±0.0921 0.0018 0.0001±0.0884 0.0007

4 0.0016±0.1616 0.0041 0.0025±0.1922 0.0056 0.0002±0.133 0.0005

8 0.002±0.2583 0.0032 0.0011±0.1521 0.003 0.0064±0.1971 0.0137

16 0.0059±0.3114 0.0079 0.0031±0.1459 0.009 0.0013±0.1522 0.0035

Table  8.8 Errors between the speed-up values of estimates and real average execution times, and 

their respective statistical test t0 for the Two-dimensional Wave Equation example

No. 

of 

Procs

256×256 304×304 336×336

Efficiency

Error
t0

Efficiency

Error
t0

Efficiency

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0642±1.0357 0.0261 0.0196±0.6511 0.0127 0.0071±0.6253 0.0048

4 0.0395±0.8078 0.0206 0.0642±0.9611 0.0281 0.0039±0.6648 0.0024

8 0.0248±0.9133 0.0114 0.0133±0.5377 0.0104 0.0801±0.6968 0.0483

16 0.0366±0.7785 0.0198 0.0195±0.3647 0.0225 0.0079±0.3804 0.0088

Table  8.9 Errors between the efficiency of estimates and real average execution times, and their 

respective statistical test t0 for the Two-dimensional Wave Equation example
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selecting a parallel solution among several potential solutions, using performance esti-

mates as the comparative criteria. Each potential solution is based on a different architec-

tural pattern. 

To evaluate the Architectural Performance Modelling Method for comparing poten-

tial solutions, the following steps are taken:

1. Obtaining the Performance Estimates. For each architectural pattern, the Architec-

tural Performance Modelling Method is applied, and the performance estimates are

obtained for different configurations of the parallel system.

2. Comparative Analysis. By comparing the performance estimates for different config-

urations, it is possible to select the architectural pattern that presents the most ade-

quate solution.

3. Validating the Comparative Analysis. The comparison is validated by developing the

real parallel programs, obtaining the real average execution times, and checking if the

pattern with the best performance using real average execution times is also the

selected pattern by comparing performance estimates.

In order to show the Architectural Performance Modelling Method applied for

selecting a parallel solution using performance estimates as the comparative criteria,

three examples are used, developing three potential solutions for each one. Each poten-

tial solution is based on a different architectural pattern.

The codes implementing the Coordination Simulation as a framework programmed

using the Java programming Language (Smith, 2000; Hartley, 1998) using a JPVM envi-

ronment (Ferrari, 1997; Geist et al., 1994) on a cluster of sixteen processors, executing

on 1, 2, 4, 8, and 16 processors. A brief description of the used frameworks is presented

in Appendix A.

8.3.1 Example of Comparing Architectural Patterns — The Matrix Multipli-

cation Problem

The experimental example, developed for the Matrix Multiplication problem (Hoare,

1978; Andrews, 1991; Freeman & Phillips, 1992; Foster, 1994; Kleiman, et al., 1996;

Hartley, 1998; Andrews, 2000), is described as follows.
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Problem Description 

The Matrix Multiplication problem is to calculate the product of two square matrixes A

and B, with n rows and n columns each one. This requires computing n2 inner products,

one for each combination of row and column (Foster, 1994). Let us consider a specific

case, in which the product C = AB is obtained for two square matrixes A and B with 512

rows and 512 columns each. The parallel program is to be developed and executed into a

JPVM environment (Ferrari, 1997; Geist et al., 1994), on a cluster of sixteen computers

(see Section 8.1).

Algorithmic Solution for the Matrix Multiplication problem

The elements of the matrix product C are obtained using the algorithm shown in Figure

8.3 (Andrews, 1991). The matrix product can be computed in parallel since the inner

products are disjoint. This algorithmic solution may not be the optimal one, but it is a

good enough example to evaluate the Architectural Performance Modelling Method. 

The CSE Solution for the Matrix Multiplication

A solution to the Matrix Multiplication problem is proposed based on the CSE pattern

(see Section 5.2.10). The strategy is that all data is distributed among a group of commu-

nicating elements. Communications between neighbouring elements are restricted to the

exchange of data only (Figure 8.4).

In order to use the CSE pattern for solving the Matrix Multiplication problem, every

element of the matrix C is computed by assigning a set of rows from matrix A and a set

of columns from matrix B to each communicating element. Each communicating ele-

ment is then responsible for computing the product elements of matrix C that involve

these two sets of rows and columns. Finally, after all computations are finished, results

are gathered and ordered to represent the product matrix C. Such an implementation is

based on Cannon’s algorithm (Freeman & Phillips, 1992).

Figure 8.3 Pseudocode for the matrix multiplication computation

for i = 1:n, j = 1:n;
C[i,j] = 0;
for k = 1:n;

C[i,j] = C[i,j]+A[i,k]*B[k,j];
end

end
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The MW Solution for the Matrix Multiplication

Matrix Multiplication is a problem that exhibits characteristics of order of data and a reg-

ular homogeneous computation, and therefore, its parallel solution could be based on the

MW pattern (see Section 5.2.11). The main idea is that all data is divided by the manager

into smaller pieces that can be handled by the workers. The only communication allowed

is that between each worker and the manager, receiving or sending data (Figure 8.5).

This parallel solution simply divides the operation into inner products. The manager

is in charge of distributing the rows of matrix A among the workers, and each worker has

a complete copy of matrix B. The solution goes through each worker computing all inner

products per a single row in matrix A, returning the result to the manager, and requesting

if there are more rows to be multiplied. The key to efficiency is to limit the part of matrix

Figure 8.4 The Communicating Sequential Elements Solution to the Matrix Multiplica-

tion problem

Figure 8.5 Manager-Workers solution to the Matrix Multiplication problem
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B that has to be looked at to carry out the multiplication. Once processing is finished, the

manager is sent the results by the workers (Kleiman, et al., 1996). 

The PF Solution for the Matrix Multiplication

Another solution to the Matrix Multiplication problem is proposed, based on the PF pat-

tern (see Section 5.2.8). This architectural pattern takes advantage of the overlapping of

operations through time, in which all data is operated by each filter, producing intermedi-

ate results as output. Pipes make sure that the output of a filter is used as the input of the

next filter, allowing the flow of data through the filters (Figure 8.6).

Taking advantage of operation overlapping in this solution, each filter is defined so it

has a complete copy of matrix B, and receives the rows of matrix A. The solution goes

through each filter computing all inner products per a single row in matrix A. Since these

inner products are disjoint, every filter can operate locally, overlapping operations to

simultaneously obtain different inner products. Finally, after finishing all filter opera-

tions, every filter has stored a group of intermediate results that represent the product of

the two square matrixes (Andrews, 2000).

Obtaining the Performance Estimates 

Applying the Architectural Performance Modelling Method, the performance estimates

for each potential solution are obtained. Table 8.10 presents the numerical values of the

performance estimates for different configurations, and for different values of ρ. This

Figure 8.6 Pipes and Filters Solution for the Matrix Multiplication problem
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value is obtained from observing the behaviour of the parallel software coordination (see

Section 7.1.4). The numerical values of the performance estimates are statistically calcu-

lated using the t-test technique for small samples (Weiss, 1999; see also Section 8.2) of

10 executions and a confidence interval of 95%.

Comparative Analysis

Figure 8.7 shows a graphical comparison of the estimates of the three solutions for the

Matrix Multiplication, based on CSE, MW, and PF. Each graph represents the estimated

times for each model executing on different configurations of a cluster of computers with

1, 2, 4, 8, and 16 processors. 

From observing the performance estimates in Table 8.10 and their representation in

Figure 8.7, notice that the solution based on MW produces the shorter time estimates for

Matrix Multiplication. Even though the solutions based on CSE and PF can also be used

No. of 

Processors

Communicating 

Sequential Elements

(ρ = 0.66)

(milliseconds)

Manager-Workers

(ρ = 0.75)

(milliseconds)

Pipes and Filters

(ρ = 0.75)

(milliseconds)

1 18027959±90084.63 9906419±219400.7 13647634.7±63424

2 11991416±202470.5 5838507±54682.24 8039670±208346

4 6450871±99412.9 3320815±100411.5 4596345±253389.7

8 3677507.7±70343.4 1779525±294748 2530492±190842

16 2693465.3±76162.06 1169512±124073.2 1810181±172642.6

Table  8.10 Performance estimates for the Matrix Multiplication problem (with matrices 

of 1024×1024 elements), using different architectural patterns.

Figure 8.7 Comparison of the estimated times of the three solutions for the Matrix Multi-

plication problem
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to carry out Matrix Multiplication, the estimates obtained by these solutions are in every

case larger than the MW solution. The reason for this is that even though the CSE and PF

solutions produce the same processing effect, they require larger times for communicat-

ing and coordinating their components. It is clear that both CSE and PF solutions do not

represent a viable solution for Matrix Multiplication.

For every configuration, the estimates of the MW solution are always smaller

because this solution has less communication overhead by data exchange, and this is

reflected by the performance estimates. Therefore, the MW solution is considered as the

most viable candidate for solving Matrix Multiplication, using the available resources of

a JPVM environment on a cluster of sixteen computers.

Validating the Comparative Analysis

To validate the comparative analysis, the real parallel programs are implemented, and the

real average execution times for each architectural pattern are statistically calculated,

measuring execution times. Table 8.11 presents the numerical values for the real average

execution times for different configurations.

Figure 8.8 shows the graphical comparison of the real average execution values.

Observe the similarity between the graphical representations of estimates and real aver-

age execution times in Figures 8.7 and 8.8. From Figure 8.8, the real average execution

times for solving the Matrix Multiplication show that the MW solution has the shortest

execution times. Even though there are differences between estimates and real average

execution times, analysing both groups of values leads to the same conclusion: the MW

solution is the best option for Matrix Multiplication, using the available resources of a

JPVM environment on a cluster of sixteen computers. The relationships among the per-

formance estimates for CSE, MW and PF are mostly preserved among the real average

execution times for each parallel program based on the same patterns.

Furthermore, comparing the values in Table 8.10 and Table 8.11, it can be observed

that there are differences (errors) between the performance estimates and real average

execution times. For comparison purposes, the error between each estimate and each real

average execution time is obtained, using again the t-test criteria (see Section 8.2). Table

8.12 shows the error calculated between each performance estimate and each real aver-

age execution time, as well as the statistical test used to compare two sets of samples.
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The equivalence between estimates and real average execution times should be rejected,

with the conclusion that at the average level the values are different, if t0 > 2.0101.

No. of 

Processors
Communicating 

Sequential Elements

(milliseconds)

Manager-Workers

(milliseconds)

Pipes and Filters

(milliseconds)

1 18028684±125607.3 9907734±31214.72 13646605±52136.5

2 11991057±456307.4 5839202±48165.42 8041677±101541.1

4 6449274±60252.29 3320537±35616.13 4595789±55375.04

8 3677042±55153.66 1783757±95323.96 2533818±177565.8

16 2691156±64614.96 1170663±82602.59 1814142±103150.9

Table  8.11 Real average execution times for the Matrix Multiplication problem (with 

matrices of 1024×1024 elements), using different architectural patterns.

No. of 

Processors

Communicating Sequential 

Elements
Manager-Workers

Pipes and Filters

Error

(milliseconds)
t0 

Error

(secs.)
t0 

Error

(secs.)
t0 

1 724.6±391.9359 0.7769 1314.8±422.475 1.3077 1029.1±286.881 1.5073

2 359±684.9637 0.2202 694.5±270.642 1.0783 2007.3±469.785 1.7954

4 1597.3±337.212 1.9904 278±311.2516 0.3753 556.2±468.9341 0.4984

8 466±298.9612 0.655 4231.6±527.072 3.3736∗ 3325.5±512.227 2.728∗

16 2309.5±316.638 3.0649∗ 1150.2±383.656 1.2598 3961.8±443.190 3.7563∗

Table  8.12 Errors between the estimates and real average execution times, and values of

their statistical test t0 for the Matrix Multiplication problem.

Figure 8.8 Comparison of the execution times of the three real parallel programs for the 

Matrix Multiplication
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Notice that in this example, most of the calculated errors are small enough (between

359 milliseconds and 4231.6 milliseconds). This means that the estimates are close val-

ues to the real average execution times. However, some equivalencies have to be

rejected, since they meet the rejection criteria. The rejected results are those experiments

whose t0 value is marked with (*). From a total of 15 experimental results, 4 should be

rejected. That is, there is actual equivalence between performance estimates and real

average execution times in 73.33% of the experiments. Therefore, in this case, the con-

clusion is that the Architectural Performance Modelling Method produces representative

performance estimates of a real parallel program’s average execution times, and it can be

used to support performance modelling during early parallel software design.

Speed-up and Efficiency

In order to compare the performance estimates and real execution times, in this section

the values for speed-up and efficiency (see Section 2.1.5) are derived as measures of the

performance analysis for the Matrix Multiplication problem. Tables 8.13, 8.14, and 8.15

present the values of speed-up and efficiency for the estimates and the real time meas-

ures for the Matrix Multiplication problem, based respectively on CSE, MW, and PF.

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.6972±0.0424 1.6971±0.016 84.8369±2.1189 84.8381±0.798

4 2.9831±0.1413 2.9845±0.0285 74.5782±3.5324 74.5944±0.7128

8 5.5669±0.9632 5.5527±0.3067 69.5861±12.0396 69.4303±3.8341

16 8.4706±0.7485 8.4672±0.6303 52.941±4.6784 52.896±3.9394

Table  8.13 Speed-up and efficiency values for estimates and real execution times for the Matrix 

Multiplication problem using MW.

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.5034±0.0279 1.5035±0.0509 75.1703±1.3962 75.1755±2.5469

4 2.7947±0.0449 2.7955±0.0306 69.8664±1.1225 69.8865±0.7662

8 4.9022±0.0995 4.903±0.0804 61.2778±1.2436 61.288±1.0047

Table  8.14 Speed-up and efficiency values for estimates and real execution times for the Matrix 

Multiplication problem using CSE.
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Figure 8.9 shows the speed-up achieved by the different solutions based on MW,

CSE, and PF for the estimates and real average execution times when solving the Matrix

Multiplication problem. On the other hand, Figure 8.10 shows the efficiency of the dif-

ferent solutions based on MW, CSE, and PF for the estimates and real average execution

times when solving the Matrix Multiplication problem.

From the graphical comparisons in Figures 8.9 and 8.10, the speed-up and efficiency

for MW, CSE, and PF are extremely similar. Nevertheless, to ensure a statistical similar-

ity, an error analysis using the t-test criteria (Weiss, 1999) is carried out between the

speed-up and efficiency for each estimate and each real average execution time. Table

16 6.6932±0.2036 6.6992±0.173 41.8326±1.2722 41.8702±8.1006

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.6975±0.0413 1.697±0.0217 84.8768±2.0659 84.8493±1.0844

4 2.9692±0.1631 2.9694±0.0318 74.2309±4.0776 74.2343±0.7955

8 5.3933±0.3914 5.3858±0.4083 67.4159±4.8926 67.3224±5.1035

16 7.5394±0.6956 7.5223±0.3808 47.1211±4.3478 47.0147±2.3801

Table  8.15 Speed-up and efficiency values for estimates and real execution times for the Matrix 

Multiplication problem using PF.

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

Table  8.14 Speed-up and efficiency values for estimates and real execution times for the Matrix 

Multiplication problem using CSE.

Figure 8.9 Speed-up of the performance estimates and real execution times for the Matrix 

Multiplication problem using different parallel solutions based on MW, CSE, and PF. 
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8.16 shows the errors between the speed-up values of the performance estimates and real

average execution times, whereas Table 8.17 shows the errors between the efficiency

values of the performance estimates and real average execution times.

Notice that in both tables there is no value for t0 greater than 2.101, which means

that in speed-up and efficiency terms, the Architectural Performance Model produces

No. 

of 

Procs

MW CSE PF

Speed-up

Error
t0

Speed-up

Error
t0

Speed-up

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0001±0.2038 0.0003 0.0035±0.237 0.0062 0.0024±0.2118 0.0048

4 0.0079±0.3478 0.0095 0.0002±0.232 0.0004 0.02±0.3726 0.0226

8 0.3393±0.951 0.1499 0.001±0.3579 0.0011 0.0092±0.7547 0.0051

16 0.0855±0.991 0.0362 0.0022±0.5179 0.0018 0.1209±0.8756 0.058

Table  8.16 Errors between the speed-up values of estimates and real average execution times, and 

their respective statistical test t0 for the Matrix Multiplication problem.

No. 

of 

Procs

MW CSE PF

Efficiency

Error
t0

Efficiency

Error
t0

Efficiency

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0065±1.4413 0.0019 0.1756±1.6758 0.044 0.1204±1.4979 0.0338

4 0.1975±1.7388 0.0477 0.0052±1.15977 0.0019 0.5012±1.8629 0.113

8 4.2415±3.3623 0.5301 0.012±1.2654 0.004 0.1154±2.6682 0.0182

16 0.5342±2.4774 0.0906 4.1268±2.5836 0.6712 0.7556±2.189 0.1451

Table  8.17 Errors between the efficiency of estimates and real average execution times, and their 

respective statistical test t0 for the Matrix Multiplication problem.

Figure 8.10 Efficiency of the performance estimates and real execution times for the 

Matrix Multiplication problem using different parallel solutions based on MW, CSE, 

and PF. 
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values completely similar to the actual speed-up and efficiency of the real parallel sys-

tem. So, the speed-up and efficiency information obtained from the model is a represent-

ative of the speed-up and efficiency of the real system. This means that by only using the

information from the model, it is possible to have a criteria to select an architectural pat-

tern.

8.3.2 Example of Comparing Architectural Patterns — A Prime Numbers 

Sieve

A second example is presented to compare three different architectural patterns for solv-

ing the Prime Numbers Sieve problem (Hoare, 1978; Andrews, 1991; Nevison et al.,

1994; Hartley, 1998; Andrews, 2000).

Problem Description

The Prime Numbers Sieve problem is to find all primes less than or equal to a given tar-

get number (Nevison et al., 1994). The parallel program is to be developed and executed

using a JPVM environment (Ferrari,1997; Geist et al., 1994) on a cluster of sixteen com-

puters (see Section 8.1).

Algorithmic Solution for a Prime Numbers Sieve problem

An algorithm to find the prime numbers less than or equal to a target number tests each

candidate number to see if it is prime by dividing it by all primes smaller than its square

root. The division by composite numbers is not needed, since every composite number

has prime factors; also, the division by primes greater than the square root is not needed,

since such a factor would have a corresponding factor less than the square root. Thus, all

the primes less than a given target are tested by first finding all primes less than the

square root, and then, testing all numbers by dividing out by these primes. This is done

sequentially for a serial algorithm. Also, using the knowledge that all even numbers

greater than two are composite, only odd numbers are considered as input (Nevison et

al., 1994; Hartley, 1998). In this algorithm, each test of a candidate value is independent

of any checks of other candidates. Conceptually, many of the tests can be done in parallel

(Hoare, 1978; Nevison et al., 1994).
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The CSE Solution for the Prime Numbers Sieve 

A potential solution to the Prime Numbers Sieve problem can be based on the CSE pat-

tern (see Section 5.2.10). The strategy is that all available data is divided among a group

of communicating elements, which are able to exchange data through channels.

The CSE solution for solving the Prime Numbers Sieve problem uses data distribu-

tion, by dividing the set of odd numbers into subsets, and assigning each subset to a com-

municating element (Figure 8.11). Each communicating element searches for local

candidates in its assigned subset. However, to improve the efficiency of the search, if an

element finds a new prime number, it communicates this result to all other elements.

Finally, the set of all prime numbers less or equal to the target number is found after all

searches are finished.

The MW Solution for the Prime Numbers Sieve

Another potential solution to the Prime Numbers Sieve problem is based on the MW pat-

tern (see Section 5.2.11). This pattern takes advantage of the characteristics of a regular

homogeneous computation, so all data is divided and assigned by the manager to a group

of workers. Each worker can only receive and send data to the manager (Figure 8.12).

Solving the Prime Number Sieve problem using the MW pattern, the set of odd num-

bers to test is passed by the manager to the workers. Each worker goes on testing its sub-

set of numbers, and each time it finds a prime number, sending the result to the manager.

Figure 8.11 The Communicating Sequential Elements Solution to the Prime Numbers 

Sieve problem
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When all workers have finished testing their assigned subset of numbers, the manager

has the set of all prime numbers found.

The PF Solution for the Prime Numbers Sieve

The computations required by the Prime Numbers Sieve problem present characteristics

of order of data and a regular homogeneous computation, so its solution can be devel-

oped using the PF pattern (see Section 5.2.8). The main strategy is to allow a data flow

from one filter to another, each of which carries out a part of the computation (Figure

8.13).

Figure 8.12 The Manager-Workers Solution to the Prime Numbers Sieve problem

Figure 8.13 Pipes and Filters Solution for the Prime Number Sieve problem
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Each filter tests the data stream, eliminating those values that it divides evenly. For

finding a prime number, all the previous prime numbers will be assigned to the previous

filters, and are therefore passed through. Each filter searches for a prime, or a group of

primes, and after that point, the filter starts checking each number as it passes through.

The effect of the test is to pass the number on to the next filter if it is not evenly divisible

by the prime tested on this filter. However, the algorithm avoids a division step and takes

advantage of the fact that the stream of candidate numbers is increasing. Thus, as long as

the candidate number is less than the current odd multiple of the prime, it is passed on.

When a candidate number exceeds the test value, the test value is increased to the next

odd multiple of the prime, and the process continues until all input odd numbers have

been tested (Hoare, 1978; Andrews, 1991; Nevison, et al., 1994; Andrews, 2000).

Obtaining the Performance Estimates 

Applying the Architectural Performance Modelling Method, the performance estimates

for different configurations and for observed values of ρ are shown in Table 8.18. Again,

this value is obtained from observing the behaviour of the parallel software coordination

(see Section 7.1.4). Each estimate is calculated using the t-test technique (Weiss, 1999;

see also Section 8.2) for small samples considering samples of 10 executions and a con-

fidence interval of 95%.

Comparative Analysis

Figure 8.14 shows a graphical comparison of the estimates of the three solutions for the

Prime Numbers Sieve, based on CSE, MW, and PF. Each graph represents the estimated

times for each model executing on different configurations of a cluster of sixteen com-

puters, with 1, 2, 4, 8, and 16 processors.

Observing the performance estimates in Table 8.18 and their graphical representa-

tion in Figure 8.14, it is noticeable that in most cases the PF solution gives the lower esti-

mates for carrying out the proposed Prime Numbers Sieve algorithm. However, in some

cases the CSE and MW solutions produce lower estimates than the PF solution for a

small number of components. From considering this, the CSE and MW solutions would

represent viable solutions for solving the Prime Numbers Sieve problem. However, the

PF solution tends to produce lower estimate values as the number of processing compo-

nents increase. The reason is that the PF solution requires less communications between
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components, because it exploits the characteristic of order among prime numbers that the

CSE and MW solutions do not consider. As the number of components increase, the

overhead due to communication in the PF solution tends to decrease faster than in the

CSE or MW solutions. Therefore, the conclusion is that for larger numbers of processing

components, the PF solution seems to be the best candidate for solving the Prime Num-

bers Sieve problem, using the available resources of a JPVM environment on a cluster of

sixteen computers.

Validating the Comparative Analysis

The real parallel programs are implemented, and the real average execution times for

each architectural pattern are statistically calculated to validate the comparative analysis.

No. of 

Processors

Communicating 

Sequential Elements

(ρ α No. Procs)

(milliseconds)

Manager-Workers

(ρ = 0.66)

(milliseconds)

Pipes and Filters

(ρ = 0.5)

(milliseconds)

1 12244482±39162.79 13319844±42475.6 10081013±120019

2 8158154±44012.72 8331713±29993.41 5933422±32018.78

4 4370036±35794.46 4594682±33024.68 3363190±42588.2

8 2502092±38833.4 2422643±40605.26 1922279±8193.58

16 1832465±38886.78 1628265±17751.85 1383901±28542.74

Table  8.18 Performance estimates for the Prime Numbers Sieve problem (for 1048576 

primes), using different architectural patterns.

Figure 8.14 Comparison of the estimated times of the three solutions for the Prime Num-

bers Sieve problem
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Table 8.19 shows the numerical values of the real average execution times for different

configurations.

Figure 8.15 shows the graphical comparison of these execution values. Comparing

the performance estimates and the real average execution times shown in Figures 8.14

and 8.15, there is a strong similarity. Based on this similarity, a comparative analysis can

be carried out using the real average execution times. From Figure 8.15, notice that in

most cases the PF solution has the shorter execution times for solving the Prime Num-

bers Sieve problem. Again, considering performance properties of the different solutions

for solving the Prime Numbers Sieve problem, CSE and MW solutions represent viable

solutions. However, as it is the case with the estimates, the PF solution tends to produce

shorter execution times as the number of processing components increase. Based on this

observation, a similar conclusion to that obtained from the performance estimates can be

drawn from analysing the execution times. Again, for larger numbers of processing com-

ponents the PF solution is the most viable solution for solving the Prime Numbers Sieve

problem using the available resources of a JPVM environment on a cluster of sixteen

computers. The relationships among the performance estimates for CSE, MW and PF are

preserved among the real average execution times for each parallel program based on the

same patterns.

Comparing the values in Table 8.18 and Table 8.19, differences (errors) are observed

between the performance estimates and real average execution times. The error between

each estimate and each real average execution time is obtained, again using the t-test cri-

teria (see Section 8.2). Table 8.20 shows the error calculated between each performance

estimate and each real average execution time, as well as the statistical test t0 used to

No. of 

Processors
Communicating 

Sequential Elements

(milliseconds)

Manager-Workers

(milliseconds)

Pipes and Filters

(milliseconds)

1 12245581±138019.8 13321116±222773 10082070±24857.3

2 8156974±123741 8331034±16601.1 5932584±23430.17

4 4368366±174610.1 4594617±27185.35 3363697±12061.68

8 2500831±15980.34 2423165±13763.41 1923410±20759.17

16 1830680±14195.66 1626502±16499.58 1383763±22591.46

Table  8.19 Real average execution times for the Prime Number Sieve problem (for 

1047586 primes), using different architectural patterns.
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compare two sets of samples. The equivalence between estimates and real average exe-

cution times should be rejected if t0 > 2.101.

In this example, most of the calculated errors show are between 64.7 milliseconds

and 1785.4 milliseconds, which means that the estimates are close to the real average

execution times. However, some equivalencies have to be rejected, since they meet the

rejection criteria. The rejected results are those experiments whose t0 value is marked

with (*). From a total of 15 experimental results, 4 should be rejected. That is, there is

actual equivalence between performance estimates and real average execution times in

73.33% of the experiments. Therefore, in this case, the conclusion is that the Architec-

tural Performance Modelling Method produces representative performance estimates of

No. of 

Processors

Communicating Sequential 

Elements
Manager-Workers

Pipes and Filters

Error

(milliseconds)
t0 

Error

(secs.)
t0 

Error

(secs.)
t0 

1 1099±355.2291 1.3 1272.8±434.635 1.2305 1057±321.216 1.3827

2 1180.3±345.648 1.4349 678.9±182.1652 1.566 838.4±198.7214 1.7728

4 1670.3±387.102 1.813 64.7±207.0773 0.1313 506.5±197.2843 1.0788

8 1261±197.5799 2.6818* 522.2±196.7761 1.1151 1131±143.5962 3.3096*

16 1785.4±194.434 3.8585* 1763±156.1843 4.7432* 137.7±190.8331 0.3032

Table  8.20 Errors between the estimates and real average execution times, and values of

their statistical test t0 for the Prime Numbers Sieve problem.

Figure 8.15 Comparison of the execution times of the three real parallel programs for the 

Prime Numbers Sieve problem
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the real parallel program’s average execution times, and it can be used to support per-

formance modelling during early parallel software design.

Speed-up and Efficiency

For comparison purposes, the values for speed-up and efficiency (see Section 2.1.5) are

obtained from the estimates and the real execution times of the Prime Numbers Sieve

problem. Tables 8.21, 8.22, and 8.23 respectively show the speed-up and efficiency for

the estimates and the real time measures using a solution based on CSE, MW, and PF.

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.5987±0.0027 1.599±0.0247 79.9346±0.1326 79.9488±1.2327

4 2.899±0.0127 2.8993±0.0399 72.4743±0.3167 72.4822±0.9982

8 5.4981±0.0739 5.4974±0.0746 68.7258±0.9243 68.7175±0.9328

16 8.1804±0.0985 8.19±0.08809 51.1274±0.6158 51.1878±0.5506

Table  8.21 Speed-up and efficiency values for estimates and real execution times for the Prime 

Number Sieve problem using MW.

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.5009±0.0038 1.5012±0.0143 75.0444±0.1923 75.062±0.7173

4 2.8019±0.0142 2.8032±0.0824 70.048±0.3538 70.081±2.0596

8 4.8937±0.0597 4.8966±0.0351 61.1712±0.7462 61.2076±0.4387

16 6.682±0.1183 6.6891±0.0421 41.7623±8.0394 41.8068±8.017

Table  8.22 Speed-up and efficiency values for estimates and real execution times for the Prime 

Numbers Sieve problem using CSE.

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.699±0.0267 1.6994±0.0058 84.9511±1.337 84.972±0.29

4 2.9975±0.0627 2.9973±0.0085 74.9364±1.5663 74.933±0.2123

8 5.2443±0.0738 5.2418±0.0615 65.5538±0.9225 65.5221±0.7683

Table  8.23 Speed-up and efficiency values for estimates and real execution times for the Prime 

Numbers Sieve problem using PF.
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The speed-up achieved by the different solutions (for the estimates and real average

execution times) is graphically shown in Figure 8.16. Also, the efficiency of the different

solutions is presented in Figure 8.17.

The comparisons between the graphics for speed-up and for efficiency show that

both measures are very similar. However to ensure this similarity, an statistical error

analysis between the speed-up and efficiency for each estimate and each real average

execution time is carried out using the t-test criteria (Weiss, 1999). Table 8.24 presents

the errors between the speed-up values of the performance estimates and real average

16 7.2845±0.1901 7.286±0.1012 45.5281±1.1879 45.5374±0.6328

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

Table  8.23 Speed-up and efficiency values for estimates and real execution times for the Prime 

Numbers Sieve problem using PF.

Figure 8.16 Speed-up of the performance estimates and real execution times for the Prime 

Numbers Sieve problem using different parallel solutions based on MW, CSE, and PF. 

Figure 8.17 Efficiency of the performance estimates and real execution times for the Prime 

Numbers Sieve problem using different parallel solutions based on MW, CSE, and PF. 
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execution times. Also, Table 8.25 presents the errors between the efficiency values of the

performance estimates and real average execution times.

There is no value for t0 greater than 2.101 in both tables. This means that in terms of

speed-up and efficiency, the Architectural Performance Model generates speed-up and

efficiency values extremely similar to the actual values obtained for the real parallel sys-

tem. So, the model can be effectively used to get speed-up and efficiency information

representative of the speed-up and efficiency of the real system. Hence, the model esti-

mates can be used as a selection criteria for choosing an architectural pattern.

8.3.3 Example of Comparing Architectural Patterns — The Heat Equation

Our last experimental example for comparing architectural patterns is based on the Heat

Equation problem (Freeman & Phillips, 1992; Geist et al., 1994; Ortega-Arjona, 2000).

Problem Description 

The Heat Equation problem is to calculate the heat diffusion through a substrate, using a

parallel program (Geist et al., 1994; Ortega-Arjona, 2000). Let us consider the simplest

case, in which the Heat Equation is used to model the heat distribution on a one-dimen-

sional body, a thin substrate, such as a wire (Figure 8.18). Different intervals expose a

different temperature, determining a particular distribution at different times. The heat

diffusion is obtained as data representing the way in which the temperature of each inter-

val varies through time, tending to increase or decrease depending on the exchange of

heat with other intervals (Ortega-Arjona, 2000). The parallel program is to be developed

and executed using a JPVM environment (Ferrari, 1997; Geist, et al., 1994), on a cluster

of sixteen computers (see Section 8.1).

Algorithmic Solution for the Heat Equation

Figure 8.18 Dividing the segments of a wire into intervals
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A simple method developed for deriving a numerical solution to the Heat Equation is the

method of finite differences (Geist et al., 1994; Ortega-Arjona, 2000). Consider the dis-

crete form for the one-dimensional heat equation: 

where i represents time steps and j indicates wire subintervals.

The numerical solution is now computed simply by calculating the value for each

interval at a given time frame, considering the temperature from both its previous and its

next intervals (Ortega-Arjona, 2000).

The CSE Solution for the Heat Equation

The algorithmic solution to the Heat Equation exhibits characteristics of order of data

and a regular homogeneous computation, and therefore, a parallel solution is likely based

on the CSE pattern (see Section 5.2.10). The main idea is that all data (representing the

No. 

of 

Procs

MW CSE PF

Speed-up

Error
t0

Speed-up

Error
t0

Speed-up

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0002±0.1395 0.0006 0.0006±0.1138 0.0024 0.0002±0.1522 0.0005

4 0.0001±0.1935 0.0001 0.0086±0.2622 0.0137 0.0017±0.2251 0.0032

8 0.0039±0.3253 0.0051 0.0006±0.2598 0.0009 0.0015±0.3104 0.002

16 0.0067±0.3646 0.0077 0.0011±0.3381 0.0013 0.003±0.4555 0.0027

Table  8.24 Errors between the speed-up values of estimates and real average execution times, and 

their respective statistical test t0 for the Prime Numbers Sieve problem.

No. 

of 

Procs

MW CSE PF

Efficiency

Error
t0

Efficiency

Error
t0

Efficiency

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0101±0.9861 0.0043 0.0325±0.8049 0.017 0.0091±1.0764 0.0036

4 0.0016±0.9677 0.0007 0.2141±1.311 0.0686 0.0432±1.1255 0.0161

8 0.0493±1.15 0.018 0.0069±0.9186 0.0032 0.0185±1.0974 0.0071

16 0.0416±0.9114 0.0192 0.0407±3.3816 0.0051 0.019±1.1387 0.0069

Table  8.25 Errors between the efficiency of estimates and real average execution times, and their 

respective statistical test t0 for the Prime Numbers Sieve problem.

A i 1+ j( , ) A i j( , )
tΔ

x
2Δ

-------- A i j 1+( , ) 2 A i j( , )( )– A i j 1–( , )+( )+=
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temperature of each subwire in the wire) is divided and assigned to a group of communi-

cating elements. Communications between neighbouring elements are restricted only to

the exchange of data representing temperatures at the boundaries (Figure 8.19).

The Heat Equation computation starts with simultaneous communications between

neighbouring elements. As many intervals of data are assigned to each communicating

element, only data from the boundaries must be exchanged through channels. After data

exchange is finished, each communicating element proceeds to operate on the data repre-

senting its subwire. Once all communicating elements have operated on all their data,

they write the results as an intermediate value representing the heat diffusion for that par-

ticular time step. The computation starts over again, repeating the communications and

operations using the intermediate result as input for the next time step. After finishing all

time step iterations, all intermediate results are grouped in order, representing the heat

diffusion in the wire through different time steps (Ortega-Arjona, 2000).

The MW Solution for the Heat Equation

Another solution to the Heat Equation is based on the MW pattern (see Section 5.2.11).

This architectural pattern also takes advantage of the characteristics of order of data and

a regular homogeneous computation. The main idea is that all data (representing the tem-

perature of each subwire in the wire) is divided by the manager into smaller pieces that

can be handled by the workers. Communications between workers is restricted: each

worker can only receive and send data to the manager (Figure 8.20).

In order to use the MW pattern for solving the Heat Equation, the computation is car-

ried out each time step, in which the manager divides the data representing the wire

among the workers, and these operate on their assigned subwire and return the results.

These results are grouped by the manager as an intermediate result for that time step,

which will be used as input for the next time step. After finishing all time step iterations,

Figure 8.19 The Communicating Sequential Elements Solution to the Heat Equation
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all intermediate results are grouped in order, representing the heat diffusion through the

wire in different time steps.

The PF Solution for the Heat Equation

A third solution to the Heat Equation is based on the PF pattern (see Section 5.2.8).

Compared to the two previous solution approaches, this architectural pattern takes

advantage of the overlapping of operations through time. The main idea is that all data

(representing the temperature of each segment in the wire) is operated on by each filter,

producing intermediate results as output for each time step. Pipes allow the flow of data

through filters, making sure that the output of a filter is used as the input of the next filter

(Figure 8.21). 

Figure 8.20 The Manager-Workers Solution to the Heat Equation

Figure 8.21 Pipes and Filters Solution for the Heat Equation
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In order to take advantage of operation overlapping in this solution, each filter is

defined so it operates on just a segment at a time, producing the intermediate result for

the present segment. However, once operated on, this intermediate result can be stored,

and communicated as input to the next filter, which can start producing the intermediate

result for the next time step. So, for solving the Heat Equation, the PF solution is based

on overlapping operations on segments rather than dividing all data among processing

components. Finally, after finishing all filter operations, every filter has stored a group of

intermediate results that represent the heat diffusion in the wire at each different time

step.

Obtaining the Performance Estimates 

The Architectural Performance Modelling Method is applied for the three architectural

pattern solutions, obtaining performance estimates. Table 8.26 presents the numerical

values of the performance estimates for different configurations, and for observed values

of ρ. As with the previous examples, this value is obtained from observing the behaviour

of the parallel software coordination (see Section 7.1.4). The estimates are collected by

using the t-test technique for small samples (Weiss, 1999; see also Section 8.2) consider-

ing samples of 10 executions and a confidence interval of 95%.

Comparative Analysis

Figure 8.22 shows the graphical comparison of the estimated times of the three solutions

for the Heat Equation problem, based on CSE, MW, and PF. Each graph represents the

estimated times for each model executing on a cluster of sixteen computers with 1, 2, 4,

8, and 16 processors.

No. of 

Processors

Communicating 

Sequential Elements

(ρ = 0.66)

(milliseconds)

Manager-Workers

(ρ = 0.75)

(milliseconds)

Pipes and Filters

(ρ = 0.75)

(milliseconds)

1 14681663±154282.5 16845451±146968 18397714±165363

2 9799680±30439.72 9930470±42506.48 10828290±125152

4 5250581±28988.61 5614518±34748.58 6146556±185295

8 2998637±30060.16 2954294±16221.33 3484603±96866.84

16 2199937±21909.73 1983324±12701.85 2481815±76766.57

Table  8.26 Performance estimates for the Heat Equation problem (with 65536 elements 

during 32 iterations), using different architectural patterns.



238

Observing the performance estimates in Table 8.26 and their representation in Figure

8.22, it is clear that for solving the Heat Equation, the CSE solution provides the shorter

time estimates, followed closely by the MW solution. PF can also be used to solve the

Heat Equation problem, but the estimates obtained suggest that this solution is slower

compared to the CSE or MW solutions. Even though the PF solution carries out the same

processing, its coordination organisation requires large times for communicating and

coordinating components. Noticing this, it is clear that PF would not be a viable solution

for the Heat Equation.

For every configuration, the estimates of the CSE solution are always less than the

estimates of the MW solution. However, the difference between the estimates from the

CSE solution and the MW solution is not very large. MW barely requires a little more

time to coordinate and communicate than CSE. The reason is the additional overhead

introduced by the extra communications due to data exchange between manager and

workers to produce each time step intermediate results. If these communications were

not needed, MW would represent a feasible potential solution. Nevertheless, as the per-

formance estimates are given for comparing the three potential solutions, the CSE solu-

tion seems to be the best candidate for solving the Heat Equation, using the available

resources of a JPVM environment on a cluster of sixteen computers.

Validating the Comparative Analysis

In order to validate the comparative analysis, the real parallel programs are implemented,

so the real average execution time for each architectural pattern are statistically obtained

Figure 8.22 Comparing the estimates of the three architectural patterns for the Heat 

Equation problem
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from measured execution times. Table 8.27 shows the numerical values for the real aver-

age execution times for different configurations.

Figure 8.23 shows the graphical comparison of the real average execution values. A

noticeable similarity can be observed between the graphical representations of the real

average execution times in Figure 8.23, and the performance estimates in Figure 8.22.

Moreover, a similar comparative analysis can be carried out either using the performance

estimates or the real average execution times. From Figure 8.23, for solving the Heat

Equation, the CSE solution again provides the shortest real average execution times, fol-

lowed by the MW solution. PF also shows a similar relationship with respect to the CSE

or MW solutions. Again, the result of these comparison shows that the CSE solution

seems to be the best candidate for solving the Heat Equation, using the available

resources of a JPVM environment on a cluster of sixteen computers. The relationships

among the performance estimates for CSE, MW and PF are preserved among the real

average execution times for each parallel program based on the same patterns.

From comparing the values in Table 8.26 and Table 8.27, differences (errors)

between the performance estimates and real average execution times can be observed.

For comparing each estimate and each real average execution time, the error between

them is obtained, using again the t-test criteria (see Section 8.2). In this criteria, two val-

ues are statistically compared by obtaining the difference between their means, and con-

sidering an adjustment for both confidence intervals (Weiss, 1999). Table 8.28 shows the

error calculated between each performance estimate and each real average execution

time, as well as the statistical test t0, used to compare two sets of samples. The equiva-

lence between estimates and real average execution times should be rejected, concluding

that at the average level the values are different, if t0 > 2.101.

No. of 

Processors
Communicating 

Sequential Elements

(milliseconds)

Manager-Workers

(milliseconds)

Pipes and Filters

(milliseconds)

1 14682749±104282.3 16844786±155274 18395446±165780

2 9799204±18906.37 9930628±11281.2 10830096±171361

4 5250047±20019.49 5613606±15007.76 6144707±8796.492

8 2998598±7068.558 2952807±25934.29 3487189±14680.95

16 2198400±15551.4 1983788±18733.36 2484508±17809.08

Table  8.27 Real average execution times for the Heat Equation problem (with 65536 

elements during 32 iterations), using different architectural patterns.
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Notice that most of the calculated errors range between 39.2 milliseconds and

2693.4 milliseconds. This means that the estimates are close values to the real average

execution times. However, some equivalencies have to be rejected, since they do meet

the rejection criteria. The rejected results are those experiments whose t0 value is marked

with (*). From a total of 15 experimental results, 4 should be rejected, resulting in an

actual equivalence between performance estimates and real average execution times in

73.33% of the experiments. Therefore, in this case, the conclusion is that the Architec-

tural Performance Modelling Method produces representative performance estimates of

the real parallel program’s average execution times, which can be used to support per-

formance modelling during early parallel software design.

No. of 

Processors

Communicating Sequential 

Elements
Manager-Workers

Pipes and Filters

Error

(milliseconds)
t0 

Error

(secs.)
t0 

Error

(secs.)
t0 

1 1086.1±429.123 1.0635 664.4±463.9552 0.6017 2267.5±485.631 1.962

2 475.9±187.4668 1.0667 158.1±195.7219 0.3394 1805.8±459.536 1.6512

4 534.3±186.8237 1.2017 912.2±188.2445 2.0362 1848.9±371.793 2.0896

8 39.2±162.6122 0.1013 1486.7±173.270 3.6054∗ 2585.2±281.856 3.8541∗

16 1537±163.3384 3.954∗ 464.2±149.6257 1.3036 2693.4±259.530 4.3608∗

Table  8.28 Errors between the estimates and real average execution times, and values of

their statistical test t0 for the Heat Equation problem.

Figure 8.23 Comparison of the real average execution times of the three parallel pro-

grams for the Heat Equation problem
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Speed-up and Efficiency

Tables 8.29, 8.30, and 8.31 present the values of speed-up and efficiency for the esti-

mates and the real time measures for the Heat Equation problem, based respectively on

CSE, MW, and PF.

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.6963±0.0188 1.6962±0.0145 84.817±0.9396 84.8123±0.7242

4 3.0003±0.0276 3.0007±0.0296 75.0085±0.6897 75.0177±0.74

8 5.702±0.03855 5.7047±0.079 71.2753±0.4819 71.3084±0.9879

16 8.4935±0.0866 8.4912±0.0278 53.0847±0.5414 53.0701±0.1736

Table  8.29 Speed-up and efficiency values for estimates and real execution times for the Heat 

Equation problem using MW.

No. of 

Processors Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.4982±0.0135 1.4984±0.011 74.9089±0.6763 74.9181±0.5515

4 2.7962±0.0311 2.7967±0.0233 69.905±0.7787 69.9172±0.5831

8 4.8961±0.053 4.8965±0.0374 61.2014±0.6629 61.2067±0.4673

16 6.6737±0.1169 6.6788±0.0813 41.7105±8.0365 41.7427±7.9857

Table  8.30 Speed-up and efficiency values for estimates and real execution times for the Heat 

Equation problem using CSE.

No. of 

Processors
Estimate

Speed-up

Real System

Speed-up

Estimate

Efficiency

(%)

Real System

Efficiency

(%)

1 1.0±0.0 1.0±0.0 100.0±0.0 100.0±0.0

2 1.699±0.029 1.6985±0.0299 84.9521±1.4497 84.9274±1.4959

4 2.9932±0.0764 2.9937±0.0277 74.8294±1.911 74.8427±0.6919

8 5.2797±0.1176 5.2752±0.0627 65.9964±1.4697 65.9394±0.7838

16 7.413±0.2849 7.4041±0.0452 46.3313±1.7804 46.2754±0.2826

Table  8.31 Speed-up and efficiency values for estimates and real execution times for the Heat 

Equation problem using PF.
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Figure 8.24 shows the speed-up achieved by the different solutions based on MW,

CSE, and PF for the estimates and real average execution times when solving the Heat

Equation problem. On the other hand, Figure 8.25 shows the efficiency of the different

solutions based on MW, CSE, and PF for the estimates and real average execution times

when solving the Heat Equation problem.

Comparing the speed-up and efficiency for MW, CSE, and PF from Figures 8.24 and

8.25, their behaviours are quite similar. However, it is not completely clear if they

present a similarity so the models can be considered representative of the real system.

Thus, to ensure similarity, an error analysis using the t-test criteria (Weiss, 1999) is car-

ried out between the speed-up and efficiency for each estimate and each real average

execution time. Table 8.32 shows the errors between the speed-up values of the perform-

ance estimates and real average execution times, whereas Table 8.33 shows the errors

between the efficiency values of the performance estimates and real average execution

times.

Figure 8.24 Speed-up of the performance estimates and real execution times for the Heat 

Equation problem using different parallel solutions based on MW, CSE, and PF. 

Figure 8.25 Efficiency of the performance estimates and real execution times for the Heat 

Equation problem using different parallel solutions based on MW, CSE, and PF. 
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From both tables it is noticeable that in the column for t0 in all cases there is no value

greater than 2.101. This means that in speed-up and efficiency terms, the Architectural

Performance Model produces values completely similar to the actual speed-up and effi-

ciency of the real parallel system. So, the speed-up and efficiency information obtained

from the model is a representative of the speed-up and efficiency of the real system. This

means that by only using the information from the model, it is possible to have a criteria

to select an architectural pattern.

8.4 Some Conclusions from the Experimental Examples

The objective of all the experimental examples is to evaluate whether the Architectural

Performance Modelling Method models the behaviour through time of a parallel soft-

ware system (as described in Section 4.3.1), that is, if it produces useful estimates to

describe the real performance behaviour of parallel software systems. If this is the case,

it can be used for identifying the best performing architectural pattern during the initial

stages of parallel software design, by estimating the performance of potential solutions

with different coordination organisations.

The evaluation results of the experimental examples show that the method produced

performance estimates very similar to the real average execution times obtained by run-

ning the actual program on the cluster computing environment. The main reason is that

the performance a parallel software system is able to achieve depends not only on the

parallel platform and the programming language used, but most importantly, it largely

depends on the organisation of the coordination among the several sequential processing

components that constitute such parallel software system. Such organisation is described

and developed based on the Architectural Patterns for Parallel Programming (see Chap-

ter 5), which in this thesis are used for developing models for performance estimation.

Notice that for each experimental example, the performance estimates obtained from

Architectural Performance Models generate curves exposing trends very similar to the

actual parallel program’s performance characteristics. Each curve obtained for each case

study can be considered as representing the probable performance behaviour of the par-

allel system. Thus, the Architectural Performance Models are actually “scale-models”

that describe the performance of parallel programs, and that allow early estimates about

their behaviour to be made. Once developed, such models can be subjected to appropri-
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ate assessments and tests, and refined as required (making further use of other software

patterns, when necessary).

An interesting conclusion is that the processing time of sequential software compo-

nents (at the processing layer) depends on the “slots” allowed by the time taken for exe-

cuting platform and coordination components. In a parallel program, such slots may be

varied through modifying the granularity: (a) at the level of processing components, by

changing the number of such components and their mapping into coordination compo-

nents; (b) at the level of coordination components, by changing the number of coordina-

tion components and their mapping into processors; and (c) at the level of platform

components, by changing the number of processors on which the parallel process takes

place (this last modification is the kind of changes we aim to avoid, see Section 1.2).

These three ways of modifying granularity are widely used in the parallel programming

practice to improve the performance of a parallel system, with specific constraints of

platform, language, and problem requirements. As the performance that a parallel pro-

gram is able to achieve using a particular hardware and software environment depends

No. 

of 

Procs

MW CSE PF

Speed-up

Error
t0

Speed-up

Error
t0

Speed-up

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0002±0.1539 0.0007 0.0002±0.1322 0.0007 0.0002±0.2048 0.0004

4 0.0003±0.2018 0.0006 0.0005±0.197 0.001 0.0046±0.2723 0.0071

8 0.0039±0.2894 0.0056 0.0001±0.2538 0.0002 0.0114±0.3583 0.0133

16 0.0029±0.2854 0.0042 0.0041±0.3757 0.0045 0.029±0.4849 0.0251

Table  8.32 Errors between the speed-up values of estimates and real average execution times, and 

their respective statistical test t0 for the Heat Equation problem.

No. 

of 

Procs

MW CSE PF

Efficiency

Error
t0

Efficiency

Error
t0

Efficiency

Error
t0

1 0.0±0.0 - 0.0±0.0 - 0.0±0.0 -

2 0.0122±1.0885 0.0047 0.0115±0.9351 0.0052 0.0108±1.4484 0.0031

4 0.0069±1.0091 0.0029 0.0114±0.9848 0.0049 0.1157±1.3615 0.0357

8 0.0483±1.0231 0.0198 0.0014±0.8972 0.0006 0.142±1.2669 0.0471

16 0.0178±0.7136 0.0105 0.1761±3.378 0.0219 0.1811±1.2121 0.0628

Table  8.33 Errors between the efficiency of estimates and real average execution times, and their 

respective statistical test t0 for the Heat Equation problem.
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on the organisation and communication among the sequential processing components,

and the Architectural Performance Modelling Method allows to perform these modifica-

tions on the Architectural Performance Model, then the method permits to test an verify

the result of applying such modifications on the performance of a prospective parallel

system.

The differences between performance estimates and real average execution times

mainly originate from the following causes:

• The Architectural Performance Modelling Method makes some assumptions to obtain

the general expression for total execution time of a parallel system (see Sections 4.3.1

and 4.3.2). These assumptions represent basic errors introduced between estimates

and real average execution times. The most relevant assumptions taken in this thesis

are: (a) a parallel program specifies simultaneous processing and communication

activities carried out by software components; (b) the given inputs for designing a

parallel program are the problem statement, the amount of data to be operated on, and

the parallel hardware and software resources available (c) the solution to the paralleli-

sation problem is not directly affected by the nature of the problem itself, but more

precisely, by the order and relation among instructions within the algorithm and/or

datum within the data; (d) processing and communication are activities sharply sepa-

rated among coordination and processing components of a parallel program; (e) soft-

ware components are prone to remain idle during periods of time due to the non-

deterministic parallel environment in which software components are executed; (f) the

time required to execute a parallel program ought to be described more likely as prob-

abilistic values, due to non-determinism; (g) a parallel program finishes only when all

the software components it specifies finish; (h) during execution, the state of each

software component of a parallel program is considered to be processing, communi-

cating, or idling; (i) a parallel program can be described in terms of Platform, Coordi-

nation and Processing components; (j) the performance of a parallel program mainly

depends on the time it takes for all its components to carry out coordinating or

processing activities; (k) coordination components spend most of their time coordinat-

ing and communicating data between processing components; (l) processing compo-

nents spend most of their time processing data; (m) the functionality of platform and

coordination components can be represented by a runnable implementation of an

architectural pattern, that only represents the coordination among major components
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on the parallel resources available; and (n) the functionality of processing components

can be simulated by statistical components.

• The technique for measuring is only as precise as allowed by the method Sys-

tem.currentTimeMillis()(Smith, 2000; Hartley, 1998). As the performance esti-

mates depend strongly on measuring the coordination, they also depend on the quality

and accuracy of the measuring technique used. The Java libraries use the hardware

real time clock, obtaining measurements in the order of milliseconds. Nevertheless,

this measurement is known to have a precision, producing certain small errors in the

final measurements (Hartley, 1998).

• In the Component Simulation, the class Markovian makes use of a random function

to produce the stochastic behaviour of processing components, attempting to model

the non-deterministic execution of actual pieces of code. However, values obtained by

simulation are only approximations: they are product of a modelling abstraction of the

stochastic sequential behaviour of real processing components. It is precisely for this

reason that the estimates are considered as accurate approximations, not exact predic-

tions, of the execution times of the real parallel program (see Section 1.3).

Another important issue to consider as part of the conclusions is the cost of develop-

ing the Architectural Performance Modelling Method against simply building the appli-

cation in several ways. The discussion here concentrates on the cost of effort, as this has

the most significant effect on general project costs (Sommerville, 1989).

At the beginning, the Architectural Performance Modelling Method gives the

impression to have a high cost of effort, since it uses simulation modelling for parallel

programming. Both activities, parallel programming and simulation modelling, represent

by themselves a considerable cost of effort (see Sections 2.1 and 3.1.2). In such a situa-

tion, the method does not seem to offer a better solution than simply building the applica-

tion in several ways.

Nevertheless, even though the Architectural Performance Modelling Method

requires working on parallel programming and simulation modelling, it supports Parallel

Software Design since: (a) as simulation modelling is carried out using simple queuing

systems, based on Markovian chains (see Section 6.2.2), once a simulation model has

been developed, it can be reused as necessary to simulate the behaviour of later sequen-

tial processing component, hence decreasing the cost of having to re-code the simulation

model; and (b) as parallel coordinations are based on the Architectural Patterns for Paral-
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lel Programming, their implementation within the Architectural Performance Modelling

Method can be reused in later problems with similar characteristics of algorithm order

and/or data access (see Sections 5.2.1 and 6.1.2), thus decreasing parallel design and

implementation costs. Moreover, since the Architectural Performance Modelling Method

is based on the Architectural Patterns for Parallel Programming, the experience gained in

parallel design and implementation as part of the method will prove valuable and useful

for later parallel applications, whose development will benefit from reusing both design

and implementation of parallel coordinations (see Section 5.2.3). 

Finally, building a parallel application in several ways normally tends to result in a

parallel program that yields incorrect results, or executes slower than its sequential coun-

terpart (see Section 2.1). In contrast, the Architectural Performance Modelling Method

provides a systematic guide to Parallel Software Design, since it is based on the layered

description of software architectures (see Section 2.3.2), in which the Architectural Pat-

terns for Parallel Programming are used for designing the coordination layer. This is

important, since the performance a parallel software system is able to achieve depends

on the organisation of the coordination among the several sequential processing compo-

nents that constitute such parallel software system. As a consequence, the Architectural

Performance Modelling Method obtains models that provide performance estimates of

the behaviour of a parallel software system. This information is valuable not only for the

present parallel application, but for other later parallel applications developed from an

architectural pattern, and using a given parallel platform and programming language (see

Sections 1.3 and 4.3). Therefore, the cost of using the Architectural Performance Model-

ling Method (a) is worth the effort for an actual parallel development, since it provides

information about the potential performance of a prospective parallel application; and (b)

tends to decrease for future parallel applications, in contrast with just building a parallel

application in several ways. The cost of the later approach is normally high, and eventu-

ally would require an extensive use of the “fix-it-later” approach, which we seek to avoid

(see Sections 1.1 and 1.2).

8.5 Comparison with Related Work on Software Architecture 

and Performance Modelling

In Chapter 3, various approaches are described as related work, ranging from general

methods to case studies. These approaches consider various types of performance mod-
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els and different architectural specifications from which such performance models are

derived. Also, in Chapter 3, several other approaches are also presented that generate

performance models for parallel and distributed systems. In the present section, the

Architectural Performance Modelling Method (APMM) is compared with all those

approaches, in order to expose their similarities and differences.

8.5.1 Deriving Models from Software Architecture Descriptions

Basically, APMM is defined as a method for deriving performance model from architec-

tural patterns as a regular software architecture description (see Sections 2.2.3, 4.3.3,

5.1.3, and 5.1.4). In general, all approaches presented in Chapter 3 develop performance

models (whether analytical or simulation) from a software architecture description. In

general, APMM is similar to almost all the described approaches (particularly, those

implementing performance simulation models) in the sense that they describe a method,

an algorithm, or a sequence of steps to develop performance models from a software

architecture description. 

Several approaches consider use cases (or similar representations) as software archi-

tecture descriptions from which performance models are derived. These approaches are

Jarvinen and Kurki-Sunio (1991), Luckham (1996), Smith and Williams (1997), Wil-

liams and Smith (1998), Menascé and Gomaa (1998), Balsamo, et al. (1998), Jonkers et

al. (1998), El-Sayed et al. (1998), Huber et al. (1998), Aquilani et al. (2000), Andolfi et

al. (2000), Petriu and Woodside (2002), Xiuping et al. (2003), Ayles et al. (2003), and

Gemund (2003). Most of the recent approaches consider the UML specification as a soft-

ware architecture description, and make use of various UML diagrams to derive informa-

tion to define and parameterise the performance model. These approaches are Arief and

Speirs (1999a), Arief and Speirs (1999b), Pooley and King (1999), King and Pooley

(1999), Pooley (1999), Kähkipuro (1999), Akenhurst and Waters (1999a), Akenhust et

al. (1999), Utton et al. (1999), Cortellesa and Mirandola (2000), Arief and Spiers (2000),

De Miguel, et al. (2000), Hoeben (2000), Arief (2001), Henning and Eckhardt (2001),

Gomaa and Menascè (2001), Kähkipuro (2001), Waters et al. (2001), Cortellesa and

Mirandola (2002), Gu and Petriu (2002), Lindermann, et al. (2002), Bernardi et al.

(2002), and Henning et al. (2003b). However, in these approaches, it is often considered

necessary to introduce additional information to the UML diagrams through simple

annotation or extensions, commonly based on stereotypes and tagged values, in order to
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complete the software architecture specification for deriving a performance model.

Finally, and as it is the case with APMM, some other approaches refer to architectural

patterns in order to develop performance models. These approaches are Petriu and Wang

(1999), Ortega-Arjona and Roberts (1999c), Gomaa and Menascè (2000), Petriu (2000),

and Petriu and Shen (2002).

Nevertheless, the APMM has the advantage over these approaches of basing its per-

formance estimations on the Architectural Patterns for Parallel Programming (Ortega-

Arjona & Roberts, 1998a), which are software patterns particularly developed for paral-

lel systems, and whose aim is to support the design of parallel software systems. Other

approaches develop performance models that have to be modified in order to deal with

several issues dependent of the parallel execution environment (like for example, non-

determinism), whereas the Architectural Patterns for Parallel Programming are devel-

oped expressly to express and deal with such issues.

8.5.2 Describing a Software Architecture as a Layered Composition

The APMM approach models a parallel application considering different types of models

(in a layered form) for describing processing, communication, and platform components

(see Sections 2.3.2, and 4.3).

Describing a Software Architecture as a layered composition of models is also the

case of many of the proposed methods, like Smith and Williams (1997), Williams and

Smith (1998), Menascé and Gomaa (1998), Huber et al. (1998), Jonkers et al. (1998),

Akenhurst and Waters (1999a), Akenhust et al. (1999), Utton et al. (1999), Petriu and

Wang (1999), King and Pooley (1999), Pooley (1999), Ortega-Arjona and Roberts

(1999c), Cortellesa and Mirandola (2000), Petriu (2000), Hoeben (2000), Andolfi et al.

(2000), Waters et al. (2001), Cortellesa and Mirandola (2002), Bernardi et al. (2002),

Xiuping et al. (2003), and Gemund (2003). The reason of such a similarity seems to be

that APMM, as all the other methods, is deeply influenced by the SPE methodology,

originally developed and introduced by C.U. Smith (Smith, 1990).

However, the APMM has the advantage that it attempts to confine all parallel design

decisions at the communication layer, solving parallel issues only at this level, and mak-

ing the design based on Architectural Patterns for Parallel Programming reusable

between applications. Moreover, the objective is to keep sequential code at the process-
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ing level, allowing the reuse of design at the communication layer as frameworks, repre-

senting the architectural patterns.

8.5.3 Simulation based on Queuing Models

The APMM simulates processing based on simple queuing models (see Section 6.2).

This is also the case of several approaches described as related work, which are based on

queuing models, and refer to a higher abstraction level that could make the feedback at

the software architecture design easier than with more detailed stochastic models. In par-

ticular, when software architecture components can be related to queuing components

(i.e., service centres or sub-networks), performance results of the performance models

can be directly interpreted at the software architecture design level. The approaches

based on simple queuing models like APMM are Menascé and Gomaa (1998), Balsamo,

et al. (1998), Pooley and King (1999), Kähkipuro (1999), Ortega-Arjona and Roberts

(1999c), Hoeben (2000), and Gomaa and Menascè (2001). 

About the use of derivations of queuing models, we have that: 

• Layered Queuing Networks (LQN) are used by El-Sayed et al. (1998), Petriu and

Wang (1999), Petriu (2000), Gu and Petriu (2002), Petriu and Shen (2002), Petriu and

Woodside (2002), and Xiuping et al. (2003); 

• Extended Queuing Networks (EQN) are used by Cortellesa and Mirandola (2000),

Aquilani et al. (2000), Gomaa and Menascè (2000), and Cortellesa and Mirandola

(2002); 

• Augmented Queuing Networks (AQN) are used by Kähkipuro (1999) and Kähkipuro

(2001).

Most of these approaches refer to the entire software life cycle, whereas some others

refer to the design specification stage. The later ones usually consider a formal behav-

ioural software specification modelled by Stochastic Petri Nets —like Botti and Capra

(1996), Jonkers et al. (1998), King and Pooley (1999), and King and Pooley (2000)— or

Stochastic Process Algebras —such as Pooley (1999) and Bernardo et al. (2000). Such

models integrate functional and non-functional aspects and provide a unique reference

model for software architecture specification and performance. However, from the per-

formance evaluation point of view, the analysis usually refers to the numerical solution

of the underlying Markov chain, which can easily lead to numerical problems due to

state space explosion. Moreover, from the software designer point of view, it is not clear
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a direct and easy interpretation of the numerical performance results in terms of software

architecture design. The APMM attempts to solve these problems by considering a sharp

separation between communicating and processing activities. This separation simplifies

the calculation of the average total execution time, which can be obtained as presented in

Section 7.2.3. The average total execution time obtained is interpreted as a representative

value of the time a solution based on a particular architectural pattern takes to execute on

a certain parallel platform, and implemented using a certain parallel language.

8.5.4 Queuing Models based on Markov Chains

Just as it is the case with APMM (see Section 6.2), many approaches use Markovian and

semi-Markovian chains for modelling purposes as the underlying analytical model of the

simulation queuing models. These approaches are Pooley and King (1999), Pooley

(1999), Ortega-Arjona and Roberts (1999c), Bernardo et al. (2000), Gomaa and Menascè

(2000), and Lindermann, et al. (2002). A common issue of APMM and these approaches

is that they all require parameters for the Markovian and semi-Markovian chain. Never-

theless, all the approaches report to have problems deriving their parameters. Hence,

they propose three forms to address this problem:

• promoting feedback from one execution to another, i.e. use parameter information

from experimenting with the models; 

• supposing a behaviour through time of the components, and deriving parameter val-

ues from such a description (as it is the case with APMM, see Section 7.1.4), and;

• leaving the parameter definition to an expert modeller.

As different types of models are used for describing processing, communication, and

platform components, APMM obtains simulation estimates (see Section 7.2.3) by com-

bining communications and processing values obtained from measuring (see Section

7.1.1) and observed values (see Sections 7.1.3 and 7.1.4). This is also the case of many

approaches, such as Luckham (1996), Howell (1996), Menascé and Gomaa (1998),

Petriu and Wang (1999), King and Pooley (1999), Ortega-Arjona and Roberts (1999c),

Cortellesa and Mirandola (2000), Gomaa and Menascè (2000), Petriu (2000), Hoeben

(2000), Andolfi et al. (2000), Gomaa and Menascè (2001), Cortellesa and Mirandola

(2002), and Bernardi et al. (2002). Nevertheless, the estimates obtained by APMM are

processed through a performance analysis stage, based on a statistical procedure (see

Section 7.2). This produces more regular and general performance estimate values.
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Moreover, performance estimates obtained using the APMM can be used as feedback to

modify or change the parameter values supposed for the queuing model that represent

processing components. Thus, the APMM has a potential use for experimentation and

performance feedback to software architecture (see Section 2.2.3 and 2.3.3).

8.5.5 Describing Parallel Programs through Common Parallel Structures

During the last few years there has been tendency to apply design to parallel program-

ming (see Section 5.2.1). These software design is represented as “outlines of the pro-

gram” (Chandy & Taylor, 1992), “parallel algorithms” (Hartley, 1998), “high-level

design strategies” (Lewis & Berg, 2000), “paradigms for process interaction” (Andrews,

2000). These descriptions are based on “flow” descriptions of data and/or instructions

through the processing components (see Section 5.2.1), and they are basically similar to

the Architectural Patterns for Parallel Programming within APMM (see Section 4.3.3

and Chapter 5). Furthermore, from the approaches for performance estimation of parallel

systems, the approach by Gemund (2003) presents several parallel programming struc-

tures similar to the architectural patterns for parallel programming, which the author uses

to test his approach.

Another commonality of APMM with some of the approaches to performance esti-

mation of parallel systems is about the evaluation of the methods. As a method, APMM

is evaluated by comparing simulation estimates with real parallel system measurements

(see Sections 8.2 and 8.3). This is also the base of evaluation considered by Botti and

Capra (1996), Howell (1996), and Gemund (2003).

Various approaches have been proposed or used tools to implement some steps of the

proposed approaches in parallel and distributed programming. These tools are DisCo

(Jarvinen & Kurki-Sunio, 1991), POSET (Luckham, 1996) Multi Micro Environment

(Botti & Capra, 1996), Architectural Modelling Box (Jonkers et al., 1998), Autofocus

(Huber et al., 1998), Finite State Process (Ayles et al., 2003) and PAMELA (Gemund,

2003). However, none of them has been implemented yet into a complete environment

for specification, performance analysis, and feedback to software designer.

An open problem and challenge is to completely automatise the process of deriving

performance models from software specification and integrate the supporting tools in a

unique environment. Nevertheless, the use of tools and environments for simulating par-

allel and distributed systems are normally expensive in terms of execution time. It tends
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to be time consuming to run simulations of such systems. This situation is reported for

performance modelling for general software architectures in Arief and Speirs (1999a),

Arief and Speirs (1999b), Arief and Spiers (2000), De Miguel et al. (2000), Andolfi et al.

(2000), and Arief (2001). The same is mentioned when simulating parallel or distributed

systems by Luckham (1996), Huber et al. (1998), and Jonkers et al. (1998).

In order to deal with simulation cost, APMM is proposed so the communication of a

parallel program executes on the real parallel system (see Section 7.1.1), and the process-

ing components are actually simulated (see Section 7.1.3) to decrease simulation cost.

Other approaches for performance prediction of parallel systems, such as Botti and

Capra (1996) and Howell (1996), also consider similar ideas to deal with simulation

costs.

8.5.6 Constraints on the Software Architecture

Some approaches introduce constraints on the software architecture, like Menascè &

Gomaa (1998) and Andolfi et al. (2000), which apply to client/server systems. Others are

only interested in analysing software architecture, without specifying (or using informa-

tion regarding) the underlying hardware platform. This is the case of Williams and Smith

(1998). In the case of APMM, it is proposed here precisely to deal with the performance

modelling on parallel software systems, considering the constraints included as part of

the hypothesis of this thesis (see Section 1.3).

8.6 Comparison with Related Work on Architectural Design 

Approaches for Parallel Software

Also in Chapter 3, we introduced other prior efforts that similarly identify and capture

general Parallel Software Design experience and performance estimation. In this section,

we summarise the similarities and differences of these efforts compared with our

research work. In our work, we have considered such efforts, sometimes taking elements

from them in order to obtain similar advantages, or reduce their disadvantages. The com-

parison with related work is carried our around four points: Description of Software

Structure, Development Strategy, Performance Modelling, and Classification and Selec-

tion of Software Structures.
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8.6.1 Description of Software Structure

The approaches presented in Chapter 3 were considered as related work because, as with

our Architectural Patterns, they represent a description of common configurations used

to model Software Structure in Parallel Software Design. An Architectural Pattern repre-

sents a relation that occurs during the initial stages of Parallel Software Design between

a process to be applied on data depending on certain characteristics of order, and a Soft-

ware Structure that allows the execution of such a process, maintaining the characteristic

of order. Archetypes, Skeletons and Structural Modelling are considered related work in

the sense that they share a similar objective, which is describing and modelling Software

Structure. However, even though they aim and look for structural solutions in parallel-

ism, it is interesting that these approaches do not present a clear description of Software

Structure. Instead, they seem to look for “ready-to-use” software implementations of par-

allel programming components, allowing programmers to code their parallel programs in

terms of these software components.

The Archetypes approach is similar to our Architectural Patterns work as both use a

narrative description with several similar parts, capturing structure, experience and tech-

niques. However, the Archetypes description is more extensive, trying to cover in a sin-

gle archetype all aspects of design and implementation for every case, and sometimes

providing too much information to be consulted by the software developer. Although the

description is extensive, Archetypes do not present a single precise description that rep-

resents the Software Structure as a whole (see Section 3.4.1).

In contrast, the Skeletons approach does present precise representation of structural

constructs of useful patterns of parallel computation and interaction, but these constructs

are presented more commonly as functional programming language constructs, encapsu-

lating all structural and design information. By providing only this level of information,

skeleton descriptions restrict the understanding of the structural constructs they represent

(see Section 3.4.2).

Finally, the Structural Modeling approach does not aim to express common Software

Structures in distributed systems, presenting only a over-simplified description of Soft-

ware Structure based on Structural models, as developer’s descriptions expressed usually

in the form of pseudocode (see Section 3.4.3).



255

8.6.2 Development Strategy

By development strategy we mean a specific formulation of plans or instructions to gen-

erate a solution as a form or structure. We used the pattern description and proposed our

architectural description to guide the software developer in selecting an appropriate

Architectural Pattern for parallelising a given application. In general, the brief, problem,

and the solution sections are the basic information to be considered during pattern selec-

tion (see Section 5.3). The other sections of the pattern description provide guidelines for

the actual implementations and relationships with other patterns. However, patterns have

the disadvantage that they do not provide a detailed solution: Patterns provide generic

schemes for solving groups of problems, but they do not provide final complete solu-

tions.

The development strategy of the Archetypes and Skeletons approaches are similar to

our approach as they consider mainly three levels of software construction, archetypes or

high-level, application or middle-level, and programs or low-level, in which Software

Structure is considered just as the high-level organisation of components. Furthermore,

their development strategies attempt to deliver complete software systems, using the

same archetypes or skeletons for all levels of software construction, instead of deriving

sub-structures for more particular cases. In particular, Archetypes focus on deriving a

parallel solution from a previously developed sequential algorithm (see Section 3.4.1).

Even though it may be a good approach, this may reduce the potential of parallel execu-

tion, restricting the creativity of a parallel software developer, and not supporting the

development of software design experience in parallel systems.

The goal of Skeletons is to “build parallel programs without programming” (see Sec-

tion 3.4.2), by providing a limited range of possibilities. However, the development strat-

egy based on program transformations does not clearly expose how to proceed or use

skeletons to support different design stages.

In the case of Structural Modeling, the modelling approach is focused on the devel-

opment of structural models for performance prediction, and no precise structural infor-

mation other than the experience of a developer is provided.

8.6.3 Performance Modelling

Performance is related to Software Structure as the execution time of a software system

depends on the top-most functional organisation or configuration of their components
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and connectors (Bass et al., 1998). In this research work, we developed an Architectural

Performance Model that aims to use structural information, obtaining a performance esti-

mate for the system as a whole. The estimate of performance is an important decision

parameter when comparing parallel or distributed systems. This point is actually also

present in all approaches of the related work, in which efforts have been made to obtain

performance estimations based on structural characteristics.

The Archetype based performance models are similar to our approach as they sim-

plify the process of performance analysis by exploiting commonalities in parallel pro-

grams, in the form of simple equations. However, their drawback is that the Archetype

approach considers performance issues late in the program development strategy, in a

“fix-it-later” form. This may work, but represents a hard last step of parallel develop-

ment, as performance is closely related to structural characteristics of software which are

decided during initial stages of design (see Section 3.4.1).

Skeletons provide good performance modelling due to their simplicity and the use of

equations based on problem and machine parameters to represent and predict perform-

ance, making them suitable for identifying improvements. However, these equations

generally require machine-specific parameters to be derived reliably, which is not always

possible (see Section 3.4.2).

Both the Archetype and Skeletons approaches, concentrate on deriving program

specifications for reasoning about correctness and performance, but not on developing

models. In contrast, the goal of Structural Modeling is to obtain models for distributed

performance estimation. Similarly to our work, Structural Modeling uses component

models, defined recursively as arithmetic combinations of input values, selected using

descriptions of where execution time is spent. Initially, these input values are estimate

percentages for each component, evolving later to interval values and finally to stochas-

tic values, which seems to be the most similar performance modelling to our work. In

general, Structural Modeling presents a simple and easy way to express an application

profile, but it does not consider a particular distribution of performance, considering at

most a normal distribution for the stochastic values. Further, the input values are usually

fixed arbitrarily, relaying on a developer’s experience (see Section 3.4.3).

8.6.4 Classification and Selection of Software Structures

An important characteristic, that we consider that a Software Structure modelling
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approach should cover, is about providing a classification schema that simplifies the

selection of Software Structures. We have developed our Architectural Patterns aiming at

helping the software developer select a particular Software Structure during the initial

design and construction of a parallel software system (see Sections 5.2 and 5.3).

In a similar form, Archetypes and Skeletons provide classification schemes used to

organise their configurations, but not necessarily to address the problem of selection.

This choice is left to the software developer, who judges and selects the best form of par-

allelism for a particular application based on examples provided by Archetypes or Skele-

tons. Often, these example systems have limited applicability. For example, Archetypes

contains a good classification scheme based on strategies for partitioning and examples,

but no precise rationale or guidance is provided to select a particular archetype. They are

only identified as “appropriate solutions”, selected mainly by experience (see Section

3.4.1). The several Skeletons approaches provide a similar number of classifications. In

the general case, design decisions are expected to be made based on a decision-tree pro-

vided by previous experience, but no precise selection rationale, in the form of when to

use each skeleton, is provided (see Section 3.4.2).

Finally, as the Structural Modeling approach considers only issues about perform-

ance prediction for distributed systems, no classification of common structures, selection

method, or benefits and liabilities of using different structural descriptions is discussed

(see Section 3.4.3).

8.7 Analysis of Applicability of the Method in the General 

Case

The importance of an ability to estimate the performance of a (software) system during

its design stage is highlighted by the existence of workshops dedicated specifically for

this topic, such as the series of International Workshop on Software and Performance

(WOSP). These indicate that research on the approaches for incorporating software per-

formance into software architecture/design is still an ongoing process and deemed useful

so that it may provide many benefits for the software engineering community.

In the present thesis, the Architectural Performance Modelling Method has been

applied to several examples in order to identify the best performing architectural pattern

by obtaining performance estimates for several configurations of a parallel system. In all

these examples, the method has provided performance estimates that are not very differ-
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ent from the real average execution times of the actual parallel system. More specifically,

the Two-dimensional Wave Equation is used as a case study throughout several chapters

to illustrate the application of the Architectural Performance Modelling Method (see

Sections 5.4, 6.1.5, 6.3.5, 7.1.2, 7.1.5, 7.2.2, and 7.2.4). The reason is that it is a problem

easy to explain and describe (see Section 5.4.1). Nevertheless, even though it may seem

a not so complex problem, it serves its purpose within this thesis, which is simply to pro-

vide an idea about how to use and explain the method. Moreover, the Two-dimensional

Wave Equation presents characteristics and features similar to several other common

problems solved using parallel programming (see for example, Hoare, 1978; Andrews,

1991; Freeman & Phillips, 1992; Foster, 1994; Geist et al., 1994; Kleiman, et al., 1996;

Hartley, 1998; Andrews, 2000, and many others). For example, one of its main character-

istics is that its solution is based on the concept of relaxation, as explained by Kleiman,

et al., 1996 (see Section 5.2.2).

The question is now: how applicable is the Architectural Performance Modelling

Method for performance estimation in the general case, beyond the Two-dimensional

Wave Equation? Let us answer this question by analysing the input information and steps

that are involved during the development of the Architectural Performance Modelling

Method, to expose the elements of generality within the method.

8.7.1 Analysing the Input Information

The Architectural Modelling Method uses as input information (see Section 4.3.3):

• a statement of the problem, in terms of an algorithm, the data to be processed, and the

performance requirements for the parallel system.

• a specification of the known parallel platform (hardware and software) to be used.

Parallel programming is concerned with obtaining a parallel program that addresses

a problem, stated as a requirement of computation (see Section 4.3.1). As with any com-

putation, it is defined in terms of an algorithm and the data to be processed. Parallelising

such a computation has to consider dividing either the algorithm into steps, or the data

into pieces, or both (see Section 5.2.3). Moreover, the designer has to deal explicitly with

performance requirements, which are the driving factor for parallel programming (see

Sections 1.1 and 1.2). In general, the designer is asked to develop a parallel program on a

given parallel platform (the development of any parallel program does not usually take

place without having or knowing the parallel platform to be used).
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The Architectural Performance Modelling Method copes with these issues by using

as input all information that is required for developing a parallel program. So, in the gen-

eral case, the Architectural Performance Modelling Method can be used, since its input

coincides with the input information for any parallel programming.

8.7.2 Analysing the Steps of the Architectural Performance Modelling 

Method

Architectural Pattern Selection

The problem statement is presented in terms of an algorithm and data (see 5.2.3). Since

the classification and selection of the Architectural Patterns for Parallel Programming

(see Sections 5.2.7 and 5.3) consider dividing the problem into steps, data pieces, or

both, it means that they are applicable to most of the known parallel problems. In gen-

eral, the solution to any of these known problems can be viewed as an instance or varia-

tion of one of the architectural patterns.

Architectural Performance Model Construction

Coordination Simulation

A Coordination Simulation is constructed based on the implementation section of an

architectural pattern, for any configuration of components (see Section 6.1.1). As it is a

runnable implementation of the architectural pattern, it covers all the activities at the

coordination and communication level, and all the features at the platform level of the

parallel system (see Sections 2.1.3 and 5.2.3). From the implementation section of a

given architectural pattern, it is possible to construct a Coordination Simulation as a skel-

eton of code. This code executes on the parallel platform provided as part of the input.

Component Simulation 

A Component Simulation can be always constructed on any platform, based on the

implementation of a simple queuing structure, for representing a processing component

(see Section 6.2.1). A processing component is basically seen as a closed box that has

inputs, outputs, does some processing, and follows some sort of state sequence. A Com-

ponent Simulation takes into consideration all these characteristics. Moreover, it pro-

duces a stochastic value of processing time, based on an exponential distribution (see

Section 6.2.4). Once implemented and provided with its parameters, the Component



260

Simulation is always able to simulate the processing behaviour of any processing com-

ponent.

Architectural Performance Model

An Architectural Performance Model is an executable program that gathers together the

Coordination Simulation and one or several Component Simulations (see Section 6.3.1).

Given these two implementations, the Architectural Performance Model is constructed

by inserting the code of the Component Simulations into the skeleton of code of the

Coordination Simulation. Once assembled together, the two simulations interact within

the Architectural Performance Model to run simulations and produce measurable results

(see Section 6.3.4).

Performance Simulation

Coordination Simulation Execution

The Coordination Simulation is a runnable implementation of an architectural pattern.

During its execution, it is necessary to measure the time required for coordination among

components and the arrival rate of requests to each component (see Section 7.1.1). This

requires the existence of a way to measure such execution times. In this work, this

requirement is covered by the method System.currentTimeMillis(), which produces

a reading from the real time hardware clock (see Section 8.1). Furthermore, by perform-

ing a number of executions, it is possible to obtain the average coordination time and the

average arrival rate of requests to each component, which are used later for the calcula-

tion of a performance estimate (see Section 7.1.1).

Architectural Performance Model Execution 

The parameters for the Component Simulations are derived from the average arrival rate

of requests and from the architectural pattern. This allows for the execution of the Archi-

tectural Performance Model (see Section 7.1.3). Since this model is defined and con-

structed from the simulations, it is executed a number of times to obtain the simulated

average processing time, which is also used later for the calculation of a performance

estimate.
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Performance Estimate Calculation

From the analysis presented in Section 4.3.2, a single performance estimate for the given

configuration of the parallel system is calculated by simply adding the average coordina-

tion time and the simulated average processing time (see Section 7.2). This performance

estimate takes into consideration all the previous assumptions about hardware and soft-

ware, and can be re-produced in any case for any variation of such assumptions.

In summary, to briefly answer the question proposed, it seems still necessary to refer

to some basic concepts and definitions:

• A parallel program is originally defined in the literature as a set of communicating

sequential processes by Dijkstra (1968), Hoare (1978), Brinch-Hansen (1978), and

many others (see Sections 2.1.1 and 5.2). Following this concept, the Architectural

Patterns for Parallel Programming are considered as organisations in which such

sequential processes communicate. Hence, such architectural patterns describe com-

munication structures among sequential processes (see Section 5.2.3).

• The Architectural Performance Modelling Method makes use of architectural patterns

to develop models for performance estimation (see Section 4.3). These are used to

obtain performance estimates, given a platform and a programming language.

Therefore, the Architectural Performance Modelling Method is applicable for any

problem as long as its solution (a parallel program) is (a) conceived and developed as a

set of communicating sequential processes; (b)organised following the description of

architectural patterns; and (c) programmed for a parallel platform, using a particular par-

allel language. However, there is no description of a parallel program other than as a set

of communicating sequential processes (see Chapter 2). Hence, the method is applicable

for most parallel programs and systems. The Architectural Performance Modelling

Method produces performance estimates that can be considered equivalent to the proba-

ble real average execution times of a prospective parallel program.

8.8 Summary

This chapter presents and discusses an evaluation of the Architectural Performance Mod-

elling Method for identifying the best performing architectural pattern by estimating the

performance of parallel applications. The evaluation is presented using experimental

examples, comparing three potential solutions using different architectural patterns. The
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comparison with related work is examined and discussed. Finally, an analysis is made of

the applicability of the method in the general case.
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Chapter 9

Conclusion

“Retire. Fill a cup to its brim and it is easily spilled; temper a sword to its

hardest and it is easily broken; amass the greatest treasure and it is easily sto-

len; claim credit and honour and you easily fall; Retire once your purpose is

achieved – this is natural”

Lao-Tze

This chapter presents the conclusions of the thesis, a summary of the research work and

restatements of the hypothesis and contributions. A discussion and interpretation of

results is provided to critically examine and expose how the hypothesis and contributions

have been addressed by the research work. Finally, a future work section summarises the

next steps to follow into the research of Software Patterns and Software Architecture for

Parallel Programming.

9.1 Summary of the Research Work

The main idea behind the present thesis is basically to identify the best performing archi-

tectural pattern as a coordination organisation for a parallel software architecture, by

building models for performance estimation early in the design process.

The Architectural Performance Modelling Method is part of an architectural design

approach applied during the initial stages of parallel software development, with the aim

of modelling performance issues. Its main objective is to provide a mechanism to evalu-

ate parallel software alternatives by estimating their performance before any further

implementation takes place. The idea is to take into consideration performance issues
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during parallel software design from the beginning, aiming to avoid the “fix-it-latter”

approach. So, the method aims to complement parallel software pattern descriptions,

helping parallel designers to obtain performance information during early design, and to

select between potential parallel architectural solutions based on such potential perform-

ance of the proposed application.

By considering a parallel program as an instance of a particular software architec-

ture, the Architectural Performance Modelling Method describes such a parallel program

in terms of software components, which are classified depending on their particular

objective as:

• Platform: components representing the hardware and software environment;

• Coordination: components representing the fundamental organisation for coordina-

tion and communication; and

• Processing: components providing particular processing functionalities.

A performance estimate is the result of the times that each individual software com-

ponent requires to carry out its coordinating or processing activities. Performance is

understood, modelled, and analysed from an architectural point of view, using simulation

models that consider the arrival rates and distributions of service requests and potential

processing times.

An Architectural Performance Model is obtained as product of the method. The con-

struction of this model is based on a Coordination Simulation (developed from an archi-

tectural pattern, describing a coordination organisation commonly used in parallel

programming), and a generic Component Simulation (a queuing representation of a com-

ponent’s processing behaviour through time).

The Architectural Performance Modelling Method is used to simulate a partially

implemented program design, using (a) the available information about hardware and

software, (b) the problem description, and (c) the amount of data. It makes it possible to

obtain estimates of the parallel program’s probable performance, by constructing “scale-

models” of the complete parallel software during early design phases.

The information contained in architectural patterns is used to determine characteris-

tics and parameters for the Architectural Performance Model and its execution. Briefly,

the elements retrieved from architectural patterns used in the Architectural Performance

Modelling Method are:

• The description of the coordination organisation that is used to construct the Coordi-
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nation Simulation of a potential solution. This construction considers sections such as

Structure, Dynamics, Participants and Implementation of an Architectural Pattern for

Parallel Programming. The Coordination Simulation is developed as a skeleton of

code, representing the relations of coordination and communication among compo-

nents.

• From the Coordination Simulation, it is possible to measure the inter-arrival times 

(1/λ) between requests for operation, that coordination components issue, allowing λ

parameters to be derived for the Architectural Performance Models. The λ parameters

are the average arrival rate of messages to a component. These measured values are

used as parameters for the Component Simulations.

• From observing the expected Dynamics of the architectural pattern in a scenario for

solving the actual problem, it is possible to suppose an average number of messages

in service or waiting for service per each processing component. Using this number of

messages, a probable value for ρ is calculated and used to obtain a performance esti-

mate. ρ is commonly referred to as the traffic intensity of the queuing system, and it is

defined as the relation λ / μ, where μ is the average service time of messages per sec-

ond. This calculated value is also used as parameters for each Component Simulation.

9.2 Hypothesis Restatement

Let us restate the hypothesis of this thesis, as presented in Chapter 1 as follows:

“Given a problem to be solved and a set of parallel hardware and software

resources for deployment, it is possible to obtain a reasonable estimate of the

performance characteristics of a parallel program during the initial stages of

parallel software design in order to identify the architectural pattern that will

produce the best performance for the program.”

9.2.1 Discussion

Parallel software design is a complex activity, aiming for performance improvement

while diminishing the high costs of parallel software development. It requires extra effort

from the software designer, who has to select the most appropriate parallel software

architecture to balance between these two design issues. Thus, to provide a method for

early performance estimation that assists the parallel software designer to perform such a

selection would be highly valuable.
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The Architectural Patterns for Parallel Programming are proposed as useful solu-

tions for initially designing a parallel software architecture. However, they do not

address the problem of early performance estimation. Hence, this thesis proposes an

experimental method, based on architectural patterns, in order to identify the best per-

forming architectural pattern by early performance estimation.

The Architectural Performance Modelling Method is presented as such an experi-

mental method. It is proposed as an initial design study, using information about the

problem, hardware and software. During design, the Architectural Performance Model-

ling Method provides estimates of performance properties of designs, and assists in

selecting from among design alternatives early in the development before more detailed

coding begins.

The Architectural Performance Modelling Method starts with one or several archi-

tectural patterns, shows how to construct a simulation based on it, and obtains estimates

of the execution times of a parallel application constructed using such architectural pat-

terns. The simulation is carried out based on models, as programmed instances of the

architectural patterns, which are executed to obtain the performance estimates. In this

thesis, examples are developed to evaluate the method for performance estimation and to

compare potential parallel software architectures.

In Chapters 5, 6, and 7, an example is developed using the Two-dimensional Wave

Equation, detailing every step of the Architectural Performance Modelling Method, and

obtaining performance estimates using the Communicating Sequential Elements pattern.

Even though at first this problem may seem trivial, the Two-dimensional Wave Equation

represents a common open ended problem for which parallel programming is used for.

As other open ended problems, the Two-dimensional Wave Equation becomes as compu-

tationaly difficult as to require parallel programming for its solution, under particular

requirements of number and/or complexity of operations and data. Nevertheless, it is a

problem easy to explain and describe. Even though it may not seem a large-scale prob-

lem, it serves its purpose within this thesis, which is simply to illustrate and explain the

Architectural Performance Modelling Method. Moreover, the Two-dimensional Wave

Equation presents characteristics and features similar to several other common problems

solved using parallel programming. One of such characteristics is that its solution is

based on relaxation.
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The Architectural Performance Modelling Method is applicable for performance

estimation in the general case beyond the Two-dimensional Wave Equation, since it is

based on the concept of a parallel program, and its relation with the Architectural Pat-

terns for Parallel Programming: (a) a parallel program is originally defined in the litera-

ture as a set of communicating sequential processes by Dijkstra (1968), Hoare (1978),

Brinch-Hansen (1978). Based on this concept, the Architectural Patterns for Parallel Pro-

gramming are considered as organisations in which such sequential processes communi-

cate, that is, architectural patterns describe communication structures among sequential

processes; and (b) the Architectural Performance Modelling Method makes use of archi-

tectural patterns as descriptions of parallel systems, in order to develop models for per-

formance estimation. These are used to obtain performance estimates, given particular

characteristics of the platform and the programming language to be used.

Therefore, it follows that the Architectural Performance Modelling Method is appli-

cable for any problem as long as its solution (a parallel program) is:

• conceived and developed as a set of communicating sequential processes; 

• organised following the description of an architectural pattern for parallel program-

ming; and 

• programmed for a parallel platform, using a particular parallel language.

Nevertheless, there is no other description of a parallel program than as a set of com-

municating sequential processes, which makes the method applicable for most parallel

programs and systems. The Architectural Performance Modelling Method produces per-

formance estimates that can be considered equivalent to the probable real average execu-

tion times of a prospective parallel program.

9.2.2 Interpretation and Analysis of Results

The evaluation results of the experimental examples in Chapter 8 show that the method

produced performance estimates very similar to the real average execution times

obtained by running the actual program on the computing environment. The main reason

is that the performance a parallel software system is able to achieve heavily depends on

the organisation of the coordination among the several sequential processing components

that constitute such parallel software system, and not only on the parallel platform and

the programming language used. In this thesis, such organisation is described and devel-

oped based on the Architectural Patterns for Parallel Programming, which are used as a
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base for developing models for performance estimation.

The graphical representation of the performance estimates obtained from Architec-

tural Performance Models showed very similar curves to the actual parallel program’s

performance characteristics. Each curve can be considered as the probable performance

behaviour of the parallel system. From this, we conclude that the Architectural Perform-

ance Models actually identifies the best performing architectural pattern by describing

the performance of parallel programs, using early estimates about their time behaviour to

be obtained. Once developed, the models can be subjected to appropriate assessments

and tests, and refined as required. 

Another important conclusion of this thesis is that the processing time of sequential

software components at the processing layer depends on the time slots allowed by the

execution of platform and coordination components. In parallel programming, such time

slots are varied through modifying the granularity: 

• by changing the number of processing components and their mapping into coordina-

tion components, at the level of processing components;

• by changing the number of coordination components and their mapping into proces-

sors, at the level of coordination components; and 

• by changing the number of processors on which the parallel process takes place, at the

level of platform components. We aim to avoid this kind of modification, since it

implies the use of the “fix-it-later” approach. 

The Architectural Performance Modelling Method allows to test an verify the result

of applying the first two kinds of modifications on the models of a prospective parallel

system.

As the performance that a parallel program is able to achieve depends on the organi-

sation and communication among the sequential processing components, and under the

assumptions taken in the thesis, the method produced performance estimates that are

equivalent to the real average execution times in 73.33% to 80.0% of the experiments.

These results indicate that it is possible to compare potential parallel solutions by

early obtaining reasonable performance estimations with conceptually simple models.

The objective of the modelling effort has been to keep these models as simple as possi-

ble. This is achieved by considering that processing and communication are activities

sharply separated among coordination and processing components. Even though this

may not be always the case, the results show that such a supposition does not introduce a
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considerable error for performance estimation. So, our models can effectively be used to

select the best performing architectural pattern by estimating the performance of a paral-

lel program with the proposed constraints.

The results also indicate that these simple models are sufficient to compare different

potential parallel designs. In all experimental examples, performance estimates set up a

probable performance characteristic of a parallel program, which can be used as an initial

reference to be considered when making design decisions, before an actual program

implementation is available.

From the description of problem addressed by this thesis, the main goal has been to

consider and include performance information as early as possible during parallel soft-

ware design. Based on the experimental results, it can be seen that it is possible to obtain

reasonable performance estimates during the initial stages of parallel software design, by

creating and analysing representative “scale-models”, based on the coordination and

communication organisation, to estimate the performance of a parallel system.

9.2.3 Cost

Parallel programming, by itself, represents a high cost of effort. As it relies on the coor-

dination of computing resources, so that they simultaneously work towards a common

objective, it requires extra effort from the software designer because of the increased

complexity involved. Moreover, as it is considered a means to improve performance, the

software designer should consider sophisticated and cost-effective practices and tech-

niques for performance measurement and analysis. Most programming problems have

several parallel solutions, and therefore parallel software design cannot easily be reduced

to recipes. At best, the software designer has an idea of the organisation, and would like

to decide whether or not to use it as the basis of the parallel system. A solution is com-

monly proposed based only on the information available at this stage and the intuition of

the designer. However, as the cost of the parallel design is high, complementing the

information available with quantifiable performance information would be an important

advantage.

Building a parallel application in several ways normally tends to result in parallel

programs that yield incorrect results, or execute slower than their sequential counterpart.

Furthermore, the cost of effort from one project to the next would tend to be the same,

since all of them have the same starting point, described above. Moreover, such an
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approach would tend to defer performance considerations until later phases of software

development which means to use the “fix-it-later” approach: once a parallel application

has been built (perhaps in several ways), if performance requirements are not met, the

software still has to be “tuned” to correct it, or additional hardware has to be used.

The “fix-it-later” approach is precisely what we seek to avoid, in particular for paral-

lel systems. If severe performance problems are discovered once the parallel system has

been built, extensive changes to the whole software and system architecture may be

required to deal with them. Furthermore, as these changes are made late in the develop-

ment process, they increase the already high costs of parallel programming. 

As an alternative, the present thesis proposes to design for performance from the

beginning, by selecting a parallel architecture using simulations. These simulations esti-

mate the performance for the particular parallel software architecture. Early performance

estimation, based on parallel software architecture and simulations, allows the selection

of the appropriate architecture before detailed implementation, using a quantitative crite-

ria.

Hence, the Architectural Performance Modelling Method is proposed as a systematic

guidance to Parallel Software Design, based on the layered description of software archi-

tectures and on the Architectural Patterns for Parallel Programming. It is used to obtain

models that provide early performance estimates of the behaviour of a parallel software

system. This information is valuable not only for a present parallel application, but for

other later parallel applications developed from an architectural pattern, and using a

given parallel platform and programming language.

The Architectural Performance Modelling Method supports Parallel Software

Design since a simulation model can be reused as necessary to simulate the behaviour of

later sequential processing component, decreasing the cost of having to re-code the sim-

ulation model. Also, as parallel coordinations are based on the Architectural Patterns for

Parallel Programming, their implementation within the Architectural Performance Mod-

elling Method can be reused in later problems with similar characteristics of algorithm

order and/or data access, thus decreasing parallel design and implementation costs. 

Therefore, in contrast with just building a parallel application in several ways, the

cost of using the Architectural Performance Modelling Method is worth the effort for a

parallel development, since it:

• provides information about the potential performance of a prospective parallel appli-
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cation without recurring to the “fix-it-late” approach; and 

• tends to decrease for future parallel applications, by reusing already implemented

code.

9.3 Contributions Restatement

The main goal of the present thesis is the development of a method based on early per-

formance estimation to identify the best performing architectural pattern, covering the

following contributions:

1. The development of the Architectural Performance Modelling Method, which allows

parallel program developers to consider performance issues early during design, by

estimating the performance of a parallel program based on information from a partic-

ular architectural pattern (Chapter 4). This method is based on the selection of one or

several architectural patterns (Chapter 5) and on the development and execution of

Architectural Performance Models, as implementations that combine a Coordination

Simulation and Component Simulations (Chapters 6 and 7). Using this method, it is

possible to identify the best performing architectural pattern by estimating the per-

formance of the parallel software system during early design phases.

2. The selection process of one or several architectural patterns from the Architectural

Patterns for Parallel Programming, which describe the coordination level of parallel

software programs (Chapter 5). 

3. The construction of a Component Simulation that represents the processing time

behaviour of the processing components of a parallel software program (Chapter 6).

As an implementation for simulation, the Component Simulation uses the Active

Object pattern and elements of Queuing Theory.

9.4 Future Work

This work has aimed to introduce performance considerations during early software

design for parallel programming, using a method to select an architectural pattern by pro-

ducing performance estimates of a parallel system. Nevertheless, it raises further issues

and identifies avenues for further research topics, such as:

• Study and evaluation of the performance behaviour for the coordination organisa-

tions described by architectural patterns for different platforms, problems and

amounts of data. The study and evaluation of the performance behaviour for coordi-
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nation organisations can be continued, considering variations of platform and

amounts of data. The intention is to further study the relations for various platforms,

problems and different amounts of data, searching for a more general method that can

be used for performance estimation of particular real case problems.

• Study the Architectural Description of Software for evaluating other quality

attributes. The Architectural Description of Software can potentially be also used to

evaluate other quality attributes, like extensibility and maintainability. Furthermore,

as the description represents the structure of the complete system, it may be possible

to use it for measuring other quality attributes, as an initial evaluation criteria.

• Development of a Pattern Language for Parallel Programming. A long term goal is to

contribute to the development of a Pattern Language for Parallel Programming, by

gathering further design experience and techniques for parallel software design and

implementation with other authors’ work. The Architectural Patterns for Parallel Pro-

gramming are only an initial attempt to describe successful solutions to common

architectural parallel software problems. Even though there is still a long way to go to

reach that goal, architectural patterns have been considered as a step forward towards

the development of a handbook of design experience and techniques for parallel soft-

ware development. A Pattern Language of Parallel Programming is necessary to doc-

ument design and implementation experience, and to deliver systems that have good

performance characteristics. In general, documenting design and implementation

experience is the necessary first step toward designing required properties in software

systems.
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Appendix A

Codes for the Case Studies

This appendix presents the codes of the examples developed for evaluating the Architec-

tural Performance Modelling Method (see Section 8.3). Here, we present the codes used

to solve the Matrix Multiplication problem (see Section 8.3.1), the Prime Number Sieve

problem (see Section 8.3.2), and the Heat Equation problem (see Section 8.3.3). Such

codes represent the Coordination Simulation model (see Section 6.1) of the Communi-

cating Sequential Elements pattern (CSE, see Section 5.2.10), the Manager-Workers pat-

tern (MW, see Section 5.2.11), and the Pipes and Filters pattern (PF, see Section 5.2.8).

All these frameworks are developed using the Java programming language (Smith, 2000;

Hartley, 1998), executing using a JPVM environment (Ferrari, 1997; Geist et al., 1994)

on a cluster platform of sixteen computers.

Notice that even though the codes representing each architectural pattern are mostly

similar for the three examples, the difference among them relies on the amount and type

of data to be operated, the considerations taken to adequate the processing to the pro-

posed architectural pattern, and the amount of communication and synchronisation

among components depending on the solution proposed. Such a difference is noticeable

mainly during execution.

Each represents a skeleton of code in Java, representing the structural communica-

tion relations among parallel components, and executed using the given data and availa-

ble hardware an software resources only to show the communication and

synchronisation interactions among sequential software components.

A.1The Communicating Sequential Elements Code

The main idea of the CSE pattern is that all data is partitioned and assigned to a group of

communicating sequential elements.
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A.1.1 Partitioning

The CSE pattern describes a cooperation between identical sequential elements, which

communicate partial results by exchanging values with their neighbours. For our actual

purposes, the basic communicating element focuses on partitioning the data structure and

on representing its elements, and not on the processing activity to be carried out. The

code for class Heat is developed in Java, and shown in Figure A.1 (Ferrari, 1997).

The most relevant attributes of class Heat used to organise and perform the partition-

ing activities are described as follows:

• nprocs. An int value, whose purpose is to define the number of processes to be

created into the JPVM environment.

• procdim. An int value that specifies the number of processes per processor.

• tids and childTids. Two arrays of jpvmTaskId values, which are used to store

the task identifiers of all workers.

• my_id and my_x. Two int values which specify the location of the local value in

the array of processes.

• left_id and right_id. Two int values holding the numbers of the process neigh-

bours on each side.

• N. An int value defining the size of the total segment of points.

• Np. An int value defining the size of the sub-segment of points.

• X. A one-dimensional array of double values, holding the present and next values

of the points within the local sub-segment.

• B. A one-dimensional array of double values, holding the past values of the points

Figure A.1 Relevant attributes of the class Heat for representing the CSE pattern.

import jpvm.*;

class Heat{
...
static int     nprocs  = DEFAULT_NUM_PROCS;
static int     procdim;
static jpvmTaskId   tids[];
static jpvmTaskId   childTids[];
static int     my_id = -1, my_x = -1;
static int     left_id, right_id;
static int     N;
static int     Np;
static double  X[];
static double  B[];
static double tmpBorder;
static int     iteration = 0;
static double  start_time, end_time;
...

}
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within the local sub-segment.

• tmpBorder. A double value, which temporary holds the value to be sent to or

received from the neighbouring sub-segments.

• iteration. An array of int value, which keeps record of the number of iterations

so far.

• start_time and end_time. Two double values, which hold the timing informa-

tion of the program’s execution.

A.1.2 Communication

Communication is defined using JPVM methods for sending and receiving data to and

from the neighbouring elements. Two pieces of code of the class Heat shown in Figure

A.2, carry out these communication activities, based on the JPVM environment (Ferrari,

1997).

Figure A.2 Communication methods for the CSE pattern.

import jpvm.*;

class Heat{
...
static void send_border(double x)throws jpvmException{

...
jpvmBuffer buf;
if(left_id!=NOBODY) {

...
/* Send out eastern border */
tmpBorder = x;
buf = new jpvmBuffer();
buf.pack(tmpBorder,1,1);
jpvm.pvm_send(buf,tids[left_id],RED_RIGHT_TAG);

}
...

}
static void recv_border(double x)throws jpvmException{

...
jpvmMessage m;
if(left_id!=NOBODY) {

...
m = jpvm.pvm_recv(tids[left_id],RED_LEFT_TAG);
m.buffer.unpack(tmpBorder,1,1);
x = tmpBorder;

}
else {
if(iteration<=1)
 x = 0.0;
}
...

}
...

}
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The methods that implement the communication between sequential elements (see

Section 5.2.10) as described by the CSE architectural pattern are described as follows:

• void send_border(). This method is used to send the value x to the two neighbour-

ing elements. Notice that the code used for the left neighbour has to be repeated for

the right neighbour, considering the adequate values for x. The method makes use of

jpvm.pvm_send(), to actually send the value.

• void recv_border(). This method is used to receive data from the two neighbour-

ing elements, and store it in the value x. Notice again that the code used for the left

neighbour has to be repeated for the right neighbour, considering the adequate values

for x. The method makes use of jpvm.pvm_recv(), to actually receive the value.

A.1.3 Agglomeration and Mapping

Finally, for the Coordination Simulation execution, tasks are created and connected as

determined by the data structure representing the complete one-dimensional structure.

Each communicating element considers two neighbours with which exchange partial

results. The Coordination Simulation is executed on the given platform, representing

how the data is divided among the communicating elements, how the communicating

elements exchange data, and how they iteratively carry out the whole computation. The

parts of the Java code in the main() function of the parallel application, which creates

and spawns the elements within the JPVM environment (Ferrari, 1997), is presented in

Figure A.3.

A.2 The Manager-Workers Code

The MW pattern is based on two types of participants: a manager and a set of workers.

The manager preserves the order of data. On the other hand, each worker is capable of

performing the same independent computation on different pieces of data. It repeatedly

seeks a task to perform, performs it, and repeats; when no tasks remain, the program is

finished.

A.2.1 Partitioning

The MW pattern describes a cooperation between a manager and a set of identical work-

ers, which communicate partial results. The basic manager implementation focuses on

partitioning the data structure and on representing its workers. Nevertheless, the manager
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does not perform any processing activity. The code for class mat_mult developed in

Java (Ferrari, 1997) is shown in Figure A.4.

The most relevant attributes of class mat_mult used to organise and perform the par-

titioning activities are described as follows:

Figure A.3 Main elements of the main function for the CSE pattern.

import jpvm.*;

class Heat{
...
public static void main(String args[]) {

try {
jpvm = new jpvmEnvironment();
...
tids = new jpvmTaskId[nprocs];
childTids = new jpvmTaskId[nprocs-1];
tids[0] = my_tid;
my_id = my_x = 0;

/* Spawn workers */
if(nprocs>1) {

jpvm.pvm_spawn("Heat",nprocs-1,tids);
tids[nprocs-1] = tids[0];
for(i=0;i<(nprocs-1);i++)childTids[i] = tids[i];
tids[0] = my_tid;
...

}
...

}
catch (jpvmException jpe) {

error("jpvm Exception - "+jpe.toString());
}
catch (Exception e) {

error("Exception - "+e.toString());
}

}
...

}

Figure A.4 Relevant attributes of the class mat_mult for representing the MW pattern.

import jpvm.*;

class mat_mult {
...
static int numTasks = 0;
static int matDim = 0;
static int taskMeshDim= 0;
static int localPartitionDim= 0;
static int localPartitionSize= 0;
static int taskMeshRow= 0;
static int taskMeshCol= 0;
...
static jpvmTaskId myTaskId = null;
static jpvmTaskId masterTaskId  = null;
static jpvmEnvironment jpvm     = null;
static jpvmTaskId tids[];
static float C[], A[], B[], tempA[];
...

}
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• nTasks. An int value, defining the number of processes to be created into the

JPVM enrironment.

• matDim. An int value defining the size of the square matrices to be multiplied.

• taskMeshDim. An int value that specifies the size of the square array of processes.

• localPartitionDim. An int value defining the size of the sub-matrices.

• localPartitionSize. An int value defining the number of values to multiply by

each process.

• taskMeshRow and taskMeshCol. Two int values which specify the location of the

local process in the array of processes.

• myTaskId and masterTaskId. Two jpvmTaskId values, which are used to store

the task identifiers of workers and the manager.

• tids. An array of jpvmTaskId values, that the manager uses to keep track of its

workers.

• C, A, B, and tempA. Four two-dimensional arrays of float values, keeping the

matrices to be multiplied, as well as intermediate results.

A.2.2 Communication

Workers communicate with the manager, requesting data to operate on. Hence, workers

are defined so they receive data from the manager, operate on it, and return a partial

result. The code for the method Pipe() of the class mat_mult allows these communica-

tions between manager and workers. The code developed in Java (Ferrari, 1997) is

shown in Figure A.5).

Figure A.5 Communication method Pipe() for the MW pattern.

import jpvm.*;

class mat_mult {
...
public static void Pipe(int iter) throws jpvmException {

if (taskMeshCol == (taskMeshRow+iter)%taskMeshDim) {
jpvmBuffer buf = new jpvmBuffer();
buf.pack(A,localPartitionSize,1);
for (i=0;i<taskMeshDim;i++) 
    if (localTaskIndex != taskMeshRow*taskMeshDim+i) {
    jpvm.pvm_send(buf,
    tids[taskMeshRow*taskMeshDim+i],PipeTag);
}

}
else {

jpvmMessage m = jpvm.pvm_recv(PipeTag);
m.buffer.unpack(tempA,localPartitionSize,1);

}
}

}
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The methods Pipe() implements the communication exchange between manager

and worker as described by the MW architectural pattern. This method verifies if a

worker has data to operate on. If this is the case, then it returns an array (which repre-

sents the eventual product) using the method jpvm.pvm_send()of the JPVM environ-

ment (Ferrari, 1997) to send the result to the manager. On the other hand, if the worker is

not busy, then it is able to receive more work, using the method jpvm.pvm_recv().

A.2.3 Agglomeration and Mapping

Finally, for the Coordination Simulation execution, manager and workers are instanti-

ated, and connected as determined by the MW pattern. Each worker considers the man-

ager to read in and write out partial results, referencing it. The Coordination Simulation

is executed on the given platform, representing how the data is divided among the work-

ers, how the workers operate, and how they write back results. The Java code for the

main() function (Ferrari, 1997) is presented in Figure A.6.

Figure A.6 Main elements of the main function for the MW pattern

import jpvm.*;

class mat_mult {
...
public static void main(String args[]) {

...
try {
jpvm = new jpvmEnvironment();
myTaskId = jpvm.pvm_mytid();
masterTaskId = jpvm.pvm_parent();
if(masterTaskId==jpvm.PvmNoParent) {

...
    tids = new jpvmTaskId[numTasks];
    if(numTasks>1)jpvm.pvm_spawn("mat_mult",numTasks-1,tids);
    tids[numTasks-1] = tids[0];
    tids[0] = myTaskId;
     localTaskIndex = 0;

...
 }
else {
 for(localTaskIndex=0;localTaskIndex<numTasks;localTaskIndex++)

if (myTaskId.equals(tids[localTaskIndex]))break;
    matDim = m.buffer.upkint();

}
/* Include here the code for the matrix multiplication */
...
jpvm.pvm_exit();
}
catch (jpvmException jpe) {

error("jpvm Exception - "+jpe.toString(),true);
}

}
}
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A.3 The Pipes and Filters Code

The PF pattern proposes a solution in which different operations are simultaneously per-

formed on different ordered pieces of data that “flow” through the operations.

A.3.1 Partitioning

The PF pattern describes a computation decomposed into a sequence of steps which can

be simultaneously executed until completion. Data flows through each step, being incre-

mentally operated. The code for class prime is developed in Java (Ferrari, 1997), as

shown in Figure A.7.

The most relevant attributes of class primes used to organise and perform the parti-

tioning activities are described as follows:

• nprocs. An int value, whose purpose is to define the number of processors to be

used into the JPVM enrironment.

• procdim. An int value that specifies the number of processes per processor.

• N. An int value defining the number of primes to be obtained.

• answer. An array of int values, which represents the set of prime numbers.

• sieve_tid. A jpvmTaskId value, which serves to identify the local filter within

the sieve.

• parent_tid. A jpvmTaskId value, which identifies who is the previous filter

within the sieve.

• next_tid. A jpvmTaskId value, which is assigned to the next filter within the

sieve, if it has to be created to obtain another prime number.

• prime. An int value, used to store the local prime number in the actual filter.

Figure A.7 Relevant attributes of the class primes for representing the PF pattern.

import jpvm.*;

class prime{
...
static int nprocs  = DEFAULT_NUM_PROCS;
static int procdim;
static int N;
int answer[];
jpvmTaskId sieve_tid;
jpvmTaskId parent_tid;
jpvmTaskId next_tid = 0;
int prime, candidate;
int length = 0;
...

}
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• candidate. An int value, used to store the number to be tested if it is a prime

number in the present filter.

• length. An int value, used as a counter to keep track about how many prime

numbers have been obtained.

A.3.2 Communication

Communications allow data flow though the structure, coordinating the execution.

Hence, communications are defined so they receive data from a filter and send it to the

next one, taking care only on the direction of the flow. At the same time, they perform

the synchronisation activities, so filters are able to process. The code for the class Pipe

was developed in Java (Ferrari, 1997) as shown in Figure A.8.

Each time a new prime number is found, it is set into a filter. Each filter receives the

parent_tid, and a new candidate number to be tested, using the method

jpvm.pvm_recv(). If a new prime is found, a new filter is created for it, sending at the

same time the actual tid (sieve_tid) and the next candidate to be tested. using the

method jpvm.pvm_send()of the JPVM environment (Ferrari, 1997).

Figure A.8 Communications for the PF pattern

import jpvm.*;

class prime{
...
/* Now test each new incoming candidate */
while (candidate < N){

/* Receive the next number */
jpvmMessage m = jpvm.pvm_recv (parent_tid, NUMBERTAG);
m.buffer.unpack(candidate, 1, 1);
if (candidate < N){

/* Perform here the primes test */
...
if (! next_tid)
/* Create a new sieve */
jpvm.pvm_spawn(“prime”,"", next_tid);
/* Send the candidate to the next sieve */
jpvmBuffer buf = new jpvmBuffer();
buf.pack(sieve_tid);
buf.pack(candidate);
jpvm.pvm_send (buf, NUMBERTAG);

}
}
...

}
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A.3.3 Agglomeration and Mapping

For the Coordination Simulation execution, a PF structure is composed of filters con-

nected as determined by the PF pattern. Each filter references to a previous and a next fil-

ters. The Coordination Simulation is executed on the given platform, representing how

the data flows through the filters. The main Java code for the main() function (Fer-

rari,1997) is presented in Figure A.9.

Figure A.9 Main elements of the main function for the PF pattern.

import jpvm.*;

class prime{
...
public static void main (String args[]){

try {
jpvm = new jpvmEnvironment();
...
/* Enroll in JPVM */
sieve_tid = jpvm.pvm_mytid();
/* Spawn off the first worker process */
jpvm.pvm_spawn (“prime”, 1, sieve_tid);
/* Send out the numbers that are to be sieved. */
/* When == N, then the sieve should stop.  */
for (number = 2; number <= N; number++){

jpvmBuffer buf = new jpvmBuffer();
buf.pack(sieve_tid);
buf.pack(candidate);
jpvm.pvm_send (buf, NUMBERTAG);

}
...
/* Tell JPVM that we are about to stop */
jpvm.pvm_exit();

}
catch (jpvmException jpe) {

error("jpvm Exception - "+jpe.toString());
}
catch (Exception e) {

error("Exception - "+e.toString());
}

}
...

}
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