
Parallel Software Design

A parallel program is ‘the specification of a set of processes executing simultaneously, and

communicating among themselves in order to achieve a common objective’. This definition

is obtained from the original research work in parallel programming provided by E.W.

Dijkstra [Dij68], C.A.R. Hoare [Hoa78], P. Brinch-Hansen [Bri78], and many others, who

have established the main basis for parallel programming today. Moreover, the current use

of parallel computers implies that software plays an increasingly important role. From

clusters to supercomputers, success heavily depends on the design skills of software

developers. Specifically, obtaining a parallel program from an algorithmic description is the

main objective of the area of Parallel Software Design. This area is proposed to study how

and at what point the organisation of a parallel program affects the development and

performance of a parallel system.

1. A General Parallel Software Design Process

The term ‘Parallel Software Design’ is considered here as a problem solving activity. While

many software developers and programmers solve problems routinely, developing programs,

the problems that parallel software designers face tend to be very complex. An important

distinction between Parallel Software Design and other types of Software Design is that

parallel problems are solved by applying specialised scientific and mathematical

approaches, abstract knowledge and, largely, a lot of intuition.

Most Parallel Software Design problems are so complex that initially no software designer

can foresee a solution. To produce a parallel program as a solution, the software designer

should proceed methodically, solving the problem in a step by step process. A general

design process that is used for Parallel Software Design is shown in Figure 1 [Pan90].

 1

Program

Algorithm

Model

Process

abstract entities,
logical associations,
abstract values

data objects,
abstract operations,
constructed values

data structures,
primitive operations,
basic values

storage locations,
physical operations,
bit-pattern values

Ability to decompose
model into component

Suitability of language,
Understanding of computational

Accuracy of language/machine instruction
mapping

Figure 1.

In the particular case of parallel systems, when dealing with scientific problems, the

general design process usually can be characterized as four different levels of abstraction

(Figure 1). Each level defines its own collection of objects, a set of operations or

manipulations applicable to those objects, and domains representing the values each object

may assume [Pan90]:

• Model level. At this level, the problem is expressed in abstract terms, and the

solution is described in terms of abstract entities, logical associations, and

abstract values. The solution is outlined in general terms, regardless the computer

system on which it will be executed. Commonly, the descriptions are made in

natural language or diagrams. At this level, the software designer may start to

notice portions of the solution as candidates for parallelization. Normally, since

 2

scientific users look for performance improvement, attention has to be focused

activities that may be computationally intensive in the implementation [Pan90].

lgorithmic level. This level defines a set of specific steps required to solve the

problem. Even though the operations are still abstract, they are applied to data

objects with specific range of values. Typically, algorithmic solutions are thought

as a group of sequential steps. The descriptions are made in a notational form

chosen on the basis of appropriateness to the model from the previous level, and

not precisely related to the computing environment in which the solution will be

executed. Nevertheless, the algorithmic specification reflects the fact that the

solution will be carried out on a computer system. There is generally no explicit

mention of parallelism in the algorithmic solut

 on

• A

ion. At most, if parallelism occurs at

• P amming

time,

d

el of description. Commonly, a sequential solution is developed first,

• P

that software portions or components are allowed to be simultaneously executed,

].

vel

n to be

passed to the next level. The initial abstract model has to be transformed into an

this level, it is limited to the notion that two or more steps of the algorithm may

be allowed to proceed concurrently [Pan90].

rogram level. This level describes the problem in terms supported by a progr

language: data structures, primitive operations, and basic values. The selected

programming language imposes a rigorous formalism, but at the same

attempts to provide expressiveness, generality, and portability. This is the most

challenging phase since the software designer must devise concrete

representations of all data and operations, and describe them in the restrictive

notation of a programming language. It is common that parallelism is incorporate

at this lev

adding parallel features once the designer is confident that the solution works

[Pan90].

rocess level. This level involves a description of the solution based on computer

terms: storage locations, physical operations, and bit-pattern values. This

representation is commonly obtained from compiling the programming language

description of the previous level. Parallelism at this level is reflected by the fact

depending on the programming language description of the previous level [Pan90

Notice from Figure 1 that the descriptions of a parallel system provided at each le

require transformations from the previous level in order to obtain a new descriptio

 3

algorithmic solution, which has to be manually transformed into program code, and

automatically transformed into executable code. Notice that each transformation is a

ne instructions, relying on compiler technology, and beyond

e control of the designer.

al

de aid

Software Patterns for design a parallel program taking as input an algorithmic description.

ology’.

al

:

ing the adequate

ethod has an enormous impact on how long it takes to solve a problem.

,

e

maintainability, and so on. But it may only be possible to accomplish improving performance

source of potential error and distortion.

Nevertheless, the first and third transformations are normally considered to present no

particular problems, since both them benefit from past research experience in modelling

and compiling. The first, from model to algorithm, is bounded by the designer’s ability to

decompose an abstract model into a sequence of suitable, high-level representations and

operations. The third, from program to process, is bounded by the accuracy of mapping

language constructs to machi

th

In contrast, the second transformation, from algorithm to program, poses special

difficulties for the parallel software designer. Since it involves translation from a logic

to a quasi-physical form, its success relies on the designer’s understanding of parallel

computation methods. It is at this transformation that Software Patterns may provi

for the parallel software designer. Even though the conceptual support provided by

Software Patterns is useful at any level of abstraction, this book mainly focus on the

2. A Pattern-based Parallel Software Design Method

During the development of a parallel application, experienced software designers may try

different methods depending on their understanding of the different levels of abstraction

within the general design process. The study of different methods is called ‘method

A software designer selects a method depending on a number of contextual design

particularities: the complexity of the design, size of the design team, experience, person

style, preferences, and so on. No matter what method is selected, the goal is the same

obtain the parallel program with the best possible performance, with the least design

effort and implementation cost, and in the shortest possible time. Select

m

Conflicting requirements contribute to complicate the selection of a method. For example

producing the best performance solution may conflict with minimising costs. In fact, th

‘best’ solution is determined by finding a balance among performance, cost, reliability,

 4

or reducing costs by investing in a thorough analysis which, by the way, may at the same

time increase costs and extend development time.

Performance and cost are the main features considered in the problem specification for

most parallel programs. They are used as the ultimate criteria for reviewing design

alternatives. Performance refers to how a parallel program carries out its function. Cost

refers to the cost and effort to construct the parallel program.

Other features that are normally specified for parallel program alternatives are reliability

and maintainability. Reliability is related with the frequency of failure of the parallel

system once in use. Maintainability is related with the cost, expertise, and any other

resources needed to keep the parallel system operational during its lifetime.

Evaluating different parallel design alternatives is complicated due to conflicting features.

It may be possible, commonly, to improve performance by increasing costs. The

requirements of the parallel design solution must be specified in advance for each of these

two features, preferably with a range of permissible limits. Alternatives are revised

against each criterion, being the ‘best’ design the one that fits to a performance/cost

balance. Moreover, this implies that exceeding a specified need is not necessarily better.

For example, it is almost possible to attempt to improve the performance of a parallel

program, but this does not completely means that this is the best design alternative if this

solution does not meet specifications of cost, reliability, or maintainability. Commonly, a

parallel program with a lower performance happens to be cheaper to produce and easier to

maintain. This, therefore, would be the best alternative at hand, as long as it solves the

main aspects of the problem. In practice, however, a best solution is up to some extent

subjective.

In Parallel Programming, the used design method tends to impact both efficiency and

effectiveness of a software designer. Nevertheless, the ability to select and/or adapt a

design method given a design context only comes with experience. Hence, in order to

support the software designer, an initial, general, and practical design method is proposed

as follows. This design method is advised in general when quality and limited resources

(which seem to be the norm) are required.

 5

A ‘good’ design software method determines early in the development process if a solution

for a given problem can be found. Not all problems, and particularly, parallel programming

problems, have a solution. Perhaps one among several parallel programming problems is

taken to a successful end. Since the cost and effort wasted on the rest of the attempts

should be recovered from the only successful one, it is very important that the cost of

failure is made as small as possible.

Figure 2 shows a Pattern-based Parallel Software Design Method that is proposed here to

produce solutions, attempting to minimise design effort, whereas early establishing a

solution. This method is described as a step by step process, addressing a piece of the

solution description at the end of each step. Thus, each step is considered as a sub-

problem, in which activities are described in general terms, and whose documentation is

described as well in general terms after each step. Thus, the solution of each step is

expressed in terms of documentation and some developed code which incrementally

describes part by part of the parallel program. At each stage, the documentation as a

description (except from the first step) is obtained using a basic design process.

 6

Communication Design

Coordination Design

Problem Analysis

Detailed Design

Implementation and Evaluation

Specification of the Problem

Specification of the System

Specification of Communication Components

Parallel Software System Description

Need for High-
Performance

A Parallel Software
System

Figure 2.

The method shown in Figure 2 is realistic, since it allows correcting errors that are

discovered in a later step. The sooner an error is found, the less expensive it is to correct

it. This is the reason that the method proposed here is developed to allow occasionally

going back perhaps just one or two steps (as the arrows in the figure indicate).

 7

This design method aims to arrive at a ‘best’ or ‘optimum’ parallel program as solution.

However, in most practical situations, real optimum solutions are impossible to arrive to.

The best that a software designer can achieve is the best among several alternatives. This

raises the question: ‘how to decide whether one of several solutions is the best

alternative?’ As shown in Figure 2, the method initiates with a specifications of the

problem to be solved. This specification becomes the measure against which alternative

solutions are reviewed. If a parallel design solves almost completely the problem, then it is

considered better than any other parallel design which falls short. The problem

specification is then a very important step in the design method.

An overview of the design method for Parallel Software Design is provided in the following

sections. It is based on the general design process of parallel systems and the three

different categories of Software Patterns: Architectural Patterns, Design Patterns, and

Idioms. It is described in terms of concepts such as ‘Problem Analysis’, ‘Coordination

Design’, ‘Communication Design’, ‘Detailed Design’, and ‘Implementation and Evaluation’.

These steps of the method are described in depth, organising them sequentially from top

to bottom. From a Parallel Software Architecture point of view, the two most important

steps are the algorithm and data analysis and the coordination design. Each of these points

is covered, hence, as follows.

3. Problem Analysis

Parallel Software Design, as any design activity, goes from a statement of the problem,

normally in terms of a function and a set of requirements about how such a function is to

be carried out, to a form of a parallel organisation of components and a set of properties

of such a form. As such, the very initial and obvious step to take is to understand the

problem. Nevertheless, unfortunately this is very often ignored. Since most designers and

programmers have an enormous desire of ‘getting down to program’, they fail to pay

attention on fully understanding the problem.

The Specification of the Problem is the first document that the design method outputs

(Figure 3). The specification document should have: (a) a description of the data to be

operated on, (b) a description of the algorithm that operates on such data, (c) contextual

information about the parallel platform and the programming language to be used, and (d)

particular requirements about performance and cost. In such terms, this document

establishes a reference against which the solution is going to be evaluated. Hence, the

 8

descriptions included in this document should attempt to answer the questions such as

‘what is the problem that is to be solved?’, and ‘what exactly is the parallel system going to

achieve?’

Communication Design

Coordination Design

Problem Analysis

Detailed Design

Implementation and Evaluation

Specification of the Problem

Figure 3.

The Specification of the Problem should answer as well another important question: ‘how

do we know if the parallel system does what it is supposed to do?’ Hence, the Specification

of the Problem provides a reference or criteria to verify whether or not the parallel

system accomplishes the objectives it is designed for. Moreover, it may be used to

generate tests in order to evaluate the very parallel system.

Also, the Specification of the Problem provides milestones that help the software

designer to decide between alternatives of the design process. From beginning to end,

design can be considered as a decision process, in which every decision provides with new

constraints to the following decision. Thus, the Specification of the Problem works like a

sieve, helping the software designer to eliminate those potential parallel solutions that are

far too ambitious, require intractable parts, or fail to address important requirements.

Very few parallel projects result in a successful, viable parallel system capable of

addressing all requirements. However, since cost and effort of changes tend to

 9

exponentially grow while design progresses, early identifying a parallel solution that does

not provide a satisfactory performance/cost balance is clearly an asset within the design

development.

When writing the Specification of the Problem, the focus should be on the information

provided by the user of the parallel system. Remember: at this stage the software

designer aims not to solve the problem, but rather, to understand what it is about. Thus,

the objective here is to define and quantify the function and requirements of the

prospective parallel system, and write all them down in the form of a document: the

Specification of the Problem. Also, the document should take into consideration contextual

design elements, such as a simple and brief statement about the parallel hardware

platform and parallel programming language used, providing references where to obtain

information about them.

It tends to be difficult to write the description of all the elements that compose the

Specification of the Problem, while avoiding providing a solution. When a software designer

or programmer is confronted to a problem, immediately tries to solve it. This is not

completely wrong if you are an experienced designer or programmer. Experienced

software designers and programmers are considered so since they provide (most of the

times) a ‘right’ solution to a problem. Nevertheless, in parallel programming, not many

software designers or programmers are experienced ones. This is so since Parallel

Software Design poses several variations not yet explored. They are still under research.

Hence, it is advised here that before attempting to provide any idea of the solution, first

understand the problem at least in terms of the data to be operated, and the algorithm to

be used on the data.

As Parallel Software Design is based on decisions based on experience and information

rather than on well established knowledge, many decisions should be taken by collaborating

with the user. The user is normally an expert of an area which desires to obtain

performance, and with that objectives, the user makes use of parallel programming. So, at

this stage, the user is the main source of information, although further information is also

obtained from other sources. So, the description of the problem in terms of algorithm,

data, and performance/cost requirements are described, organised, and presented to the

 10

user. The objective is defining the problems completely and clearly as possible. Hence, the

software designer should act here as an expert as well as a good listener. Again, do not

attempt to solve the problem; understand it. This is complex, since a lot of patience and

experience are required not to rush a solution. The objective is not search, provide, or

evaluate different solutions, but attempt to describe the problem.

In order to derive the specification of the problem as a document, a two step procedure

can be used (Figure 4). In the first step, the user’s needs are written down and organised

straightforward in the terms of the user into an informal ‘Problem Statement’ document.

Here, every technical and quantifiable information is avoided. The main idea is to present

the problem as simply as possible, and the way in which the user understands it.

Needs assesment

Specification of the Problem

Need for High-
Performance

Problem Statement

Requirements
specifying

Figure 4.

In the second step, the Problem Statement is revised and re-stated, including more

detailed information. The main idea is to convert this informal document into the

Specification of the Problem, by including more technical and quantifiable information.

 11

Obtaining a translation from the Problem Statement to the Specification of the Problem

normally means that each need is mapped into a specification. If the Problem Statement i

complete and sound, it will yield a Specif

s

ication of the Problem complete and sound as well.

omplete means that all needs are taken into consideration. Sound means that different

over

n in

w such a

e, the software designers should take advantage in each cycle to make

larifications and propose agreements with the user, and review the information when

is

dge

ctives when the

 is

the prospective parallel system should accomplish, and thus, the document should be as

C

needs do not contradict between them.

While developing the Specification of the Problem, the Problem Statement is revised

and over, continually consulting the user in order to make sure that real needs are covered

and eliminate any inconsistency. This is the most important feature of the two steps

procedure towards obtaining the Specification of the Problem. Iterating and reviewing the

descriptions and definitions provided by the user is required since questions go arising as

the software designer revises and re-states the user’s information. As the functio

terms of data and algorithm provided by the user is clarified, questions about ho

functionality has to be carried out give rise to requirements. During the iterative

procedur

c

needed.

After the iterative procedure, the Specification of the Problem is obtained as a formal

document that describes as clearly as possible the issues related with the user

requirements. It represents an agreement between software designer and user, which

used in later steps to aide decision making among options, as well as the criteria to ju

the parallel system as a whole, whether it accomplishes or not its obje

parallel system is evaluated. The idea behind this document is to let everyone in the

project what they are aiming to do, and how to know when it is done.

How formal the Specification of the Problem can be depends on the situation. Such a

situation may go from the development of a single parallel, to providing services for

parallel software development. If the parallel system is developed only for internal

‘number crunching’ purposes, it may be regarded as a more informal, internal document of

the project, an agreement of what the project team should expect from the parallel

system. Nevertheless, if the parallel system is designed for an external user, whether it

a government or a company, it normally requires further clarity in the description of what

 12

formal as possible, since it could be used even at a legal level or as part of a contract. No

matter the level of formality of the Specification of the Problem, it is important that the

ocument has the acceptance of the user and the software designer.

o

h

ill

f the

nes. The effort to get

is as right as possible will be rewarded later during design steps.

ation of the Problem. The content may

vary

1. O

an ‘executive summary’. Hence, the overview is a summary of the

2. T

3. T

gn.

4. I

d

At this point, it may be interesting to warn about the information provided by the user.

The iterative interaction with the user requires questioning over and over, always trying t

specify the problem as clearly as possible. Furthermore, it is always useful to distinguis

between what the user actually needs and what the user only desires. Normally, user’s

needs and desires are not the same, and if the Specification of the Problem is written

down considering more likely desires than needs, the resulting design will fail to provide

some real needs, so it will be deficient. Moreover, desires that are misguided as needs w

impose an extra cost, making the design more expensive, while not providing the actual

function that the user needs. Therefore, it is the software designer’s responsibility to

extract and differentiate user’s needs and desires, and obtaining an Specification o

Problem that consider real and feasible needs. Even though it is not likely that the

Specification of the Problem may cover every and all needs, it is very important for the

success of the project that it addresses at least the most critical o

th

Finally, the objective is to document of the Specific

, but in general for parallel systems, it covers:

verview. The overview attempts to address the main question ‘why the parallel

system is needed and what it is expected to achieve?’ Normally, the overview can

be considered as

whole document.

he Problem Statement describes the problem in the user’s terms, as well as the

requirements agreed with the user. It is important to present them explicitly,

adding every clarification agreed between the software designer and the user.

he descriptions of the data and the algorithm. A description of the data to be

operated on and a description of the algorithm that operates on such data. They

are the basic element to start with initial decisions during coordination desi

nformation about the parallel platform and the programming language. The

performance that a parallel system is capable of achieve is directly affected by

 13

the parallel hardware platform and the parallel programming language used. Basic

information about these two issues is important, at least in the form of references

5. Q

re considered

important, so they are taken into consideration during the design.

 to

s as they

advance to the Coordination Design, the next stage of this design method.

 a

sign is the

, as

proposed form meets the

requirements as stated in the specification of the problem.

to where broader descriptions of both, platform and language, can be found.

uantified requirements about performance and cost. The idea behind this is to

state clearly what is expected of the parallel system. This information is used

later, when testing the parallel system in order to establish if it accomplishes such

basic requirements or not. Also, this section may include information about other

requirements (such as reliability, maintainability, or others) which a

Every section covers textual information as well as figures, tables, or any information

which may considered relevant during the design of the parallel program. The intent is

create a single document that serves as reference to the software designer

4. Coordination Design — Architectural Patterns

Once the problem has been analysed as a function in terms of data, an algorithm and

several other issues that impact on the design, the design method advances to proper

designing. From a Parallel Software Architecture point of view, this activity begins with

description of the parallel software as a coordinated system, and thus, developing the

coordination of the parallel software. As it is shown in Figure 5, Coordination De

second step of the design method. As any design activity, the objective of the

Coordination Design step is to produce a document that provides a description of the

parallel software in system terms, this is, the specification of the system. This document

should fully describe the parallel software as a form that carries out a function; this is

the components or parts that compose it, as well as the particular functionalities that

each one of them performs. Also, it should consider how the

 14

Communication Design

Coordination Design

Problem Analysis

Detailed Design

Implementation and Evaluation

Specification of the System

Figure 5.

Designing at the coordination level is a creative activity, involving scoping, analysis,

synthesis, iterative refinement, and finally document all design decisions as the ideas that

seem to pose the ‘best’ organisation for the problem at hand.

In a Pattern-based approach to Parallel Software Design, Architectural Patterns for

Parallel Programming [OR98, Ort00, Ort03, Ort04, Ort05, Ort07a] are used here. As they

specify the problem they solve as a function in terms of data and algorithm, linking it with

a solution as a form describing an organisation of parallel software components that

simultaneously execute. So, Architectural Patterns are used here to select a coordination

for the parallel software, which at the same time represents a form of the parallel

software as a whole [OR98].

The importance of Coordination Design relies on the novelty and innovation which originate

in this step. Several requirements depend on the Coordination Design, requirements such

as performance, cost, maintainability, reliability, and so on. Particularly, it is in this step

where performance can be improved.

 15

The division of a problem into small and manageable components is the essence of parallel

programming. Software designers partition the data and/or the algorithm of the problem

into smaller sub-data and/or sub-algorithms. The sub-data and/or the sub-algorithms

become small enough so the processing can be faster carried out. Thus, in Parallel

Software Design, the term ‘Parallel Software System’ describes a set of interconnected

software components that cooperate to carry out a defined function. Each software

component can be seen as a complete system, and it is normally referred to as a ‘sub-

system’.

As any design activity, Coordination Design based on Architectural Patterns follow a basic

procedure. Figure 6 shows the steps of such a common procedure, as a block diagram

composed of steps such as scoping, analysis, synthesis, and documentation.

Analysis

Scoping

Synthesis

Documentation

Specification of the Problem

Specification of the System

Figure 6.

The Specification of the Problem is used as input for the Coordination Design. The

description about data and algorithm is used to select an Architectural Pattern that

describes a potential parallel solution. The concise description included in the

 16

Specification of the Problem is a statement of what the parallel software has to achieve.

The Coordination Design using Architectural Patterns is expected to articulate the

software components in enough detail that it can be actually implemented by code.

The result of the Coordination Design is a document: the Specification of the System,

which is developed around the description provided by the Architectural Pattern. Thus, it

contains a description of each software component, as well as a description of how they

act simultaneously and together to work as a parallel software system. It also includes a

rationale that shows how the parallel software system based on this coordination (as

described by the Architectural Pattern) meets the specification of the problem.

A very first stage is to figure out even if the parallel software is necessary. If a problem

has already been solved by someone else, and the parallel software is available, then the

design effort is not much, mostly focusing on adjusting the parallel software to the

platform at hand. In order to find a potential parallel software, it is possible to search the

Web for relevant solutions. Another approach is to look for someone who has or had a

similar problem, who can direct to a solution or perhaps to a vendor of a product.

Nevertheless, in parallel programming, it is very unlikely to find a precise parallel software

that fits to the problem at hand. Normally, a parallel software found in any of the previous

ways still requires some adjustment for executing on the available platform. Moreover, it

is very likely that the parallel software does not precisely meet the performance and cost

requirements.

Commonly, in parallel programming, most problems have not been solved, and hence, a

parallel software has to be developed. This is complex enough, so there is no obvious

parallel program as a solution. In such a case, an initial parallel software is proposed, whose

coordination is described in the form of an Architectural Pattern. This, effectively,

divides the algorithm and/or data into a collection of well defined, coordinated software

components. Later, the coordination software components are detailed and refined in

terms of communication structures, as part of the next step ‘Communication Design’, in

which some Design Patterns are proposed to act as such communication structures.

As it is shown in Figure 6, the Coordination Design step involves three main stages:

scoping, synthesis, analysis, and documentation.

 17

1. Scoping. The focus of this step is to develop the structure of a coordination as a

guiding idea or principle of the parallel software system. The objective is count

with a general description, which differentiates the parallel software system from

its environment. Also, scoping relates with defining a concept of the parallel

software system. Architectural Patterns help with his definition, by describing

different types of solutions based on the division of the data, the algorithm, or

both.

2. Synthesis. The coordination serves as a well-defined structure for the parallel

software system. This should be described in terms of a synthesis of software

components, as detailed as needed, in order to support the selected partition and

allow for an analysis regarding its performance and cost properties.

3. Analysis. This step refers to determine if the parallel software system, based on

the current proposed coordination, meets the performance and cost requirements

as presented in the specification of the problem. The objective is to clarify if the

coordination actually serves its purpose, and can be used as a base for further

development towards the parallel software system.

4. Documentation. The Coordination Design process goes from synthesis to analysis,

forward and backwards, until an acceptable coordination with particular properties

is found. After this, the final stage in Coordination Design is to document the

coordination as well as the proposed the decisions that led to it. So, it has to

document the functionality of each software component and explains how these

interact together. So, the Specification of the System is the output of the

Coordination Design.

Refinement and elaboration of the coordination is carried out though iteratively cycle

between synthesis and analysis. It is common to go through several cycles before an

acceptable solution is obtained. Analysis becomes each time more and more detailed in

each iterative cycle. During the first iterations, the objective is to find major

deficiencies, whereas the last iterations are used to expose the performance limits.

Architectural Patterns encapsulate the design experience of coordination in Parallel

Software Design. They reflect the effort spent in previous parallel programs, as well as

refers to the potential properties and features of the parallel software. Their objective is

to easily describe the coordination of a parallel software system. Perhaps the most

 18

important issue to keep in mind is that Architectural Patterns have to be described in such

a way that the following two steps, ‘Communication Design’ and ‘Detailed Design’ can be

carried out individually by a single designer or programmer.

There are some particular advises and suggestions to be taken into consideration when

expressing the coordination of a parallel software system in terms of an Architectural

Pattern:

• Each software component is considered as a enclosed container of code, and

hence, it should be possible to implement it using a single paradigm, technology,

or programming language constructions.

• Common software components are put together, so descriptions of types and

classes are feasible.

• Software components should be defined so to simplify the interfaces between

them. Minimal information has to be exchanged between software components.

• Always, avoid communication cycles. These are common sources of deadlock.

The Specification of the System is the final document obtained in the Coordination Design

step. Such a document should serve as reference about information regarding the parallel

software system, and has to be available for everyone with a stake in its development. The

Specification of the System has several purposes: (a) it should allow for continue the

design method into the ‘Communication Design’ and ‘Detailed Design’ steps; (b) it keeps the

description of the coordination of the parallel software system, so that it can be revised

and changed in response to problems found later; (c) it is the main reference to future

generations of the parallel software system; and (d) it is the source of information for

testing the parallel software system.

Normally, the specification of the system has the following sections:

1. The scope. This section presents the basics of operation of the parallel software

system. It also includes information about the system and its surrounding

environment.

2. Structure and dynamics. This section is based on the information of the

Architectural Pattern used, attempting to establish the interactions among

software components but in the terms of the algorithm and data at hand.

 19

3. Functional description of software components. This section describes each

software component as a participant of the Architectural Pattern, establishing its

responsibilities, input and output.

4. Description of the coordination. This section describes how the coordination of the

software components acts as a single entity, making the parallel software system

work.

5. Coordination analysis. This section contains elements which serve to establish the

advantages and disadvantages of the coordination proposed.

The specification of the system serves as an initial description of the parallel software

system, and after it, the design method goes to the Communication Design step, as a

refinement of the communication software components as described for the coordination

used.

4.1 Architectural Patterns for Parallel Programming

The Architectural Patterns for Parallel Programming are descriptions that link a function,

in terms of an algorithm and data, with a potential parallel form composed of defined

software components or sub-systems connected together. Each software component has

at the same time a well defined functionality. Thus, these Architectural Patterns can be

considered as descriptions of well defined structures or forms in terms of the

functionality of its software components or sub-systems, which simultaneously execute.

The software components in these Architectural Patterns describe software components

that partition the data and/or the algorithm, coordinating their activity in order to

efficiently perform the function [OR98].

Architectural Patterns for Parallel Programming are used by software designers to

communicate the form and structure of a parallel software [OR98]. They provide

information about the problem they solve, making it a valuable piece of information for

Parallel Software Design. Nevertheless, their value is not limited to communication. They

are a big aid in organising ideas, as well as helping to estimate cost and effort of the

parallel software development.

 20

4.2 Classification of Architectural Patterns for Parallel Programming

The Architectural Patterns for Parallel Programming are defined and classified according

to the requirements of order of data and operations, and the nature of their processing

components [OR98].

Classification based on the order of data and operations. Requirements of order

dictate the way in which a parallel process has to be performed, and therefore, impact on

its Software Design. Following this, it is possible to consider that the coordination of most

parallel applications fall into one of three forms of parallelism: functional parallelism,

domain parallelism, and activity parallelism [CG88, Fos94, CT92, Pan96], which depend on

the requirements of order of operations and data in the problem [OR98, Ort00, Ort03,

Ort04, Ort05, Ort07a].

Classification based on the nature of processing elements. The nature of processing

components is another classification criteria that can be used for parallel systems.

Generally, components of parallel systems perform coordination and processing activities.

Considering only the processing characteristic of the components, parallel systems are

classified as homogenous systems and heterogeneous systems, according to the same or

different processing nature of their components. This nature exposes properties that

have tangible effects on their number in the system and the kind of communications among

them [OR98, Ort00, Ort03, Ort04, Ort05, Ort07a].

• Homogeneous systems are based on identical components interacting in accordance

with simple sets of behavioural rules. They represent instances with the same

behaviour. Individually, any component can be swapped with another without

noticeable change in the operation of the system. Usually, homogeneous systems

have a large number of components, which communicate using data exchange

operations.

• Heterogeneous systems are based on different components with specialised

behavioural rules and relations. Basically, the operation of the system relies on the

differences between components, and therefore, no component can be swapped

with another. In general, heterogeneous systems are composed of fewer

components than homogeneous systems, and communicate using function calls.

 21

Based on these classification criteria, the five Architectural Patterns for Parallel

Programming commonly used for defining the coordination organisation of parallel systems

programming are classified as shown in Table 1 [OR98]:

Type of Parallelism Type of Processing Architectural
Pattern Functional Domain Activity Homogeneous

Processing
Heterogeneous

Processing
Parallel Pipes
and Filters

X X

Parallel
Layers

X X

Communicating
Sequential
Elements

 X X

Manager
Workers

 X X

Shared
Resource

 X X

Table 1.

Notice from Table 1 that there is not a pattern considered for domain parallelism and

heterogeneous processing. The reason is not that there are no particular architectural

patterns for such classification, but more likely, that the parallel programs that would be

considered under such classification simply do not have a regular structure which could be

identified by a single architectural pattern. These would require to include several

organisations which solve many interesting problems, such as those commonly used in

simulation. So, the present thesis focuses more precisely on those categories which can be

identified to be represented as a regular structure, and described using a single

architectural pattern.

4.3 Selection of Architectural Patterns

The initial selection of one or several Architectural Patterns for Parallel Programming is

guided mainly by the properties used for classifying them. Based on this, a procedure for

selecting an architectural pattern can be specified as follows [OR98]:

1. Analyse the design problem and obtain its specification. Analyse and specify, as

precisely as possible, the problem in terms of its characteristics of order of data

and computations, the probable nature of its processing components, and

performance requirements. It is important to also consider the context conditions

 22

about the chosen parallel platform and language (see step 5) that may influence

the design. This stage is crucial to set up most of the basic forces to deal with

during the design.

2. Select the category of parallelism. In accordance with the problem specification,

select the category of parallelism —functional, domain or activity parallelism—

that best describes it.

3. Select the category of the nature of the processing components. Select the

nature of the process distribution —homogeneous or heterogeneous— among

components that best describes the problem specification. The nature of process

distribution indirectly reflects characteristics about the number of processing

components and the amount and kind of communications between them in the

solution.

4. Compare the problem specification with the architectural pattern’s Problem

section. The categories of parallelism and nature of processing components can be

simply used to guide the selection of an architectural pattern. In order to verify

that the selected pattern copes with the problem at hand, compare the problem

specification with the Problem section of the selected pattern. More specific

information and knowledge about the problem to be solved is required. Unless

problems were encountered up to this point, the architectural pattern selection

can be considered as completed. The design of the parallel software system

continues using the selected architectural pattern’s Solution section as a starting

point. On the other hand, if the architectural pattern selected does not

satisfactorily match aspects of the problem specification, it is possible to try to

select an alternative pattern, as follows.

5. Select an alternative architectural pattern. If the selected pattern does not

match the problem specification at hand, try to select another pattern that

alternatively may provide a better approach when it is modified, specialised or

combined with others. Checking the Examples, Known Uses and Related Patterns

sections of other pattern descriptions may be helpful for this. If an alternative

pattern is selected, return to the previous step to verify it copes with the problem

specification.

 23

If the previous steps do not provide a result, even after trying some alternative patterns,

stop searching. The architectural patterns here do not provide a coordination organisation

that can help to solve this particular problem. It is possible to look at other more general

pattern languages or systems [GHJV95, POSA1, POSA2, POSA4, PLoP1, PLoP2, PLoP3,

PLoP4, PLoP5] to see if they contain a pattern that can be used. Or the alternative is

trying to solve the design problem without using Software Patterns.

5. Communication Design — Design Patterns

Coordination Design expresses the function of a parallel software system in terms of

interacting software components which simultaneously execute, exchanging data as the

processing builds up. This data exchange is performed by programmed constructions that

follow one of many communication structures, which depends on the Architectural Pattern

selected for the coordination, as well as the type of communication and data to be

exchanged. So, some descriptions contained in the Specification of the System are

required.

The information about the type of coordination structure from the Coordination Design is

combined with information about the parallel hardware platform and the available parallel

programming language, in order to design the communication components. These

communication components along with the processing components compose the coordination

of the parallel software system. Nevertheless, they have different purposes:

• Processing components are those which effectively perform a transformation or

operation on data, and thus, they are developed as software components that

enclose a particular function.

• Communication components allow communication between the processing

components.

As Figure 7 shows, the design of the communication components (or simply, Communication

Design) is the third step of the design method, following the Coordination Design. The

objective of the Communication Design step is to document the descriptions of the

communication components of the parallel software. Such descriptions are gathered

together into a single document: the Specification of Communication Components. This

document contains the description of the software components as sub-systems or sub-

form that allow for communication and interaction between processing components. The

 24

communication components are developed mainly based on the particular characteristics

available from the type of memory organisation of the hardware platform (whether shared

memory or distributed memory), the available communication mechanisms of the parallel

programming language, and requirements regarding the coordination organisation from the

previous step. All these are proposed again as a form for the communication components

that attempt to meet the requirements stated in the Specification of the Problem.

Communication Design

Coordination Design

Problem Analysis

Detailed Design

Implementation and Evaluation

Specification of Communication Components

Figure 7.

The design of the communication components involves again the activities of scoping,

analysis, synthesis, refinement, and document the actual design decisions as the

description of components that allow for communication between parallel software

components. Such design decisions are supported at this point by the Design Patterns for

Communication Components [Ort07b], as part of the Pattern-based Parallel Software

Design Method . These Design Patterns specify the problem they solve as a need for

communication between parallel software components which depend on (a) the selected

coordination for the parallel software system under design, (b) the memory organisation of

the hardware platform, and (c) the type of synchronisation proposed. Thus, these Design

Patterns link these requirements with a solution, as a form describing an organisation of

software components that allow for communication between parallel software components.

 25

Therefore, Design Patterns are used here to select an organisation of software

components for communicating the parallel software processing components. Hence,

communicating and processing software components compose the parallel software system

as a whole.

The importance of Communication Design relies on using experience about the design and

implementation of communication software components. Even though they do not impact

the parallel software system as a whole, they do affect the form of communication sub-

systems. Several communication requirements as considered during the Coordination

Design, such as communication and synchronisation between communicating components,

depend on the organisation of communication components.

The communication between parallel software processing components is another important

feature of parallel programming. Software designers make use of particular organisations

of software components in order to achieve a certain type of communication. Separating

the software components of a parallel software system into processing and communication

components allows for the reuse of these communication components in other parallel

software systems.

In Software Design, a ‘Software System’ is described as a set of interconnected software

components that cooperate to carry out a defined function. Such an interconnection is

carried out by communication components, defining the cooperation between software

components. Each communication component is normally referred to as a ‘sub-system’. At

this level, Software Design describe the implementation of a communication software sub-

system, which usually is developed as a set of encapsulated components that only carry out

a communication functionality.

As any design activity, Communication Design based on Design Patterns for Communication

Components follow the design basic procedure composed of steps such as scoping, analysis,

synthesis, and documentation (Figure 8).

 26

Analysis

Scoping

Synthesis

Documentation

Specification of the Problem Specification of the System

Specification of Communication Components

Figure 8.

The Specification of the Problem and the Specification of the System are used as inputs

for Communication Design. From the Specification of the Problem, the description of the

parallel hardware platform, regarding its memory organisation, and the communication

primitives from the parallel programming language, are taken into consideration here. This

information, along with the description of the coordination selected in the Coordination

Design stage, is used to select a design pattern that describes a potential communication

solution. Thus, the Communication Design using design patterns is aims to articulate

software components as a communication sub-system in enough detail that they can be

actually implemented using code.

The outcome of the Communication Design is the Specification of the Communication

Components, a document that describes the communication software sub-systems based on

the design pattern selected. Such a document describes these sub-systems in terms of

software components that allow the data exchange between parallel software components,

 27

along with the rationale about how the communication sub-systems based on this design

pattern meets the communication requirements as described in the Specification of the

Problem and the Specification of the System. Later, from the Specification of the

Communication Components, such components are detailed and refined in terms of

synchronisation mechanisms as part of the next step ‘Detailed Design’, in which some

idioms are used to actually perform communication.

As Figure 8 shows, the Communication Design step also involves the three main stages as in

any design activity: scoping, synthesis, analysis, and documentation.

1. Scoping. This step proposes an initial structure for the communication sub-system as

a principle of the communication components of the parallel software system. The

objective is to obtain a description of the communication sub-system. Design

Patterns for Communication Components help to obtain this description, describing

different types of communication structures as solutions based on the selected

coordination, the memory organisation, and the synchronisation mechanisms

included in the parallel programming language.

2. Synthesis. The communication sub-systems attempts to provide a well-described

communication structure for the parallel software system. Such a structure is

described as a synthesis of software components, supporting the selected type of

communication and allowing an analysis regarding its properties.

3. Analysis. This step determines whether the communication sub-system based on the

current proposed communication structure meets the requirements as needed by

the coordination and presented in the specification of the problem. The objective

is to check if the communication actually accomplishes its purpose, and can be used

as a base for further development towards a more detailed and complete design

and implementation of the parallel software system.

4. Documentation. The Communication Design goes iteratively from synthesis to

analysis, until an adequate communication sub-system is found. After this, the

communication design finishes by actually documenting the communication

structure with all the design decisions that led to it, into the Specification of the

Communication Components. This document describes the functionality of each

software component, explaining their interaction to carry out the communication

between parallel software components.

 28

The Specification of the Communication Components is the document obtained from the

Communication Design step, and it is added with the Specification of the System in order

to provide a more detailed design for the parallel software system in development. So, the

Specification of the Communication Components is expected to serve as the reference

regarding the communication sub-systems, as part of the coordination of the parallel

software system, and as any other specification in the method, it has to be available for

everyone with a stake in its development. The Specification of the Communication

Components has several objectives: (a) it should allow to go on with the next design step in

the method, ‘Detailed Design’; (b) it keeps the description of the communication sub-

systems of the parallel software system, so that such sub-systems can be revised and

changed in response to problems found later; and (c) it should help for testing the

communication sub-systems of the parallel software system.

Normally, the specification of the system has the following sections:

1. The scope. This section presents the basic information about the parallel hardware

platform and the programming language, as well as the selected coordination,

relevant for choosing a particular communication structure.

2. Structure and dynamics. This section takes information of the Design Pattern,

expressing the interaction between software components that carry out the

communication between parallel software components.

3. Functional description of software components. This section describes each

software component of the communication sub-system as a participant of the

Design Pattern, establishing its responsibilities, input and output.

4. Description of the communication. This section describes how the communication

sub-system acts as a single entity, allowing the exchange of information between

parallel software components.

5. Communication analysis. This section contains issues about the advantages and

disadvantages of the communication structure proposed.

The Specification of the Communication Components is a description of the communication

sub-systems of the parallel software system. Following the design method, the next step

 29

is the Detailed Design step, as a refinement of the communication software components

with synchronisation mechanisms.

5.1. Design Patterns for Communication Components

The Design Patterns for Communication Components are descriptions that link a

communication functionality with a potential software sub-system form for communication

software components which connect and communicate parallel software components. Each

communication software component has a well defined functionality within the

communication. Thus, these Design Patterns can be seen as descriptions of well defined

structures or forms for communication sub-systems, which connect parallel software

components that simultaneously execute. The software components in every Design

Pattern describe a form in which components allow for a type of communication or data

exchange, coordinating the activity between parallel software components.

Design Patterns for Communication Components are used by software designers to

describe the form and structure of communication software components. Each Design

Pattern provides information about the communication it allows, making it a valuable piece

of information for Parallel Software Design.

The application of the Design Patterns for Communication Components directly depends on

the Architectural Pattern for Parallel Programming which they are part of, detailing a

communication and synchronisation function as a local problem, and providing a form as a

local solution of software components for such a communication problem.

5.2. Classification of Design Patterns for Communication Components

The Design Patterns for Communication Components are classified taking into

consideration several characteristics of the communication they perform, as well as

contextual features. Hence, these Design Patterns are defined and classified according to:

• The Architectural Pattern of the overall parallel software system. The

communication components have to be designed to allow communications in parallel

systems based on an Architectural Pattern such as Parallel Pipes and Filters

[OR98, Ort05], Parallel Layers [OR98, Ort07a], Communicating Sequential

Elements [OR98, Ort00], Manager-Workers [OR98, Ort04], or Shared Resource

[OR98, Ort03]. The type of parallelism used in the overall parallel software system

 30

is an important contextual indicator of the type of communication component to be

designed.

• The memory organisation of the parallel hardware platform. The communication

components are designed and implemented through programming mechanisms that

cope with a parallel hardware platform with (a) shared memory, or (b) distributed

memory [And91, Har98, And00]. The type of memory organisation is an indicator

of the kind of programming mechanisms to be used when designing and

implementing communication components.

• The type of synchronisation. Depending on the memory organisation,

communication components are implemented through programming mechanisms that

involve (a) synchronous communications, or (b) asynchronous communications.

Based on this classification criteria, Table 2 presents the Design Patterns for

Communication Components, classified regarding the parallelism of the overall parallel

software system, the memory organisation of the parallel hardware platform, and the type

of synchronisation used for their implementation [Ort07b].

Type of
Synchronisation

Memory Organisation
Design
Pattern

Architectural

Pattern Sync. Async. Shared
Memory

Distributed
Memory

Shared Variable
Pipe pattern

Parallel Pipes
and Filters

 X X

Multiple Local
Call pattern

Parallel Layers X X

Message Passing
Pipe pattern

Parallel Pipes
and Filters

 X X

Multiple Remote
Call pattern

Parallel Layers X X

Shared Variable
Channel pattern

Communicating
Sequential
Elements

 X X

Message Passing
Channel pattern

Communicating
Sequential
Elements

 X X

Local
Rendezvous

pattern

Manager-
Workers

or
Shared

Resource

X X

Remote Manager- X X

 31

Rendezvous
pattern

Workers
or

Shared
Resource

Table 2.

5.3. Selection of Design Patterns for Communication Components

The selection of one or several Design Patterns for Communication Components is mainly

guided by the classification schema. Based on this, a procedure for selecting a design

pattern can be specified as follows:

1. From the Architectural Pattern to be refined and detailed, select the Design

Patterns which provide communication components that allow the coordination as

described by the Architectural Pattern, and check the kind of communication that

best checks it.

2. Based on the memory organisation of the parallel hardware platform to be used,

select the nature of the communicating components for such memory organisation

—shared variable or message passing. The nature of the communicating components

directly impact on the way in which the processing components are communicated,

as well as the amount and kind of communications between them in the solution.

3. Select the type of synchronisation required for the communication. Normally,

synchronous and asynchronous communications are available for most applications.

Nevertheless, the type of synchronisation could be a difficult issue to deal with

during implementation, particularly if it does not allow a flexibility when

coordinating the activities within the Architectural Pattern used. Depending on the

kind of coordination developed, failure in the type of synchronisation available may

cause from delays in communication to complete deadlock of the whole application.

4. Once a Design Pattern is selected as a potential solution, compare the

communication specification with its Context and Problem sections. Unless any

problem has been found up to now, the design pattern selection can be considered

as completed. The design of the parallel software system continues using the

selected Design Pattern’s Solution section as a starting point for communication

design and implementation. On the other hand, if the Design Pattern selected does

not satisfactorily match aspects of the communication specification, it is possible

to try to select an alternative design pattern, as follows.

 32

5. Select an alternative design pattern. If the selected design pattern does not

match the communication specification at hand, try to select another design

pattern that alternatively may provide a better approach when it is modified,

specialised or combined with others. Aiming for this, it is possible to pay special

attention to the Examples, Known Uses and Related Patterns sections of other

design patterns, which may be helpful for the communication problem at hand. If

an alternative design pattern is selected, return to the previous step to verify it

copes with the communication specification.

If after attempting a few times with the previous steps do not yield a simple result, even

trying some alternative design patterns, perhaps it is time to stop searching. The design

patterns presented here most likely do not provide a communication structure that can

help to solve this particular communication problem. It is possible to search other more

general pattern languages or systems [GHJV95, POSA1, POSA2, POSA4, PLoP1, PLoP2,

PLoP3, PLoP4, PLoP5] to see if they contain a pattern that can be used. Or the alternative

is trying to solve the communication problem without using Design Patterns.

6. Detailed Design — Idioms

After the Communication Design step, the next step in the Pattern-based Parallel

Software Design Method is the Detailed Design. This refers to take the characteristics

described in the Specification of the Problem, the Specification of the System, and the

Specification of the Communication Components, and generate the code for the required

synchronisation mechanisms, depending on the parallel programming language at hand.

Hence, this step is called Detailed Design since the communication sub-systems (described

in the Communication Design step) of the coordination (as defined in the Coordination

Design step) are actually structured into synchronisation and communication mechanisms

of a real parallel programming language, such as semaphores, critical regions, monitors,

message passing, or remote procedure calls.

Figure 9 shows the relation of the Detailed Design step with the other steps of the design

method. As within the other design steps, the Detailed Design has the objective of

producing a document which describes how the communication sub-systems within the

coordination are designed and implemented using the primitives of the programming

language at hand, this is, the initial code that allows for the information exchange between

parallel software components of the parallel software system. Thus, such a code is made

 33

part, along with the Specification of the Problem, Specification of the System, and the

Specification of the Communication Components, to compose a single full document that

describes the whole parallel system architecture: the Parallel Software System

Description. This document is expected to fully describe the parallel software system at

the three different levels of design: coordination, communication, and synchronisation

mechanisms, or, in Software Pattern terms, Architectural Patterns, Design Patterns, and

Idioms. Notice that the relation between the solution structures proposed at each level of

design have a strict ‘contains in’ relation with the structures in levels above it. The Parallel

Software System Description is a description of the whole parallel software system,

composed of different levels of design and abstraction, as well as the forms (structures)

and functionalities (dynamics) of the software components that constitute it, and how

these are gathered together so the parallel software system acts as a whole, complete

entity. Also, it should consider how the parallel software system meets its requirements,

as stated in the Specification of the Problem document.

Communication Design

Coordination Design

Problem Analysis

Detailed Design

Implementation and Evaluation

Parallel Software System Description

Figure 9.

Designing at the level of coding the synchronisation mechanisms again is based on the

general design, involving about scoping, analysis, synthesis, refinement, and documenting

 34

(Figure 10). Moreover, in this pattern-based approach to Parallel Software Design, idioms

are proposed as the low level patterns used here.

Analysis

Scoping

Synthesis

Codification

Specification of the Problem

Specification of the System

Coded Synchronisation Mechanisms

Specification of Communication Components

Figure 10.

The Detailed Design step takes as input the Specification of the Problem, the

Specification of the System, and the Specification of the Communication Components,

since this step requires a lot of information of the design decisions taken in all previous

steps, so these are taken into consideration when coding the synchronisation mechanisms.

These are the programming elements that actually perform the communication and

coordination between parallel software components. At this step, the Specification of the

Problem provides information about the parallel hardware platform and the programming

language, which determines several characteristics of the synchronisation mechanisms to

be used. The Specification of the System provides a description about how the parallel

software components coordinate in order to perform the processing as a whole, and thus,

 35

provide information about what should be expected from the synchronisation mechanisms.

Finally, the Specification of the Communication Components provide the programming pla

where the synchronisation components are actually used. As it can be observed, all t

ce

his

esign effort focuses on creating a coordination for the Parallel Software System.

on of

 and together to coordinate the simultaneous execution of the parallel

ftware system.

ure 10, the detailed design

ste

1. S ent

help with this definition, by describing

2. S

d, in

w for an analysis regarding its functionality and some of its

3. A

s

whose source is unknown may arise. So, the code for communication components

d

The result of the Detailed Design is not properly a document, but a coded specification of

the synchronisation mechanisms. This coded specification is added along with the rest of

the documents into a single design document, in order to provide a complete descripti

the parallel software system. Such a document contains a description of the parallel

software system, as well as descriptions at several levels of detail about the coordination,

communication, and synchronisation used in this design. It also provide how all components

acts simultaneously

so

Commonly, the type of low level design and implementation presented in the Detailed

Design stage is covered in most parallel programming publications, and as such, they are

the primary source to search for idioms. As it is shown in Fig

p involves scoping, synthesis, analysis, and codification.

coping. The focus of this step in the Detailed Design is to define the environm

in which the synchronisation mechanisms are used within the communication

components or sub-systems. Idioms

different types of coded solutions.

ynthesis. An initial code for the synchronisation mechanisms coordination serves as

basic programming structure for the communication and synchronisation between

parallel software components. This should describe a few lines of code which

actually perform the communication, ant it should be as detailed as neede

order to allo

properties.

nalysis. The objective here is to check if the communication is actually and

adequately performed using the provided code, helping to detect and correct

problems in the code. This seems something easy, but if in the final implementation

of the communication components, these do not act as expected, a lot of problem

 36

should be tested, in order to understand as clearly as possible how it allows for the

communication.

4. Codification. Just as every design process, the Detailed Design iterates through

synthesis and analysis until an acceptable code with a defined communication and

synchronisation functionality is found. This code is kept as part of the design of

the parallel software system, as well as part of the system itself. This is the first

coding within the Pattern-based Method, and it is aimed to carry out coordination

activities.

The Parallel Software System Description is the actual result of the design effort, but it

is still incomplete. In order to finish the method and obtain a working parallel software

system, it is needed to still provide an implementation for the processing components of

the parallel software system. Nevertheless, note that parallel design issues have been

addressed here, and the design and implementation of processing software components

can be carried out using concepts and techniques from sequential programming, as

described in the following step, Implementation and Evaluation.

6.1. Some Idioms for Synchronisation Mechanisms

Idioms for Synchronisation Mechanisms specify how synchronisation mechanisms are used

within a piece of code (and hence, they are dependent of the programming language used)

serving as a coded solution to a particular problem of representing a synchronisation

mechanism in a particular programming language. Thus, Idioms for Synchronisation

Mechanisms are used here to deal with implementation of the communication sub-systems.

Idioms for Synchronisation Mechanisms link a well defined function with a piece of actual

code in a parallel programming language that carries out such function. Moreover, this

function is generally used over and over through the code of a parallel program. Thus,

these idioms represent descriptions of well defined code structures or forms in terms of

the functionality they capture. They are used as the basic blocks to implement the actual

communication software components.

Idioms for Synchronisation Mechanisms can be used by software designers in parallel

programming in order to communicate a coded form or structure of synchronisation

mechanisms within a parallel program. Hence, idioms are the basic element for

 37

programming activities, making them important pieces of information for Parallel Software

Design.

Here, just some Idioms for Synchronisation Mechanisms are presented. This is so since

there is a large amount of related patterns and previous work on the issues presented

here. Nevertheless, the objective here is to present these idioms within the context of

adding synchronisation mechanisms to the communication components, which act as part of

a larger coordination for a parallel software system. As such, the idioms here provide a

coded form to the synchronisation mechanisms, as local implementation solutions for within

a communication assembly.

6.2. Classification of Some Idioms for Synchronisation Mechanisms

The Idioms for Synchronisation Mechanisms presented here are classified taking into

consideration the memory organisation, as well as the type of communication:

• The memory organisation. The idioms can be used within a memory organisation

with shared or distributed memory. This use implies that idioms can be classified

regarding their use to communicate between components using (a) shared variable

or (b) message passing and remote procedure call [And91, Har98, And00]. These

two ways of communication indicate the kind of programming synchronisation

mechanisms to be used when designing and implementing communication

components.

• The type of communication. Idioms are able to implement synchronisation

mechanisms between components regarding two types of communication: (a) data

exchange, or (b) function call. Data exchange implies that there is an actual pass of

data from one component to another. Function call implies that a component

invokes a function within another component. Function call can be used to

implement data exchange.

Based on these two characteristics as classification criteria, Table 4.3 presents these

synchronisation mechanisms, classified regarding the memory organisation and the type of

communication.

Idiom Type of Communication Communication
Mechanism

 38

Data

Exchange
Function

Call
Shared
Variable

Message
Passing

Semaphore
idiom

X X

Critical
Region idiom

 X X

Monitor
idiom

 X X

Message
Passing idiom

X X

Remote
Procedure
Call idiom

 X X

Tabla 3.

When used within the Design Patterns for Communication Components, one or several of

these idioms can be applied, in order to achieve the synchronisation features as required

by the communication components.

6.3. Selection of Some Idioms for Synchronisation Mechanisms

The selection of one or several idioms for synchronisation mechanisms is guided mainly by

the classification schema explained before. Based on this, a simple procedure for selecting

an idiom can be considered as follows:

1) From the Design Patterns for Communication Components to be refined and detailed

using synchronisation mechanisms, select the idiom which provide the synchronisation

as required by the communication sub-system as described by the Design Pattern, and

check if the synchronisation that best fits in it.

2) Based on the memory organisation of the parallel hardware platform to be used —

shared memory or distributed memory—, select the type of synchronisation mechanism

for such memory organisation —shared variable or message passing. The memory

organisation directly impacts on the use of the synchronisation mechanisms by which

the processing components synchronise their actions, as well as the amount and kind of

communications between them in the solution.

3) Select the type of synchronisation required for the communication, and verify the way

in which it is available in the parallel programming language to be used in the

implementation. Normally, most programming languages include communication

primitives which allow synchronous and asynchronous communications. The type of

 39

synchronisation could represent a difficult issue to deal with during implementation,

particularly if it has particularities of its implementation within the programming

language which can only be noticed when executing communication activities. Thus,

depending on the implementation of communication primitives, failure in understanding

how they synchronise may cause from poor communication to deadlock of the whole

parallel application.

4) After checking the previous steps, compare the synchronisation specification with the

Context and Problem sections of the potential idiom to select. Unless a problem has

arisen by now, the selection of idioms can be considered finished. The design of the

parallel software system continues using the Solution section of the selected idiom for

designing and implementing the synchronisation mechanisms in the programming

language available. However, if the selected idiom does not satisfactorily match the

synchronisation specification, try to select an alternative idiom, as described in the

following steps.

5) Select an alternative idiom. If the selected idiom does not match the synchronisation

specification, look for one or more idioms that alternatively may provide a better

approach when modified, specialised or combined with other idioms. So, it is possible

to review other sections of the idioms, such as Examples, Known Uses and Related

Patterns, which may help with the synchronisation problem at hand. Normally, an

alternative idiom can be selected. Therefore, it is possible to return to the previous

step in order to verify if it copes with the synchronisation specification.

If after attempting with the previous steps do not yield a simple result, even trying some

alternative idioms, it is very likely that the idioms here do not cover a synchronisation

mechanism for the particular problem here. So, consider searching in other more general

pattern languages or systems [GHJV95, POSA1, POSA2, POSA4, PLoP1, PLoP2, PLoP3,

PLoP4, PLoP5] for a pattern that can be used here. Or the alternative is solving the

synchronisation problem without using Software Patterns.

7. Implementation and Evaluation

The final step of the Pattern-based Parallel Software Design Method is the

Implementation and Evaluation step. In this stage, all decisions regarding parallel

execution and communication have been solved in previous steps, so now it is time for

implementing the processing software components which actually carry out the

 40

computations and simultaneously execute. The processing components are actually inserted

into the coordination structure. This structure is composed of communication software

components, which are implemented using synchronisation mechanisms.

In this step, implementation means building and including the actual sequential code within

the parallel software components, as described in the Parallel Software System

Description, which entails the Specification of the Problem, the Specification of the

System, the Specification of the Communication Components, and the coding for the

synchronisation mechanisms. Also, as an integral part of this step, an evaluation of the

Parallel Software System is proposed in order to test if such a system actually performs

as required. In fact, the evaluation normally begins with testing and recording the

performance of the different components of the Parallel Software System. Starting with

the coordination software components in order to test if parallel execution and

communication are carried out as outlined, and adding later the processing software

components to test if such implementations really produce reasonable results. Once, the

software components have been evaluated, the Parallel Software System is tested against

the requirements proposed in the Specification of the Problem. It is expected that, if

such requirements are accomplished by the actual properties of the Parallel Software

System, then the whole development task involving design and implementation of a working

Parallel Software System is done (Figure 11). In any other case, the method proposed here

allows to back-track through the documentation of the design decisions taken, and correct

or improve the design and implementation. Software Patterns, and specifically Design

Patterns and Idioms , developed elsewhere in the Pattern Community literature, can be

used at this stage in order to design and implement the processing software components

[GHJV95, PLoP1, PLoP2, PLoP3, PLoP4, PLoP5, POSA1, POSA2, POSA4].

 41

Communication Design

Coordination Design

Problem Analysis

Detailed Design

Implementation and Evaluation

Parallel Software System Description

A Parallel Software
System

Figure 11.

Figure 12 shows the activities required to take the Parallel Software System Description,

and turn it into a working Parallel Software System by implementing its sequential parts of

code. Notice that this stage requires that the implementation of each processing software

component, and when these are inserted into the coordination structure, then the output

is a resulting Parallel Software System. The final activity is involved with evaluating such a

system, normally against performance requirements. The evaluation is composed by a

series of tests, and these tests determine whether or not the Parallel Software System

and its design are acceptable.

 42

Implementation of
SW component 1

Integration

Parallel Software System Description Specification of the Problem

Evaluation
Evaluation Plan

Implementation of
SW component N

A Parallel Software
System

Figure 12.

Due to the importance of evaluation, normally it is necessary to develop an Evaluation Plan

in advance, from the Specification of the Problem. In order to find any incorrect

interpretation in the Specification of the Problem, in the best case the Evaluation Plan is

commonly developed by someone outside the software design team. Nevertheless, if the

Specification of the Problem has been thoroughly developed and taken into consideration

through the design and implementation, it should be not so difficult to prepare a series of

tests which verify if the Parallel Software System is ready or not.

8. Summary

This chapter introduces a Pattern-based Parallel Software Design Method, which attempts

to serve as a guidance to follow through the development of a complete parallel software

applications, commencing with the need for high-performance from a Problem Description,

and finishing with a complete Parallel Software System. This is the framework in which all

 43

the design (and sometimes some implementation) is contained, in the form of several

Software Patterns that are used for the design and implementation of the coordination.

 44

	Parallel Software Design
	1. A General Parallel Software Design Process
	2. A Pattern-based Parallel Software Design Method
	3. Problem Analysis
	4. Coordination Design — Architectural Patterns
	4.1 Architectural Patterns for Parallel Programming
	4.2 Classification of Architectural Patterns for Parallel Programming
	4.3 Selection of Architectural Patterns

	5. Communication Design — Design Patterns
	5.1. Design Patterns for Communication Components
	5.2. Classification of Design Patterns for Communication Components
	5.3. Selection of Design Patterns for Communication Components

	6. Detailed Design — Idioms
	6.1. Some Idioms for Synchronisation Mechanisms
	6.2. Classification of Some Idioms for Synchronisation Mechanisms
	6.3. Selection of Some Idioms for Synchronisation Mechanisms

	7. Implementation and Evaluation
	8. Summary

