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1. Introduction 

This paper introduces distributed processes--a new 
language concept for concurrent programming. It is pro- 
posed for real-time applications controlled by microcom- 
puter networks with distributed storage. The paper gives 
several examples of distributed processes and shows that 
they include procedures, coroutines, classes, monitors, 
processes, semaphores, buffers, path expressions and in- 
put/output as special cases. 

Real-time applications push computer and program- 
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ming technology to its limits (and sometimes beyond). A 
real-time system is expected to monitor simultaneous 
activities with critical timing constraints continuously 
and reliably. The consequences of system failure can be 
serious. 

Real-time programs must achieve the ultimate in 
simplicity, reliability, and efficiency. Otherwise one can 
neither understand them, depend on them, nor expect 
them to keep pace with their environments. To make 
real-time programs manageable it is essential to write 
them in an abstract programming language that hides 
irrelevant machine detail and makes extensive compila- 
tion checks possible. To make real-time programs effi- 
cient at the same time will probably require the design 
of computer architectures tailored to abstract languages 
(or even to particular applications). 

From a language designer's point of view, real-time 
programs have these characteristics: 

(1) A real-time program interacts with an environ- 
ment in which many things happen simultaneously at 
high speeds. 

(2) A real-time program must respond to a variety 
of nondeterministic requests from its environment. The 
program cannot predict the order in which these requests 
will be made but must respond to them within certain 
time limits. Otherwise, input data may be lost or output 
data may lose their significance. 

(3) A real-time program controls a computer with a 
fixed configuration of processors and peripherals and 
performs (in most cases) a fLxed number of concurrent 
tasks in its environment. 

(4) A real-time program never terminates but contin- 
ues to serve its environment as long as the computer 
works. (The occasional need to stop a real-time program, 
say at the end of an experiment, can be handled by ad 
hoc mechanisms, such as turning the machine off or 
loading another program into it.) 

What is needed then for real-time applications is the 
ability to specify a fixed number of concurrent tasks that 
can respond fast to nondeterministic requests. The pro- 
gramming languages Concurrent Pascal and Modula 
come close to satisfying the requirements for abstract 
concurrent programming [1, 2, 10]. Both of them are 
based on the monitor concept [3, 7]. Modula, however, is 
primarily oriented towards multiprogramming on a sin- 
gle processor. And a straightforward implementation of 
Concurrent Pascal requires a single processor or a mul- 
tiprocessor with a common store. In their present form, 
these languages are not ideal for a microcomputer net- 
work with distributed storage only. 

It may well be possible to modify Concurrent Pascal 
to satisfy the constraints of distributed storage. The ideas 
proposed here are more attractive, however, because they 
unify the monitor and process concepts and result in 
more elegant programs. The new language concepts for 
real-time applications have the following properties: 

(1) A real-time program consists of a fixed number 
of concurrent processes that are started simultaneously 
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and exist forever. Each process can access its own varia- 
bles only. There are no common variables. 

(2) A process can call common procedures defined 
within other processes. These procedures are executed 
when the other processes are waiting for some condi- 
tions to become true. This is the only form of  process 
communication. 

(3) Processes are synchronized by means of nonde- 
terministic statements called guarded regions [4, 8]. 

These processes can be used as program modules in 
a multiprocessor system with common or distributed 
storage. To satisfy the real-time constraints each proc- 
essor will be dedicated to a single process. When a 
process is waiting for some condition to become true 
then its processor is also waiting until an external pro- 
cedure call makes the condition true. This does not 
represent a waste of  resources but rather a temporary 
lack of  useful work for that processor. Parameter passing 
between processes can be implemented either by copying 
within a common store or by input/output  between 
separate stores. 

The problems of  designing verification rules and 
computer architectures for distributed processes are cur- 
rently being studied and are not discussed~ This paper 
also ignores the serious problems of  performance evalu- 
ation and fault tolerance. 

2. Language Concepts 

A concurrent program consists of a fixed number of  
sequential processes that are executed simultaneously. A 
process defines its own variables, some common proce- 
dures, and an initial statement 

process name 
own variables 
common procedures 
initial statement 

A process may only access its own variables. There are 
no common variables. But a proces s may call common 
procedures defined either within itself or within other 
processes. A procedure call from one process to another 
is called an external request. 

A process performs two kinds of  operations then: the 
initial statement and the external requests made by other 
processes. These operations are executed one at a time 
by interleaving. A process begins by executing its initial 
statement. This continues until the statement either ter- 
minates or waits for a condition to become true. Then 
another operation is started (as the result of  an external 
request). When this operation in turn terminates or waits 
the process will either begin yet another operation (re- 
quested by another process) or it will resume an earlier 
operation (as the result of  a condition becoming true). 
This interleaving of  the initial statement and the external 
requests continues forever. If  the initial statement ter- 
minates, the process continues to exist and will still 
accept external requests. 
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So the interleaving is controlled by the program (and 
not by clock signals at the machine level). A process 
switches from one operation to another only when an 
operation terminates or waits for a condition within a 
guarded region (introduced later). 

A process continues to execute operations except 
when all its current operations are delayed within 
guarded regions or when it makes a request to another 
process. In the first case, the process is idle until another 
process calls it. In the second case, the process is idle 
until the other process has completed the operation 
requested by it. Apart from this nothing is assumed 
about the order in which a process performs its opera- 
tions. 

A process guarantees only that it will perform some 
operations as long as there are any unfinished operations 
that can proceed. But only the programmer can ensure 
that every operation is performed within a finite time. 

A procedure defines its input and output parameters, 
some local variables perhaps, and a statement that is 
executed when it is called. 

proc name (input param#output  param) 
local variables 
statement 

A process P can call a procedure R defined within 
another process Q as follows: 

call Q.R (expressions, variables) 

Before the operation R is performed the expression 
values of  the call are assigned to the input parameters. 
When the operation is finished the values of  the output 
parameters are assigned to the variables of  the call. 
Parameter passing between processes can therefore be 
implemented either by copying within a common store 
or by input/output  between processors that have no 
common store. 

In this paper processes can call procedures within 
one another without any restrictions. In a complete 
programming language additional notation would be 
added to limit the access rights of  individual processes. 
It may also be necessary to eliminate recursion to sim- 
plify verification and implementation. But these are is- 
sues that will not concern us here. 

Nondeterminism will be controlled by two kinds of  
statements called guarded commands and guarded re- 
gions. A guarded region can delay an operation, but a 
guarded command cannot. 

A guarded command [6] enables a process to make 
an arbitrary choice among several statements by inspect- 
ing the current state of  its variables. If  none of  the 
alternatives are possible in the current state the guarded 
command cannot be executed and will either be skipped 
or cause a program exception. 

The guarded commands have the following syntax 
and meaning: 

if B1 :SI IB2:S2I ... end 
do B1 :SI IB2:S2I ... end 
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I f  statement: If  some of  the conditions B1, B2 . . . . .  are 
true then select one of the true conditions Bi and execute 
the statement Si that follows it; otherwise, stop the 
program. 

(If the language includes a mechanism whereby one 
process can detect the failure of  another process, it is 
reasonable to let an exception in a process stop that 
process only. But, if recovery from programming errors 
is not possible then it is more consistent to stop the whole 
program. This paper does not address this important 
issue.) 

Do statement: While some of the conditions are true 
select one of  them arbitrarily and execute the correspond- 
ing statement. 

A guarded region [4, 8] enables a process to wait until 
the state of  its variables makes it possible to make an 
arbitrary choice among several statements. If  none of  the 
alternatives are possible in the current state the process 
postpones the execution of the guarded region. 

The guarded regions have the following syntax and 
meaning: 

when B1 : SI  I B2:S2I ... end 
cycle B1 : S I  I B2:S2I ... end 

When statement: Wait until one of the conditions is 
true and execute the corresponding statement. 

Cycle statement: Endless repetition of  a when state- 
ment. 

If  several conditions are true within a guarded com- 
mand or region it is unpredictable which one of the 
corresponding statements the machine will select. This 
uncertainty reflects the nondeterministic nature of  real- 
time applications. 

The data types used are either integers, Booleans, or 
characters, or they are finite sets, sequences, and arrays 
with at most n elements of  some type T: 

hat bool char  
s e t [n ]T  seq[n]T  a r ray[n]T  

The following statement enumerates all the elements 
in a data structure: 

for x i n y : S  end 

For statement: For each element x in the set or array 
y execute the statement S. A for statement can access 
and change the values of  array elements but can only 
read the values of  set elements. 

Finally, it should be mentioned that the empty state- 
ment is denoted skip and the use of  semicolons is op- 
tional. 

3. Process Communication 

The following presents several examples of  the use of  
these language concepts in concurrent programming. We 
will first consider communication between processes by 
means of  procedure calls. 

936 

Example: Semaphore 
A general semaphore initialized to zero can be im- 

plemented as a process sem that defines wait and signal 
operations. 

process sem; s: int 
proc wait  when s > 0: s .--- s - 1 end 
proc signal; s := s + 1 
s ~ 0  

The initial statement assigns the value zero to the sem- 
aphore and terminates. The process, however, continues 
to exist and can now be called by other processes 

call sem.wait  call sem.signal 

Example: Message Buffer 
A buffer process stores a sequence of characters 

transmitted between processes by means of  send and 
receive operations. 

process buffer; s: seq[n]char  
proc send(c: char) when not s.full: s .put (c)  end 
proc rec(#v: char) when nut s.empty: s .get(v) end 
s.--[] 

The initial statement makes the buffer empty to begin 
with. The buffer operations are called as follows: 

call buf fer . send(x)  call buffer.rec(y) 

The semaphore and buffer processes are similar to 
monitors: They define the representation of  a shared data 
structure and the meaningful operations on it. These 
operations take place one at a time. After initialization, 
a monitor is idle between external calls. 

Example: Character Stream 
A process inputs punched cards from a card reader 

and outputs them as a sequence of  characters through a 
buffer process. The process deletes spaces at the end of  
each card and terminates it by a newline character. 

process s t ream 
b: array[80]char; n, i: hat 
do true: 

call cardreader . input(b  ) 
if b = blankline: skip I 

b ~= blankline: i ~ 1; n ~ 80 
do bin] = space: n .--- n - 1 end 
do i _< n: call buffer.send(b[/]);  i := i + 1 end 

end 
call buffer .send(newline) 

end 

This use of  a process is similar to the traditional 
process concept: the process executes an initial statement 
only. It calls common procedures within other processes, 
but does not define any within itself. Such a process does 
not contain guarded regions because other processes are 
unable to call it and make the conditions within it true. 

The example also illustrates how peripheral devices 
can be controlled by distributed processes. A device 
(such as the card reader) is associated with a single 
process. Other processes can access the device only 
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th rough  c o m m o n  procedures.  So a peripheral  device is 
just  another  process. 

While a process is waiting for input /output ,  no other  
operat ions take place within it. This is a special case o f  
a more  general  rule: W h e n  a process P calls a procedure 
R within another  process Q then R is considered an 
indivisible operat ion within process P, and P will not  
execute any other  operat ion until R is finished (see 
Section 2). 

Notice, that  there is no need for interrupts even in a 
real-time language. Fast  response to external requests is 
achieved by dedicating a processor to each critical event 
in the envi ronment  and by making  sure that these proc- 
essors interact with a small number  o f  neighboring proc- 
essors only (to prevent them from being overloaded with 
too m a n y  requests at a time). 

Exercise: Write a process that receives a sequence o f  
characters f rom a buffer  process and outputs  them line 
by line to a printer. The  process should output  aformfeed 
after every 60 lines. 

4. R e s o u r c e  S c h e d u l i n g  

We will now look at a variety o f  scheduling problems 
solved by means o f  guarded regions. It should perhaps 
be ment ioned that resource schedulers are by nature 
bottlenecks. It would  therefore be wise in a real-time 
program to make  sure that each resource either is used 
frequently by a small number  o f  processes or very infre- 
quently by a larger number  o f  processes. In m a n y  appli- 
cations it is possible to avoid resource scheduling alto- 
gether and dedicate a resource to a single process (as in 
the card reader and line printer examples). 

Example: Resource Scheduler 
A set o f  user processes can obtain exclusive access to 

an abstract resource by calling request and release op- 
erations within a scheduling process. 

process resource; free: bool 
proc request when free: free ~ false end 
proc release if not free: free .---- true end 
free ~ true 

call resource.request ... call resource.release 

The  use o f  the Boolean free forces a strict alternation o f  
request and release operations. The program stops if an 
at tempt is made  to release a resource that already is free. 

In this example, the scheduler does not know the 
identity o f  individual user processes. This is ideal when 
it does not matter  in which order  the users are served. 
But, if  a scheduler must  enforce a particular scheduling 
policy (such as shortest job next) then it must  know the 
identity o f  its users to be able to grant the resource to a 
specific user. The following example shows how this can 
be done. 
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Example: Shortest Job Next Scheduler 

A scheduler  allocates a resource among  n user proc- 
esses in shortest-job-next order. A request enters the 
identity and  service time o f  a user process in a queue 
and waits until that  user is selected by the scheduler. A 
release makes  the resource available again. 

The  scheduler  waits until one o f  two situations arise: 
(1) A process enters or  leaves the queue: the scheduler 

will scan the queue and select the next user (but will not  
grant  the resource to it yet). 

(2) The  resource is not  being used and the next user 
has been selected: the scheduler will grant the resource 
to that user and remove it f rom the queue. 

User processes identify themselves by unique indices 
1, 2 . . . . .  n. The constant  nil denotes an undef ined process 
index. 

The  scheduler uses the following variables: 

queue the indices of waiting processes 
rank the service times of waiting processes 
user the index of the current user (if any) 
next the index of the next user (if any) 

process sjn 
queue: set[n] int; rank: array[n]int 
user, next, min: int 
proc request(who, time: int) 
begin queue.include(who); rank[who] .--- time 

next .--- nil; when user = who: next := nil end 
end 
proc release; user := nil 

begin queue .--- [ ]; user .--- nil; next .--- nil 
cycle 

not queue.empty & (next=nil): 
min := maxinteger 
for i in queue: 

if rank[/] > min: skip[ 
rank[i] < min: next .--- i; min ~ rank[i] 

end 
end l 

(user=nil) & (next,nil): 
user .--- next; queue.exclude(user) 

end 
end 

In  a microprocessor  network where each processor is 
dedicated to a single process it is an attractive possibility 
to let a process carry out computat ions  between external 
calls o f  its procedures.  The above scheduler takes advan-  
tage o f  this capabil i ty by selecting the next user while 
the resource is still being used by the present user. It 
would  be simpler (but less efficient) to delay the selection 
o f  the next user until the previous one has released the 
resource. 

The scheduling o f  individual processes is handled 
completely by means o f  guarded  regions without  the use 
o f  synchronizing variables, such as semaphores or event 
queues. 

The periodic evaluat ion o f  a synchronizing condition, 
such as "user = who,"  might  be a serious load on a 
common store shared by other processors. But it is quite 
acceptable when it only involves the local store o f  a 
single processor that has nothing else to do. This is a 
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good e, xample of  the influence of  hardware technology 
on abstract algorithms. 

Exercise: Write a first-come, first-served scheduler. 

Examt,le: Readers and Writers 
Two kinds of  processes, called readers and writers, 

share a single resource. The readers can use the resource 
simultaneously, but each writer must have exclusive 
access to it. The readers and writers behave as follows: 

call resource.startread call resource.startwrite 
read write 
call resource.endread call resource.endwrite 

A variable s defines the current resource state as one of  
the following: 

s = 0 1 writer uses the resource 
s = l 0 processes use the resource 
s = 2 1 reader  uses the resource 
s = 3 2 readers use the resource 

This leads to the following solution [4]: 

process resource; s: int 
proc startread when s _> l: s .--- s + l end 
proc endread if s > 1: s .--- s - 1 end 
proc startwrite when s = l: s :=- 0 end 
proc endwrite if s = 0: s := 1 end 
s . ' = l  

Exercise: Solve the same problem with the additional 
constraint that further reader requests should be delayed 
as long as some writers are either waiting for or are using 
the resource. 

Example: Alarm Clock 
An alarm clock process enables user processes to wait 

for different time intervals. The alarm clock receives a 
signal from a timer process after each time unit. (The 
problems of  representing a clock with a finite integer are 
ignored here.) 

process alarm; time: int 
proc wait(interval: int) 
due: int 
begin due ~ time + interval 

when time = due: skip end 
end 
proc tick; time ~ time + 1 
t ime ~ 0 

5. Process Arrays 

So far we have only used one instance of each process. 
The next example uses an array of  n identical processes 
[9] 

process name[n]  

A standard function this defines the identity of  an indi- 
vidual process within the array (1 <_ this _< n). 
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Example: Dining Philosophers 
Five philosophers alternate between thinking and 

eating. When a philosopher gets hungry, he joins a round 
table and picks up two forks next to his plate and starts 
eating. There are, however, only five forks on the table. 
So a philosopher can eat only when none of  his neighbors 
are eating. When a philosopher has finished eating he 
puts down his two forks and leaves the table again. 

process philosopher[5] 
do true: think 

call table.join(this); eat; call table.leave(this) 
end 

process table; eating: set[5]int 
proc join(i:  int)  
when ( I / e l ,  t ~ l ]  & eating) = []: eating.include(i)  end 
proc leave(/: hat); eating.exclude(i)  
eating .--- [ ] 

This solution does not prevent two philosophers from 
starving a philosopher between them to death by eating 
alternately. 

Exercise: Solve the same problem without starvation. 

Example: Sorting Array 
A process array sorts m data items in time O(m). The 

items are input through sort process 1 that stores the 
smallest item input so far and passes the rest to its 
successor sort process 2. The latter keeps the second 
smallest item and passes the rest to its successor sort 
process 3, and so on. When the m items have been input 
they will be stored in their natural order in sort processes 
1, 2 . . . . .  m. They can now be output in increasing order 
through sort process 1. After each output the processes 
receive the remaining items from their successors. 

A user process behaves as follows: 

A: array[m] int 
for x in A: call sort[1].put(x) end 
for x in A: call sort[ l ] .get(x)  end 

The sorting array can sort n elements or less (m _ n). A 
sorting process is in equilibrium when it holds one item 
only. When the equilibrium is disturbed by its predeces- 
sor, a process takes the following action: 

(1) If  the process holds two items, it will keep the 
smallest one and pass the largest one to its successor. 

(2) If  the process holds no items, but its successor 
does, then the process will fetch the smallest item from 
its successor. 

A sorting process uses the following variables: 

here the items stored in this process (0 _< here.length <_ 2) 
rest the n u m b e r  of  items stored in its successors 

A standard function succ defines the index of the succes- 
sor process (succ = this + 1). 

process sort[n] 
here: seq[2]int; rest, temp: int 
proc put(c: int) when here.length < 2: here.put(c) end 
proc get(#v: int) when here.length = 1: here.get(v) end 
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begin here := []; rest := 0 
cycle 

here.length = 2: 
if he re [ l ]  _< here[2]: temp .--- here[2]; here .--- [here[ l ] ]  I 

he re [ l ]  > here[2]: temp := here[l] ;  here := [here[2]] 
end 
call sort[succ].put(temp); rest .'= rest + 1 I 

(here.length = 0) & (rest > 0): 
call sort[succ].get(temp); rest := rest - 1 
here .--- [ temp] 

end 
end 

A hardware implementation of such a sorting array could 
be used as a very efficient form of a priority scheduling 
queue. 

Exercise: Program a process array that contains N = 2 n 
numbers to begin with and which will add them in time 
O(log2N). 

7. Coroutines 

Distributed processes can also function as coroutines. 
In a coroutine relationship between two processes P and 
Q only one of  them is running at a time. A resume 
operation transfers control from one process to the other. 
When a process is resumed it continues at the point 
where it has transferred control to another process. 

process  P; go: bool 
proc resume; go := true 

begin go .--- false 

call Q.resume 
when go: go := false end 

end 

Process Q is very similar. 

Since a process can define a common procedure it ob- 
viously includes the procedure case as a special case. In 
[9] Hoare shows that a process array also can simulate a 
recursive procedure with a fixed maximum depth of  
recursion. 

Exercise: Write a process array that computes a Fibon- 
acci number  by recursion. 

6. Abstract Data Types 

A process combines a data structure and all the 
possible operations on it into a single program module. 
Since other processes can perform these operations only 
on the data structure, but do not have direct access to it, 
it is called an abstract data structure. 

We have already seen that a process can function as 
a monitor--an abstract data type that is shared by several 
processes. The next example shows that a process also 
can simulate a class - an abstract data type that is used 
by a single process only. 

Example: Vending Machine 
A vending machine accepts one coin at a time. When 

a button is pushed the machine returns an item with 
change provided there is at least one item left and the 
coins cover the cost of  it; otherwise, all the coins are 
returned. 

process vending__machine 
items, paid, cash: int 
proc insert(coin: int) paid .--- paid + coin 
proc push(#change ,  goods: int) 
if (items > O) & (paid _ price): 

change .--- paid - price; cash .--- cash + price 
goods .--- 1; i tems .--- i tems - 1; paid .--- 0 I 

(items = O) or (paid < price): 
change .--- paid; goods .--- O; paid .--- 0 

end 
begin items .--- 50; paid := O; cash .--- 0 end 
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8. Path Expressions 

Path expressions define meaningful sequences of op- 
erations P, Q . . . . .  [5]. A path expression can be imple- 
mented by a scheduling process that defines the opera- 
tions P, Q . . . . .  as procedures and uses a state variable s 
to enforce the sequence in which other processes may 
invoke these procedures. 

Suppose, for example, that the operation P only can 
be followed by the operation Q as shown by the graph 
below: 

___> p ....> Q .---> 

To implement this path expression one associates a 
distinct state a, b, and c with each arrow in the graph 
and programs the operations as follows: 

proc P if s = a: ... s ~ b end 
proc Q i f s  = b: ... s ~ c end 

I f  P is called in the state s = a it will change the state to 
s = b and make Q possible. Q, in turn, changes the state 
from b to c. An attempt to perform P or Q in a state 
where they are illegal will cause a program exception (or 
a delay if a when statement is used within the operation). 

The next path expression specifies that either P or Q 
can be performed. This is enforced by means of  two 
states a and b. 

proc P i f s  = a: ... s ~ b end 

proc Q if s = a: ... s .= b end 

I f  an operation P can be performed zero or more 
times then the execution of P leaves the state s = a 
unchanged as shown below. 

) 

~.__ / proc P i f s  = a: end 
1 

P 
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The simple resource scheduler in Section 4 imple- 
ments a composite path expression in which the sequence 
reque'~t ... release is repeated zero or more times. 

The readers and writers problem illustrates the use 
of a ,;tate variable to permit some operations to take 
place simultaneously while other operations are tempor- 
arily excluded (in this case, simultaneous reading by 
several processes excludes writing). Each simultaneous 
operation P is surrounded by a pair of scheduling oper- 
ations, startP and endP. The state variable counts the 
number of P operations in progress. 

9. Implementation Hints 

The following outlines the general nature of an im- 
plementation of distributed processes but ignores the 
details which are currently being studied. 

In a well-designed concurrent program one may as- 
sume that each process communicates with a small num- 
ber of neighboring processes only. For if the interactions 
are not strongly localized one cannot expect to gain 
much from concurrency. (A few resource schedulers may 
be an exception to this rule.) 

Each processor will contain a distributed process P 
and a small, fixed number of anonymous processes which 
are the representatives of those distributed processes that 
can call process P. Additional notation in the language 
should make it possible for a compiler to determine the 
number of processes which call a particular process. 

Whenever a processor is idle it activates a local 
representative which then waits until it receives a request 
with input data from another processor. The represent- 
ative now calls the local procedure requested with the 
available input. When the procedure terminates, its out- 
put data are returned to the other processor and the 
representative becomes passive again. The switching 
from one quasiconcurrent process to another within a 
processor takes place as described in Section 2. 

Since processes are permanent and procedures are 
nonrecursive, a compiler can determine the maximum 
storage required by a distributed process and the local 
representatives of its environment. So the storage allo- 
cation is static within each processor. 

The parameter passing between two processors 
requires a single input operation before a procedure 
is executed and a single output operation when it 
terminates. 

The speed of process switching within a single proc- 
essor will probably be crucial for its real-time response. 

The technique of representing the environment of a 
processor by local processes synchronized with external 
processes seems conceptually attractive. Although these 
processes are anonymous in this proposal one could 
design a language in which the store of a single processor 
is shared by local quasiconcurrent processes which com- 
municate with nonlocal processes by input/output only. 
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10. Final Remarks 

It would certainly be feasible to adapt the processes 
and monitors of Concurrent Pascal to multiprocessor 
networks with distributed storage by restricting the pa- 
rameter passing mechanism as proposed here. All the 
examples discussed here could then be programmed in 
that language--but not nearly as elegantly! 

What then are the merits of distributed processes? 
Primarily, that they are a combination of well-known 
programming concepts (processes, procedures, and con- 
ditional critical regions) which unify the class, monitor, 
and process concepts. They include a surprising number 
of basic programming concepts as special cases: 

procedures 
coroutines 
classes 
monitors 
processes 
semaphores 
buffers 
path expressions 
input/output 

Since there is a common denominator for all these 
concepts, it may well be possible to develop common 
proof rules for them. The use of a single concept 
will certainly simplify the language implementation 
considerably. 

The Concurrent Pascal machine distinguishes be- 
tween 15 virtual instructions for classes, monitors, and 
processes. This number would be reduced by a factor of 
three for distributed processes. In addition, numerous 
special cases would disappear in the compiler. 

It is also encouraging that distributed processes can 
be used to write elegant algorithms both for the more 
well-known concurrent problems and for some new ones 
that are non-trivial. 

A recent proposal by Hoare has the same pleasant 
properties [9]. Both proposals attack the problem of 
concurrency without shared variables and recognize the 
need for nondeterminacy within a single process. 

Hoare's communicating sequential processes can be 
created and terminated dynamically. A single data trans- 
fer from one process to another is the communication 
mechanism. A process synchronizes itself with its envi- 
ronment by guarded input commands which are exe- 
cuted when a Boolean expression is true and input is 
available from another process. The relationship between 
two communicating processes is symmetrical and re- 
quires both of them to name the other. The brief and 
nonredundant notation does not require declarations of 
communication channels but depends (conceptually) on 
dynamic type checking to recognize matching input and 
output commands in two processes. 

In their present form communicating sequential proc- 
esses seem well-suited to a theoretical investigation of 
concurrency and as a concise specification language that 
suppresses minor details. However, as Hoare points out, 
the language concepts and the notation would have to 
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be modif ied to make  them practical for p rogram 
implementat ion.  

The  proposal  for distributed processes is intended as 
a first step toward a practical language for networks. The  
proposal  recognizes that the exchange of  input  and out- 
put in one operat ion is a frequent case, part icularly for 
peripheral  devices which return a result after each op- 
eration. The  notat ion is redundant  and enables a com- 
piler to determine the number  o f  processes and their 
storage requirements.  The  relationship between two 
communica t ing  processes is asymmetr ical  and requires 
only that the caller o f  an operat ion name the process that 
performs it. This asymmetry  is useful in hierarchical 
systems in which servants should be unaware  o f  the 
identities o f  their masters. 

Distr ibuted processes derive much  o f  their power 
f rom the ability to delay process interactions by means 
o f  Boolean expressions which m a y  involve both the 
global variables o f  a process and the input parameters  
f rom other  processes (as illustrated by the sjn scheduler 
and the a larm clock). The price for this flexibility is the 
need for quasiconcurrent  processes in the implementa-  
tion. A more  restricted form of  Hoare 's  proposal  might  
be able to implement  process synchronizat ion by the 
simpler method  o f  polling a number  o f  data  channels 
until one o f  them transmits data. 

But more  work remains to be done  on verification 
rules and network architectures for these new concepts. 
And  then the ideas must  be tested in practice before a 
final j udgmen t  can be made.  
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The new class of Pk trees is presented, where 
height balance is maintained for the nodes lying on 
particular paths. The number of nodes of a Pk tree 
asympotically grows as a power of the height, in the 
worst case. A procedure for node insertion is given, and 
the class of trees considered is restricted to IPk trees, 
which are buildable by such a procedure. The average 
behavior of such trees, studied by an extensive set of 
simulation runs, is close to that of AVL trees. In 
particular, the family of IPO trees whose main 
advantage is the reduced number of restructurings 
required after node insertion, is analyzed. 

Key Words and Phrases: binary search trees, Pk 
trees, IPk trees, search length, node insertion, subtree 
rotation 
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1. Introduction 

Binary search trees are widely used for ordered file 
organizat ion [5, 8]. A family o f  such trees is that  o f  
height-balanced trees, where, for any node, the height o f  
the left and the right subtree differ by at most  an integer 
value A[2]. For  A = 1, such trees are the classical A V L  
trees [2, 5]. 

The  impor tance  o f  height-balanced trees derives f rom 
the fact that  their height h - - t h a t  is, the search length for 
the node  allocated in the deepest leaf- - i s  always a 
logari thmic funct ion o f  the number  o f  nodes even in the 
worst case [4, 6]. A restricted family o f  such trees is 
studied in [3]. 

In the present paper  a class o f  families o f  binary trees 
is introduced,  where the height balance is mainta ined 
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