
Programming J.J. Horning
Languages Editor

Distributed Processes:
A Concurrent
Programming Concept
Per Brinch Hansen
University of Southern California

A language concept for concurrent processes
without common variables is introduced. These
processes communicate and synchronize by means of
procedure calls and guarded regions. This concept is
proposed for real-time applications controlled by
microcomputer networks with distributed storage. The
paper gives several examples of distributed processes
and shows that they include procedures, coroutines,
classes, monitors, processes, semaphores, buffers, path
expressions, and input/output as special cases.

Key Words and Phrases: concurrent programming,
distributed processes, microprocessor networks,
nondeterminism, guarded regions, programming
languages, process communication and scheduling,
sorting arrays, coroutines, classes, monitors, processes,
semaphores, buffers, path expressions, input/output

CR Categories: 3.8, 4.2, 4.22, 4.32, 5.24

1. Introduction

This paper introduces distributed processes--a new
language concept for concurrent programming. It is pro-
posed for real-time applications controlled by microcom-
puter networks with distributed storage. The paper gives
several examples of distributed processes and shows that
they include procedures, coroutines, classes, monitors,
processes, semaphores, buffers, path expressions and in-
put/output as special cases.

Real-time applications push computer and program-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was partially supported by the Office of Naval Research
under Contract NR049-415.

Author's address: Computer Science Department, University of
Southern California, Los Angeles, CA 90007.
© 1978 ACM 0001-0782/78/1100-0934 $00.75

934

ming technology to its limits (and sometimes beyond). A
real-time system is expected to monitor simultaneous
activities with critical timing constraints continuously
and reliably. The consequences of system failure can be
serious.

Real-time programs must achieve the ultimate in
simplicity, reliability, and efficiency. Otherwise one can
neither understand them, depend on them, nor expect
them to keep pace with their environments. To make
real-time programs manageable it is essential to write
them in an abstract programming language that hides
irrelevant machine detail and makes extensive compila-
tion checks possible. To make real-time programs effi-
cient at the same time will probably require the design
of computer architectures tailored to abstract languages
(or even to particular applications).

From a language designer's point of view, real-time
programs have these characteristics:

(1) A real-time program interacts with an environ-
ment in which many things happen simultaneously at
high speeds.

(2) A real-time program must respond to a variety
of nondeterministic requests from its environment. The
program cannot predict the order in which these requests
will be made but must respond to them within certain
time limits. Otherwise, input data may be lost or output
data may lose their significance.

(3) A real-time program controls a computer with a
fixed configuration of processors and peripherals and
performs (in most cases) a fLxed number of concurrent
tasks in its environment.

(4) A real-time program never terminates but contin-
ues to serve its environment as long as the computer
works. (The occasional need to stop a real-time program,
say at the end of an experiment, can be handled by ad
hoc mechanisms, such as turning the machine off or
loading another program into it.)

What is needed then for real-time applications is the
ability to specify a fixed number of concurrent tasks that
can respond fast to nondeterministic requests. The pro-
gramming languages Concurrent Pascal and Modula
come close to satisfying the requirements for abstract
concurrent programming [1, 2, 10]. Both of them are
based on the monitor concept [3, 7]. Modula, however, is
primarily oriented towards multiprogramming on a sin-
gle processor. And a straightforward implementation of
Concurrent Pascal requires a single processor or a mul-
tiprocessor with a common store. In their present form,
these languages are not ideal for a microcomputer net-
work with distributed storage only.

It may well be possible to modify Concurrent Pascal
to satisfy the constraints of distributed storage. The ideas
proposed here are more attractive, however, because they
unify the monitor and process concepts and result in
more elegant programs. The new language concepts for
real-time applications have the following properties:

(1) A real-time program consists of a fixed number
of concurrent processes that are started simultaneously

Communications November 1978
of Volume 21
the ACM Number 11

and exist forever. Each process can access its own varia-
bles only. There are no common variables.

(2) A process can call common procedures defined
within other processes. These procedures are executed
when the other processes are waiting for some condi-
tions to become true. This is the only form of process
communication.

(3) Processes are synchronized by means of nonde-
terministic statements called guarded regions [4, 8].

These processes can be used as program modules in
a multiprocessor system with common or distributed
storage. To satisfy the real-time constraints each proc-
essor will be dedicated to a single process. When a
process is waiting for some condition to become true
then its processor is also waiting until an external pro-
cedure call makes the condition true. This does not
represent a waste of resources but rather a temporary
lack of useful work for that processor. Parameter passing
between processes can be implemented either by copying
within a common store or by input/output between
separate stores.

The problems of designing verification rules and
computer architectures for distributed processes are cur-
rently being studied and are not discussed~ This paper
also ignores the serious problems of performance evalu-
ation and fault tolerance.

2. Language Concepts

A concurrent program consists of a fixed number of
sequential processes that are executed simultaneously. A
process defines its own variables, some common proce-
dures, and an initial statement

process name
own variables
common procedures
initial statement

A process may only access its own variables. There are
no common variables. But a proces s may call common
procedures defined either within itself or within other
processes. A procedure call from one process to another
is called an external request.

A process performs two kinds of operations then: the
initial statement and the external requests made by other
processes. These operations are executed one at a time
by interleaving. A process begins by executing its initial
statement. This continues until the statement either ter-
minates or waits for a condition to become true. Then
another operation is started (as the result of an external
request). When this operation in turn terminates or waits
the process will either begin yet another operation (re-
quested by another process) or it will resume an earlier
operation (as the result of a condition becoming true).
This interleaving of the initial statement and the external
requests continues forever. If the initial statement ter-
minates, the process continues to exist and will still
accept external requests.

935

So the interleaving is controlled by the program (and
not by clock signals at the machine level). A process
switches from one operation to another only when an
operation terminates or waits for a condition within a
guarded region (introduced later).

A process continues to execute operations except
when all its current operations are delayed within
guarded regions or when it makes a request to another
process. In the first case, the process is idle until another
process calls it. In the second case, the process is idle
until the other process has completed the operation
requested by it. Apart from this nothing is assumed
about the order in which a process performs its opera-
tions.

A process guarantees only that it will perform some
operations as long as there are any unfinished operations
that can proceed. But only the programmer can ensure
that every operation is performed within a finite time.

A procedure defines its input and output parameters,
some local variables perhaps, and a statement that is
executed when it is called.

proc name (input param#output param)
local variables
statement

A process P can call a procedure R defined within
another process Q as follows:

call Q.R (expressions, variables)

Before the operation R is performed the expression
values of the call are assigned to the input parameters.
When the operation is finished the values of the output
parameters are assigned to the variables of the call.
Parameter passing between processes can therefore be
implemented either by copying within a common store
or by input/output between processors that have no
common store.

In this paper processes can call procedures within
one another without any restrictions. In a complete
programming language additional notation would be
added to limit the access rights of individual processes.
It may also be necessary to eliminate recursion to sim-
plify verification and implementation. But these are is-
sues that will not concern us here.

Nondeterminism will be controlled by two kinds of
statements called guarded commands and guarded re-
gions. A guarded region can delay an operation, but a
guarded command cannot.

A guarded command [6] enables a process to make
an arbitrary choice among several statements by inspect-
ing the current state of its variables. If none of the
alternatives are possible in the current state the guarded
command cannot be executed and will either be skipped
or cause a program exception.

The guarded commands have the following syntax
and meaning:

if B1 :SI IB2:S2I ... end
do B1 :SI IB2:S2I ... end

Communications November 1978
of Volume 21
the ACM Number 11

I f statement: If some of the conditions B1, B2 are
true then select one of the true conditions Bi and execute
the statement Si that follows it; otherwise, stop the
program.

(If the language includes a mechanism whereby one
process can detect the failure of another process, it is
reasonable to let an exception in a process stop that
process only. But, if recovery from programming errors
is not possible then it is more consistent to stop the whole
program. This paper does not address this important
issue.)

Do statement: While some of the conditions are true
select one of them arbitrarily and execute the correspond-
ing statement.

A guarded region [4, 8] enables a process to wait until
the state of its variables makes it possible to make an
arbitrary choice among several statements. If none of the
alternatives are possible in the current state the process
postpones the execution of the guarded region.

The guarded regions have the following syntax and
meaning:

when B1 : SI I B2:S2I ... end
cycle B1 : S I I B2:S2I ... end

When statement: Wait until one of the conditions is
true and execute the corresponding statement.

Cycle statement: Endless repetition of a when state-
ment.

If several conditions are true within a guarded com-
mand or region it is unpredictable which one of the
corresponding statements the machine will select. This
uncertainty reflects the nondeterministic nature of real-
time applications.

The data types used are either integers, Booleans, or
characters, or they are finite sets, sequences, and arrays
with at most n elements of some type T:

hat bool char
s e t [n]T seq[n]T a r ray[n]T

The following statement enumerates all the elements
in a data structure:

for x i n y : S end

For statement: For each element x in the set or array
y execute the statement S. A for statement can access
and change the values of array elements but can only
read the values of set elements.

Finally, it should be mentioned that the empty state-
ment is denoted skip and the use of semicolons is op-
tional.

3. Process Communication

The following presents several examples of the use of
these language concepts in concurrent programming. We
will first consider communication between processes by
means of procedure calls.

936

Example: Semaphore
A general semaphore initialized to zero can be im-

plemented as a process sem that defines wait and signal
operations.

process sem; s: int
proc wait when s > 0: s .--- s - 1 end
proc signal; s := s + 1
s ~ 0

The initial statement assigns the value zero to the sem-
aphore and terminates. The process, however, continues
to exist and can now be called by other processes

call sem.wait call sem.signal

Example: Message Buffer
A buffer process stores a sequence of characters

transmitted between processes by means of send and
receive operations.

process buffer; s: seq[n]char
proc send(c: char) when not s.full: s .put (c) end
proc rec(#v: char) when nut s.empty: s .get(v) end
s.--[]

The initial statement makes the buffer empty to begin
with. The buffer operations are called as follows:

call buf fer . send(x) call buffer.rec(y)

The semaphore and buffer processes are similar to
monitors: They define the representation of a shared data
structure and the meaningful operations on it. These
operations take place one at a time. After initialization,
a monitor is idle between external calls.

Example: Character Stream
A process inputs punched cards from a card reader

and outputs them as a sequence of characters through a
buffer process. The process deletes spaces at the end of
each card and terminates it by a newline character.

process s t ream
b: array[80]char; n, i: hat
do true:

call cardreader . input(b)
if b = blankline: skip I

b ~= blankline: i ~ 1; n ~ 80
do bin] = space: n .--- n - 1 end
do i _< n: call buffer.send(b[/]); i := i + 1 end

end
call buffer .send(newline)

end

This use of a process is similar to the traditional
process concept: the process executes an initial statement
only. It calls common procedures within other processes,
but does not define any within itself. Such a process does
not contain guarded regions because other processes are
unable to call it and make the conditions within it true.

The example also illustrates how peripheral devices
can be controlled by distributed processes. A device
(such as the card reader) is associated with a single
process. Other processes can access the device only

Communica t ions November 1978
of Volume 21
the A C M N u m b e r 11

th rough c o m m o n procedures. So a peripheral device is
just another process.

While a process is waiting for input /output , no other
operat ions take place within it. This is a special case o f
a more general rule: W h e n a process P calls a procedure
R within another process Q then R is considered an
indivisible operat ion within process P, and P will not
execute any other operat ion until R is finished (see
Section 2).

Notice, that there is no need for interrupts even in a
real-time language. Fast response to external requests is
achieved by dedicating a processor to each critical event
in the envi ronment and by making sure that these proc-
essors interact with a small number o f neighboring proc-
essors only (to prevent them from being overloaded with
too m a n y requests at a time).

Exercise: Write a process that receives a sequence o f
characters f rom a buffer process and outputs them line
by line to a printer. The process should output aformfeed
after every 60 lines.

4. R e s o u r c e S c h e d u l i n g

We will now look at a variety o f scheduling problems
solved by means o f guarded regions. It should perhaps
be ment ioned that resource schedulers are by nature
bottlenecks. It would therefore be wise in a real-time
program to make sure that each resource either is used
frequently by a small number o f processes or very infre-
quently by a larger number o f processes. In m a n y appli-
cations it is possible to avoid resource scheduling alto-
gether and dedicate a resource to a single process (as in
the card reader and line printer examples).

Example: Resource Scheduler
A set o f user processes can obtain exclusive access to

an abstract resource by calling request and release op-
erations within a scheduling process.

process resource; free: bool
proc request when free: free ~ false end
proc release if not free: free .---- true end
free ~ true

call resource.request ... call resource.release

The use o f the Boolean free forces a strict alternation o f
request and release operations. The program stops if an
at tempt is made to release a resource that already is free.

In this example, the scheduler does not know the
identity o f individual user processes. This is ideal when
it does not matter in which order the users are served.
But, if a scheduler must enforce a particular scheduling
policy (such as shortest job next) then it must know the
identity o f its users to be able to grant the resource to a
specific user. The following example shows how this can
be done.

937

Example: Shortest Job Next Scheduler

A scheduler allocates a resource among n user proc-
esses in shortest-job-next order. A request enters the
identity and service time o f a user process in a queue
and waits until that user is selected by the scheduler. A
release makes the resource available again.

The scheduler waits until one o f two situations arise:
(1) A process enters or leaves the queue: the scheduler

will scan the queue and select the next user (but will not
grant the resource to it yet).

(2) The resource is not being used and the next user
has been selected: the scheduler will grant the resource
to that user and remove it f rom the queue.

User processes identify themselves by unique indices
1, 2 n. The constant nil denotes an undef ined process
index.

The scheduler uses the following variables:

queue the indices of waiting processes
rank the service times of waiting processes
user the index of the current user (if any)
next the index of the next user (if any)

process sjn
queue: set[n] int; rank: array[n]int
user, next, min: int
proc request(who, time: int)
begin queue.include(who); rank[who] .--- time

next .--- nil; when user = who: next := nil end
end
proc release; user := nil

begin queue .--- []; user .--- nil; next .--- nil
cycle

not queue.empty & (next=nil):
min := maxinteger
for i in queue:

if rank[/] > min: skip[
rank[i] < min: next .--- i; min ~ rank[i]

end
end l

(user=nil) & (next,nil):
user .--- next; queue.exclude(user)

end
end

In a microprocessor network where each processor is
dedicated to a single process it is an attractive possibility
to let a process carry out computat ions between external
calls o f its procedures. The above scheduler takes advan-
tage o f this capabil i ty by selecting the next user while
the resource is still being used by the present user. It
would be simpler (but less efficient) to delay the selection
o f the next user until the previous one has released the
resource.

The scheduling o f individual processes is handled
completely by means o f guarded regions without the use
o f synchronizing variables, such as semaphores or event
queues.

The periodic evaluat ion o f a synchronizing condition,
such as "user = who," might be a serious load on a
common store shared by other processors. But it is quite
acceptable when it only involves the local store o f a
single processor that has nothing else to do. This is a

Communications November 1978
of Volume 21
the ACM Number 11

good e, xample of the influence of hardware technology
on abstract algorithms.

Exercise: Write a first-come, first-served scheduler.

Examt,le: Readers and Writers
Two kinds of processes, called readers and writers,

share a single resource. The readers can use the resource
simultaneously, but each writer must have exclusive
access to it. The readers and writers behave as follows:

call resource.startread call resource.startwrite
read write
call resource.endread call resource.endwrite

A variable s defines the current resource state as one of
the following:

s = 0 1 writer uses the resource
s = l 0 processes use the resource
s = 2 1 reader uses the resource
s = 3 2 readers use the resource

This leads to the following solution [4]:

process resource; s: int
proc startread when s _> l: s .--- s + l end
proc endread if s > 1: s .--- s - 1 end
proc startwrite when s = l: s :=- 0 end
proc endwrite if s = 0: s := 1 end
s . ' = l

Exercise: Solve the same problem with the additional
constraint that further reader requests should be delayed
as long as some writers are either waiting for or are using
the resource.

Example: Alarm Clock
An alarm clock process enables user processes to wait

for different time intervals. The alarm clock receives a
signal from a timer process after each time unit. (The
problems of representing a clock with a finite integer are
ignored here.)

process alarm; time: int
proc wait(interval: int)
due: int
begin due ~ time + interval

when time = due: skip end
end
proc tick; time ~ time + 1
t ime ~ 0

5. Process Arrays

So far we have only used one instance of each process.
The next example uses an array of n identical processes
[9]

process name[n]

A standard function this defines the identity of an indi-
vidual process within the array (1 <_ this _< n).

938

Example: Dining Philosophers
Five philosophers alternate between thinking and

eating. When a philosopher gets hungry, he joins a round
table and picks up two forks next to his plate and starts
eating. There are, however, only five forks on the table.
So a philosopher can eat only when none of his neighbors
are eating. When a philosopher has finished eating he
puts down his two forks and leaves the table again.

process philosopher[5]
do true: think

call table.join(this); eat; call table.leave(this)
end

process table; eating: set[5]int
proc join(i: int)
when (I / e l , t ~ l] & eating) = []: eating.include(i) end
proc leave(/: hat); eating.exclude(i)
eating .--- []

This solution does not prevent two philosophers from
starving a philosopher between them to death by eating
alternately.

Exercise: Solve the same problem without starvation.

Example: Sorting Array
A process array sorts m data items in time O(m). The

items are input through sort process 1 that stores the
smallest item input so far and passes the rest to its
successor sort process 2. The latter keeps the second
smallest item and passes the rest to its successor sort
process 3, and so on. When the m items have been input
they will be stored in their natural order in sort processes
1, 2 m. They can now be output in increasing order
through sort process 1. After each output the processes
receive the remaining items from their successors.

A user process behaves as follows:

A: array[m] int
for x in A: call sort[1].put(x) end
for x in A: call sort[l] .get(x) end

The sorting array can sort n elements or less (m _ n). A
sorting process is in equilibrium when it holds one item
only. When the equilibrium is disturbed by its predeces-
sor, a process takes the following action:

(1) If the process holds two items, it will keep the
smallest one and pass the largest one to its successor.

(2) If the process holds no items, but its successor
does, then the process will fetch the smallest item from
its successor.

A sorting process uses the following variables:

here the items stored in this process (0 _< here.length <_ 2)
rest the n u m b e r of items stored in its successors

A standard function succ defines the index of the succes-
sor process (succ = this + 1).

process sort[n]
here: seq[2]int; rest, temp: int
proc put(c: int) when here.length < 2: here.put(c) end
proc get(#v: int) when here.length = 1: here.get(v) end

Communica t ions No v emb er 1978
of Volume 21
the ACM N u m b e r 11

begin here := []; rest := 0
cycle

here.length = 2:
if he re [l] _< here[2]: temp .--- here[2]; here .--- [here[l]] I

he re [l] > here[2]: temp := here[l] ; here := [here[2]]
end
call sort[succ].put(temp); rest .'= rest + 1 I

(here.length = 0) & (rest > 0):
call sort[succ].get(temp); rest := rest - 1
here .--- [temp]

end
end

A hardware implementation of such a sorting array could
be used as a very efficient form of a priority scheduling
queue.

Exercise: Program a process array that contains N = 2 n
numbers to begin with and which will add them in time
O(log2N).

7. Coroutines

Distributed processes can also function as coroutines.
In a coroutine relationship between two processes P and
Q only one of them is running at a time. A resume
operation transfers control from one process to the other.
When a process is resumed it continues at the point
where it has transferred control to another process.

process P; go: bool
proc resume; go := true

begin go .--- false

call Q.resume
when go: go := false end

end

Process Q is very similar.

Since a process can define a common procedure it ob-
viously includes the procedure case as a special case. In
[9] Hoare shows that a process array also can simulate a
recursive procedure with a fixed maximum depth of
recursion.

Exercise: Write a process array that computes a Fibon-
acci number by recursion.

6. Abstract Data Types

A process combines a data structure and all the
possible operations on it into a single program module.
Since other processes can perform these operations only
on the data structure, but do not have direct access to it,
it is called an abstract data structure.

We have already seen that a process can function as
a monitor--an abstract data type that is shared by several
processes. The next example shows that a process also
can simulate a class - an abstract data type that is used
by a single process only.

Example: Vending Machine
A vending machine accepts one coin at a time. When

a button is pushed the machine returns an item with
change provided there is at least one item left and the
coins cover the cost of it; otherwise, all the coins are
returned.

process vending__machine
items, paid, cash: int
proc insert(coin: int) paid .--- paid + coin
proc push(#change , goods: int)
if (items > O) & (paid _ price):

change .--- paid - price; cash .--- cash + price
goods .--- 1; i tems .--- i tems - 1; paid .--- 0 I

(items = O) or (paid < price):
change .--- paid; goods .--- O; paid .--- 0

end
begin items .--- 50; paid := O; cash .--- 0 end

939

8. Path Expressions

Path expressions define meaningful sequences of op-
erations P, Q [5]. A path expression can be imple-
mented by a scheduling process that defines the opera-
tions P, Q as procedures and uses a state variable s
to enforce the sequence in which other processes may
invoke these procedures.

Suppose, for example, that the operation P only can
be followed by the operation Q as shown by the graph
below:

___> p> Q .--->

To implement this path expression one associates a
distinct state a, b, and c with each arrow in the graph
and programs the operations as follows:

proc P if s = a: ... s ~ b end
proc Q i f s = b: ... s ~ c end

I f P is called in the state s = a it will change the state to
s = b and make Q possible. Q, in turn, changes the state
from b to c. An attempt to perform P or Q in a state
where they are illegal will cause a program exception (or
a delay if a when statement is used within the operation).

The next path expression specifies that either P or Q
can be performed. This is enforced by means of two
states a and b.

proc P i f s = a: ... s ~ b end

proc Q if s = a: ... s .= b end

I f an operation P can be performed zero or more
times then the execution of P leaves the state s = a
unchanged as shown below.

)

~.__ / proc P i f s = a: end
1

P

Communications November 1978
of Volume 21
the ACM Number 11

The simple resource scheduler in Section 4 imple-
ments a composite path expression in which the sequence
reque'~t ... release is repeated zero or more times.

The readers and writers problem illustrates the use
of a ,;tate variable to permit some operations to take
place simultaneously while other operations are tempor-
arily excluded (in this case, simultaneous reading by
several processes excludes writing). Each simultaneous
operation P is surrounded by a pair of scheduling oper-
ations, startP and endP. The state variable counts the
number of P operations in progress.

9. Implementation Hints

The following outlines the general nature of an im-
plementation of distributed processes but ignores the
details which are currently being studied.

In a well-designed concurrent program one may as-
sume that each process communicates with a small num-
ber of neighboring processes only. For if the interactions
are not strongly localized one cannot expect to gain
much from concurrency. (A few resource schedulers may
be an exception to this rule.)

Each processor will contain a distributed process P
and a small, fixed number of anonymous processes which
are the representatives of those distributed processes that
can call process P. Additional notation in the language
should make it possible for a compiler to determine the
number of processes which call a particular process.

Whenever a processor is idle it activates a local
representative which then waits until it receives a request
with input data from another processor. The represent-
ative now calls the local procedure requested with the
available input. When the procedure terminates, its out-
put data are returned to the other processor and the
representative becomes passive again. The switching
from one quasiconcurrent process to another within a
processor takes place as described in Section 2.

Since processes are permanent and procedures are
nonrecursive, a compiler can determine the maximum
storage required by a distributed process and the local
representatives of its environment. So the storage allo-
cation is static within each processor.

The parameter passing between two processors
requires a single input operation before a procedure
is executed and a single output operation when it
terminates.

The speed of process switching within a single proc-
essor will probably be crucial for its real-time response.

The technique of representing the environment of a
processor by local processes synchronized with external
processes seems conceptually attractive. Although these
processes are anonymous in this proposal one could
design a language in which the store of a single processor
is shared by local quasiconcurrent processes which com-
municate with nonlocal processes by input/output only.

940

10. Final Remarks

It would certainly be feasible to adapt the processes
and monitors of Concurrent Pascal to multiprocessor
networks with distributed storage by restricting the pa-
rameter passing mechanism as proposed here. All the
examples discussed here could then be programmed in
that language--but not nearly as elegantly!

What then are the merits of distributed processes?
Primarily, that they are a combination of well-known
programming concepts (processes, procedures, and con-
ditional critical regions) which unify the class, monitor,
and process concepts. They include a surprising number
of basic programming concepts as special cases:

procedures
coroutines
classes
monitors
processes
semaphores
buffers
path expressions
input/output

Since there is a common denominator for all these
concepts, it may well be possible to develop common
proof rules for them. The use of a single concept
will certainly simplify the language implementation
considerably.

The Concurrent Pascal machine distinguishes be-
tween 15 virtual instructions for classes, monitors, and
processes. This number would be reduced by a factor of
three for distributed processes. In addition, numerous
special cases would disappear in the compiler.

It is also encouraging that distributed processes can
be used to write elegant algorithms both for the more
well-known concurrent problems and for some new ones
that are non-trivial.

A recent proposal by Hoare has the same pleasant
properties [9]. Both proposals attack the problem of
concurrency without shared variables and recognize the
need for nondeterminacy within a single process.

Hoare's communicating sequential processes can be
created and terminated dynamically. A single data trans-
fer from one process to another is the communication
mechanism. A process synchronizes itself with its envi-
ronment by guarded input commands which are exe-
cuted when a Boolean expression is true and input is
available from another process. The relationship between
two communicating processes is symmetrical and re-
quires both of them to name the other. The brief and
nonredundant notation does not require declarations of
communication channels but depends (conceptually) on
dynamic type checking to recognize matching input and
output commands in two processes.

In their present form communicating sequential proc-
esses seem well-suited to a theoretical investigation of
concurrency and as a concise specification language that
suppresses minor details. However, as Hoare points out,
the language concepts and the notation would have to

Communications November 1978
of Volume 21
the ACM Number 11

be modif ied to make them practical for p rogram
implementat ion.

The proposal for distributed processes is intended as
a first step toward a practical language for networks. The
proposal recognizes that the exchange of input and out-
put in one operat ion is a frequent case, part icularly for
peripheral devices which return a result after each op-
eration. The notat ion is redundant and enables a com-
piler to determine the number o f processes and their
storage requirements. The relationship between two
communica t ing processes is asymmetr ical and requires
only that the caller o f an operat ion name the process that
performs it. This asymmetry is useful in hierarchical
systems in which servants should be unaware o f the
identities o f their masters.

Distr ibuted processes derive much o f their power
f rom the ability to delay process interactions by means
o f Boolean expressions which m a y involve both the
global variables o f a process and the input parameters
f rom other processes (as illustrated by the sjn scheduler
and the a larm clock). The price for this flexibility is the
need for quasiconcurrent processes in the implementa-
tion. A more restricted form of Hoare 's proposal might
be able to implement process synchronizat ion by the
simpler method o f polling a number o f data channels
until one o f them transmits data.

But more work remains to be done on verification
rules and network architectures for these new concepts.
And then the ideas must be tested in practice before a
final j udgmen t can be made.

Acknowledgments. I am grateful to Nissim Francez,
Wol fgang Franzen, Susan Gerhart , Charles Hayden,
John Hennessy, T o n y Hoare, David Lomet, David
MacQueen , Johannes Madsen, David Musser, Michel
Sintzoff, Jergen Staunstrup and the referees for their
constructive comments .

Received September 1977; revised December 1977

References
1. Brinch Hansen, P. The programming language Concurrent
Pascal. IEEE Trans. Software Eng. 1, 2 (June 1975), 199-207.
2. Brinch Hansen, P. The Architecture of Concurrent Programs.
Prentice-Hall, Englewood Cliffs, N.J., 1977.
3. Brinch Hansen, P. Operating System Principles. Prentice-Hall,
Englewood Cliffs, N.J., 1973.
4. Brinch Hansen, P., and Staunstrup, J. Specification and
implementation of mutual exclusion. Comptr. Sci. Dept., U. of
Southern California, Los Angeles, Sept. 1977.
5. Campbell, R.H., and Habermann, A.N. The specification of
process synchronization by path expressions. Lecture Notes in
Computer Science 16, Springer-Verlag, 1974, pp. 89-102.
6. Dijkstra, E.W. Guarded commands, nondeterminacy, and formal
derivation of programs. Comm. A CM 18, 8 (Aug. 1975), 453-57.
7. Hoare, C.A.R. Monitors: an operating system structuring
concept. Comm. ACM 17, l0 (Oct. 1974), 549-57.
8. Hoare, C.A.R. Towards a theory of parallel programming. In
Operating Systems Techniques, Academic Press, New York, 1972.
9. Hoare, C.A.R. Communicating sequential processes. Comptr. Sci.
Dept., Queen's U., Belfast, N. Ireland, March 1977.
10. Wirth, N. Modula: A programming language for modular
multiprogramming. Software--Practice & Experience 7, 1 (Jan. 1977),
3-35.

941

Programming
Techniques

S.L. Graham, R.L. Rivest
Editors

Power Trees
Fabrizio Luccio and Linda Pagli
University of Pisa

The new class of Pk trees is presented, where
height balance is maintained for the nodes lying on
particular paths. The number of nodes of a Pk tree
asympotically grows as a power of the height, in the
worst case. A procedure for node insertion is given, and
the class of trees considered is restricted to IPk trees,
which are buildable by such a procedure. The average
behavior of such trees, studied by an extensive set of
simulation runs, is close to that of AVL trees. In
particular, the family of IPO trees whose main
advantage is the reduced number of restructurings
required after node insertion, is analyzed.

Key Words and Phrases: binary search trees, Pk
trees, IPk trees, search length, node insertion, subtree
rotation

CR Categories: 3.73, 3.74, 4.34, 5.25, 5.31

1. Introduction

Binary search trees are widely used for ordered file
organizat ion [5, 8]. A family o f such trees is that o f
height-balanced trees, where, for any node, the height o f
the left and the right subtree differ by at most an integer
value A[2]. For A = 1, such trees are the classical A V L
trees [2, 5].

The impor tance o f height-balanced trees derives f rom
the fact that their height h - - t h a t is, the search length for
the node allocated in the deepest leaf- - i s always a
logari thmic funct ion o f the number o f nodes even in the
worst case [4, 6]. A restricted family o f such trees is
studied in [3].

In the present paper a class o f families o f binary trees
is introduced, where the height balance is mainta ined

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by Comitato Nazionale per le
Scienze Matematiche, C.N.R., under Research Grant No. 75 01035 01.

Authors' address: Istituto di Scienze dell'Informazione, Univer-
sit/~ di Pisa, 56100 Pisa, Italy.
© 1978 ACM 0001-0782/78/1100-0941 $00.75

Communications November 1978
of Volume 21
the ACM Number 11

