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We present a framework for parallel programming, based on three conceptual classes for 
understanding parallelism and three programming paradigms for implementing parallel 
programs. The conceptual classes are result parallelism, which centers on parallel 
computation of all elements in a data structure; agenda parallelism, which specifies an 
agenda of tasks for parallel execution; and specialist parallelism, in which specialist 
agents solve problems cooperatively. The programming paradigms center on live data 
structures that transform themselves into result data structures; distributed data 
structures that are accessible to many processes simultaneously; and message passing, in 
which all data objects are encapsulated within explicitly communicating processes. There 
is a rough correspondence between the conceptual classes and the programming methods, 
as we discuss. We begin by outlining the basic conceptual classes and programming 
paradigms, and by sketching an example solution under each of the three paradigms. The 
final section develops a simple example in greater detail, presenting and explaining code 
and discussing its performance on two commercial parallel computers, an l&node shared- 
memory multiprocessor, and a 64-node distributed-memory hypercube. The middle 
section bridges the gap between the abstract and the practical by giving an overview of 
how the basic paradigms are implemented. 

We focus on the paradigms, not on machine architecture or programming languages: 
The programming methods we discuss are useful on many kinds of parallel machine, and 
each can be expressed in several different parallel programming languages. Our 
programming discussion and the examples use the parallel language C-Linda for several 
reasons: The main paradigms are all simple to express in Linda; efficient Linda 
implementations exist on a wide variety of parallel machines; and a wide variety of 
parallel programs have been written in Linda. 

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent 
Programming; D.3.2 [Programming Languages]: Language Classifications-parallel 
languages; D.3.3 [Programming Languages]: Concurrent Programming Structures; 
E.1.m [Data Structures]: Miscellaneous-distributed data structures; live data structures 

General Terms: Algorithms, Program Design, Languages 

Additional Key Words and Phrases: Linda, parallel programming methodology, 
parallelism 

INTRODUCTION agenda parallelism, or specialist parallel- 
ism, terms we define. Corresponding to 

How do we build programs using parallel these basic approaches are three parallel 
algorithms? On a spectrum of basic ap- programming methods-practical tech- 
proaches, three primary points deserve spe- niques for translating concepts into work- 
cial mention: We can use result parallelism, ing programs; we can use message passing, 
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distributed data structures, or live data 
structures.l Each programming method in- 
volves a different view of the role of pro- 
cesses and the distribution of data in a 
parallel program. The basic conceptual ap- 
proaches and programming methods we 
have mentioned are not provably the only 
ones possible. But empirically they cover 
all examples we have encountered in the 
research literature and in our own program- 
ming experience. 

Our goal here is to explain the conceptual 
classes, the programming methods, and the 
mapping between them. Section 1 explains 
the basic classes and methods, and sketches 
an example program under each of the 
three methods. Section 2 bridges the gap 
between the abstract and the practical by 
giving an overview of how these methods 
are implemented. Section 3 develops a sim- 

’ Although these methods are well-known, the latter 
two terms are not. Discussions of parallel program- 
ming methodology to date have been largely ad hoc, 
and as a result, the latter two categories have no 
generally accepted names. In fact, they are rarely 
recognized as categories at all. 

ple example in greater detail, presenting 
and explaining code. 

In presenting and explaining program- 
ming methods, we rely on the high-level 
parallel language C-Linda. Linda2 is a 
language-independent set of operations 
that, when integrated into some base lan- 
guage, yields a high-level parallel dialect. 
C-Linda uses C; Fortran-Linda exists as 
well. Other groups are working on other 
languages3 as Linda hosts. Our main topic 
is not Linda, any more than Pascal is the 
main topic in “Introductory Programming 
with Pascal” books. But we do need to 
present the basics of Linda programming. 
Linda is a good choice in this context for 
three reasons. (1) Linda is flexible: It sup- 
ports all three programming methods in a 
straightforward fashion. This is important 
precisely because programming paradigms, 
not programming languages, are the topic 
here. The only way to factor language issues 
out of the discussion (at least partially) is 
to choose one language that will allow us to 
investigate all approaches. (2) Efficient 
Linda implementations are available on 
commercial parallel machines. We are dis- 
cussing real (not theoretical) techniques, 
and for readers who want to investigate 
them, efficient Linda systems exist.4 (3) 
Linda has been used in a wide variety of 
programming experiments-which give us a 

* Linda is a trademark of Scientific Computing Asso- 
ciates, New Haven. 
’ Among them, Scheme, PostScript (see Leler 119891), 
and C++; Borrman et al. [1988describe a Modula-2 
Linda, and Matsuoka and Kawai 119881 describe an 
object-oriented Linda variant. - - 
’ Linda has been implemented on shared-memory par- 
allel computers like the Encore Multimax, Sequent 
Balance and Symmetry, and Alliant FX/8; on distrib- 
uted memory computers like the Intel iPSC-2 hyper- 
cube; and on a VAX/VMS local-area network. Several 
independent commercial implementations now in 
progress-for example, at Cogent Research, Human 
Devices, and Topologix-will expand the range of 
supported architectures. Other groups have ports un- 
derway or planned to the Trollius operating system, 
to the BBN Butterfly running Mach, and to the 
NCUBE; Xu [1988] describes the design of a reliable 
Linda system based on Argus. A simulator that runs 
on Sun workstations also exists. The range of ma- 
chines on which Linda is supported will be expanding 
significantly in coming months. Linda systems are 
distributed commercially by Scientitic Computing As- 
sociates, New Haven. 
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is the obvious approach. But there are sev- 
eral different ways in which parallelism 
might enter. 

First, we might envision parallelism by 
starting with the finished product, the re- 
sult. The result can be divided into many 
separate components: front, rear and side 
walls, interior walls, foundation, roof, and 
so on. After breaking the result into com- 
ponents, we might proceed to build all com- 
ponents simultaneously, assembling them 
as they are completed; we assign one worker 
to the foundation, one to the front exterior 
wall, one to each side wall and so on. All 
workers start simultaneously. Separate 
workers set to work laying the foundation, 
framing each exterior wall and building a 
roof assembly. They all proceed in parallel, 
up to the point where work on one compo- 
nent can’t proceed until another is finished. 
In sum, each worker is assigned to produce 
one piece of the result, and they all work in 
parallel up to the natural restrictions im- 
posed by the problem. This is the result- 
parallel approach. 

At the other end of the spectrum, we 
might envision parallelism by starting with 
the crew of workers who will do the build- 
ing. We note that house building requires a 
collection of separate skills: We need sur- 
veyors, excavators, foundation builders, 
carpenters, roofers and so on. We assemble 
a construction crew in which each skill is 
represented by a separate specialist worker. 
They all start simultaneously, but initially 
most workers will have to wait around. 
Once the project is well underway, however, 
many skills (hence many workers) will be 
called into play simultaneously: The car- 
penter (building forms) and the foundation 
builders work together, and concurrently, 
the roofer can be shingling while the 
plumber is installing fixtures and the elec- 
trician is wiring, and so on. Although a 
single carpenter does all the woodwork, 
many other tasks will overlap and proceed 
simultaneously with the carpenter’s. This 
approach is particularly suited to pipelined 
jobs-jobs that require the production or 
transformation of a series of identical ob- 
jects. If we are building a group of houses, 
carpenters can work on one house while 
foundation builders work on a second and 
surveyors on a third. But this strategy will 
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basis in experience for discussing the 
strengths and weaknesses of various ap- 
proaches. There are Linda applications for 
numerical problems like matrix multipli- 
cation, LU decomposition, sparse factori- 
zation [Ashcraft et al. 19891 and linear 
programming, and for parallel string 
comparison, database search, circuit simu- 
lation, ray tracing [Musgrave and Mandel- 
brot 19891, expert systems [Gelernter 
19891, parameter sensitivity analysis, 
charged particle transport [Whiteside 
and Leichter 19881, traveling salesman, and 
others. We will refer to several of these 
programs in the following discussion. 

1. CONCEPTS AND METHODS 

How do we write parallel programs? For 
each conceptual class, there is a natural 
programming method; each method relates 
to the others in well-defined ways (i.e., 
programs using method x can be trans- 
formed into programs using method y by 
following well-defined steps). We will 
therefore develop the following approach to 
parallel programming: 

To write a parallel program, (1) choose the 
concept class that is most natural for the 
problem; (2) write a program using the 
method that is most natural for that concep- 
tual class; and (3) if the resulting program is 
not acceptably efficient, transform it me- 
thodically into a more efficient version by 
switching from a more-natural method to a 
more-efficient one. 

First we explain the concepts-result, 
agenda, and specialist parallelism. Then we 
explain the methods: live data structures, 
distributed structures, and message pass- 
ing. Finally, we discuss the relationship 
between concepts and methods, and give 
an example. 

1.1 Conceptual Classes 

We can envision parallelism in terms of a 
program’s result, a program’s agenda of ac- 
tivities, or an ensemble of specialists that 
collectively constitute the program. We be- 
gin with an analogy. 

Suppose you want to build a house. Par- 
allelism-using many people on the job- 
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often yield parallelism even when the job is 
defined in terms of a single object, as it 
does in the case of the construction of a 
single house. In sum, each worker is as- 
signed to perform one specified kind of work, 
and they all work in parallel up to the 
natural restrictions imposed by the prob- 
lem. This is the specialist-parallel approach. 

Finally, we might envision parallelism in 
terms of an agenda of activities that must 
be completed in order to build a house. We 
write out a sequential agenda and carry it 
out in order, but at each stage we assign 
many workers to the current activity. We 
need a foundation, then we need a frame, 
then we need a roof, then we need wallboard 
and perhaps plastering, and so on. We as- 
semble a work team of generalists, each 
member capable of performing any con- 
struction step. First, everyone pitches in 
and builds the foundation; then, the same 
group sets to work on the framing; then 
they build the roof; then some of them work 
on plumbing while others (randomly cho- 
sen) do the wiring; and so on. In sum, each 
worker is assigned to help out with the 
current item on the agenda, and they all 
work in parallel up to the natural restric- 
tions imposed by the problem. This is the 
agenda-parallel approach. 

The boundaries between the three classes 
can sometimes be fuzzy, and we will often 
mix elements of several approaches in get- 
ting a particular job done. A specialist 
approach might make secondary use of 
agenda parallelism, for example, by assign- 
ing a team of workers to some specialty- 
the team of carpenters, for example, might 
execute the “carpentry agenda” in agenda- 
parallel style. It is nonetheless a subtle but 
essential point that these three approaches 
represent three clearly separate ways of 
thinking about the problem: 

Result parallelism focuses on the shape of 
the finished product; specialist parallelism 
focuses on the makeup of the work crew; and 
agenda parallelism focuses on the list of tasks 
to be performed. 

These three conceptual classes apply to 
software as well. In particular, 

(1) we can plan a parallel application 
around the data structure yielded as 
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(2) 

(3) 

the ultimate result, and we get paral- 
lelism by computing all elements of the 
result simultaneously; 
we can plan an application around a 
particular agenda of activities and then 
assign many workers to each step; or 
we can plan an application around an 
ensemble of specialists connected into 
a logical network of some kind; paral- 
lelism results from all nodes of the log- 
ical network (all specialists) being 
active simultaneously. 

How do we know what kind of parallel- 
ism, what conceptual class, to use? Con- 
sider the house-building analogy again. In 
effect, all three classes are (or have been) 
used in building houses. Factory-built hous- 
ing is assembled at the site using prebuilt 
modules-walls, a roof assembly, stair- 
cases, and so on; all these components were 
assembled separately and (in theory) si- 
multaneously back at the factory. This is a 
form of result parallelism in action. “Barn 
raisings” evidently consisted of a group of 
workers turning its attention to each of a 
list of tasks in turn, a form of agenda par- 
allelism. But some form of specialist par- 
allelism, usually with secondary agenda 
parallelism, seems like the most natural 
choice for house building: Each worker (or 
team) has a specialty, and parallelism arises 
in the first instance when many separate 
specialities operate simultaneously, sec- 
ondarily when the many (in effect) identi- 
cal workers on one team cooperate on the 
agenda. 

In software as well, certain approaches 
tend to be more natural for certain prob- 
lems. The choice depends on the problem 
to be solved. In some cases, one choice is 
immediate. In others, two or all three ap- 
proaches might be equally natural. This 
multiplicity of choices might be regarded as 
confusing or off-putting; we would rather 
see it as symptomatic of the fact that par- 
allelism is in many cases so abundant that 
the programmer can take his choice about 
how to harvest it. 

In many cases, the easiest way to design 
a parallel program is to think of the result- 
ing data structure-result parallelism. The 
programmer asks himself (1) is my program 
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shape. Consider a program in which (con- 
ceptually) a single object is transformed 
repeatedly: an LU decomposition or linear 
programming problem, for example, in 
which a given matrix is repeatedly trans- 
formed in place. Consider a program that 
is executed not for value, but for effect: a 
real-time monitor-and-control program or 
an operating system, for example. 

Agenda parallelism involves a transfor- 
mation or series of transformations to be 
applied to all elements of some set in par- 
allel. The most flexible embodiment of this 
type of parallelism is the master-worker 
paradigm. In a master-worker program, a 
master process initializes the computation 
and creates a collection of identical worker 
processes. Each worker process is capable 
of performing any step in the computation. 
Workers repeatedly seek a task to perform, 
perform the selected task, and repeat; when 
no tasks remain, the program (or this step) 
is finished. The program executes in the 
same way no matter how many workers 
there are, so long as there is at least one. 
The same program might be executed with 
1, 10, and 1000 workers in three consecutive 
runs. If tasks are distributed on the fly, this 
structure is naturally load-balancing: 
While one worker is tied up with a time- 
consuming task, another might execute a 
dozen shorter task assignments. 

For example, suppose we have a database 
of employee records and need to identify 
the employee with, say, the lowest ratio of 
salary to dependents. Given a record Q, the 
function r(Q) computes this ratio. The 
agenda is simple: “Apply function r to all 
records in the database; return the identity 
of the record for which r is minimum.” We 
can structure this application as a master- 
worker program in a natural way: The mas- 
ter fills a bag with data objects, each rep- 
resenting one employee record. Each 
worker repeatedly withdraws a record from 
the bag, computes r, and sends the result 
back to the master. The master keeps track 
of the minimum-so-far and, when all tasks 
are complete, reports the answer. 

Specialist parallelism involves programs 
that are conceived in terms of a logical 
network. They arise when an algorithm or 
a system to be modeled is best understood 
as a network in which each node executes 
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intended to produce some multiple-element 
data structure as its result (or can it. be 
conceived in these terms)? If so, (2) can I 
specify exactly how each element of the 
resulting structure depends on the rest and 
on the input? If so, it’s easy (given knowl- 
edge of the appropriate programming meth- 
ods) to write a result-parallel program. 
Broadly speaking, such a program reads as 
follows: “Build a data structure in such- 
and-such a shape; attempt to determine the 
value of all elements of this structure si- 
multaneously, where the value of each ele- 
ment is determined by such-and-such a 
computation. Terminate when all values 
are known.” It may be that the elements of 
the result structure are completely inde- 
pendent-no element depends on any 
other. If so, all computations start simul- 
taneously and proceed in parallel. It may 
also be that some elements can’t be com- 
puted until certain other values are known. 
In this case, all element computations start 
simultaneously, but some immediately get 
stuck. They remain stuck until the values 
they rely on have been computed, and then 
proceed. 

Consider a simple example: We have two 
n-element vectors, A and B, and need to 
compute their sum S. A result-parallel pro- 
gram reads as follows: “Construct an 
n-element vector S; to determine the ith 
element of S, add the ith element of A to 
the ith element of B.” The elements of S 
are completely independent. No addition 
depends on any other addition. All addi- 
tions accordingly start simultaneously and 
go forward in parallel. 

More interesting cases involve computa- 
tions in which there are dependencies 
among elements of the result data struc- 
ture. We discuss an example in the next 
section. 

Result parallelism is a good starting 
point for any problem whose goal is to 
produce a series of values with predictable 
organization and interdependencies, but 
not every problem meets this criterion. 
Consider a program that produces output 
whose shape and format depend on the 
input: a program to format text or translate 
code in parallel, for example, whose output 
may be a string of bytes and (perhaps) a 
set of tables, of unpredictable size and 
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a relatively autonomous computation and 
internode communication follows predict- 
able paths. The network may reflect a phys- 
ical model or the logical structure of an 
algorithm (e.g., as in a pipelined or systolic 
computation). Network-style solutions are 
particularly transparent and natural when 
there is a physical system to be modeled. 
Consider a circuit simulator, for example, 
modeled by a parallel program in which 
each circuit element is realized by a sepa- 
rate process. There are also problems that 
partition naturally into separate realms of 
responsibility, with clearly defined inter- 
communication channels; further on we 
discuss a “cooperating experts” type of heu- 
ristic monitor that uses this kind of orga- 
nization. In the last section, we discuss a 
pipeline type of algorithm, an algorithm 
understood as a sequence of steps applied 
to a stream of input values, with each stage 
of the pipe transforming a datum and hand- 
ing it forward. 

For example, suppose a nationwide 
trucking company needs to produce a large 
number of estimates for travel time be- 
tween two points, given current estimates 
for road conditions, weather, and traffic. 
We might design a specialist-parallel pro- 
gram as follows: We embody a map of the 
continental United States in a logical net- 
work; each state is represented by its own 
node in the network. The Wyoming node 
is responsible for staying up-to-date on 
travel conditions in and expected transit 
time through Wyoming, and so forth. To 
estimate travel time from New Hampshire 
to Arkansas, we plan out a route and in- 
clude a representation of this route within 
a data object representing a truck. We hand 
the “truck” to New Hampshire, which es- 
timates its travel time through New Hamp- 
shire and then hands the truck to the next 
state along its route. Eventually the “truck” 
reaches Arkansas, which prints out the fi- 
nal estimate for its transit time. Note that 
large numbers of trucks may be moving 
through the logical network at any one 
time. 

We conclude this survey of conceptual 
classes by mentioning two special classes 
that we will not deal with further, data 
parallelism and speculative parallelism 

(sometimes called or-parallelism). Data 
parallelism is a restricted kind of agenda 
parallelism: It involves a series of transfor- 
mations each applied to all elements of a 
data structure simultaneously. If we start 
with an agenda of activities in which each 
item requires that a transformation be ap- 
plied to a data structure, the agenda- 
parallel program we would derive would in 
effect be an example of data parallelism. 
Empirically, data parallelism is usually as- 
sociated with synchronous machines (e.g., 
MPP [Goodyear Aerospace Co. 19791 and 
the Connection Machine [Hillis and Steele 
19861) and is accordingly tied to an imple- 
mentation in which transformations are 
applied to all elements of some data struc- 
ture not merely concurrently but synchron- 
ously: At each instant, each active worker 
is applying the same step of the same trans- 
formation to its own assigned piece of the 
structure. In this paper our focus is re- 
stricted to techniques that are used 
on general-purpose asynchronous parallel 
machines.5 In “speculative parallelism,” 
often associated with logic programming, 
but also significant in, for example, parallel 
algorithms for heuristic search (e.g., par- 
allel alpha-beta search on game trees 
[Marsland and Campbell 1982]), a collec- 
tion of parallel activities is undertaken with 
the understanding that some may ulti- 
mately prove to be unnecessary to the final 
result. Whenever a program’s structure in- 
cludes clauses like “try X, and if x fails, try 
y” (and so on through a list of other alter- 
natives), we can get parallelism by working 
on x, y, and any other alternatives simul- 
taneously. If and when x fails, y is already 
underway. We understand this under our 
schematization as another special form of 
agenda parallelism: Many workers are 
thrown simultaneously into the completion 
of a list of tasks, with the understanding 
that, ultimately, only one of the results 
produced will be incorporated in the fin- 
ished product. 

5 This focus can be taken as arbitrary, but there is a 
reason for it. At present, synchronous or SIMD ma- 
chines are rare and expensive; asynchronous machines 
can be built cheaply and are increasingly widespread. 
The imminent arrival of parallel workstations will add 
to the flood. 

ACM Computing Surveys, Vol. 21, No. 3, September 1989 



How to Write Parallel Programs l 329 

Figure 1. Message passing: The process structure-the number 
of processes and their relationships-determines the program 
structure. A collection of concurrent processes communicate by 
exchanging messages; every data object is locked inside some 
process. (Processes are round, data objects square, and messages 
oval.) 

Rczd 

Figure 2. Live data structures: The result data structure-the number 

q Ii--ma of its elements and their relationship-determines the program structure. 
Every concurrent process is locked inside a data object; it is responsible, 

- in other words, for computing that element and only that element. 
Communication is no longer a matter of explicit “send message” and 
“receive message” operations; when a process needs to consult the value 

DIDI 

produced by some other process, it simply reads the data object within 
which the process is trapped. 

1.2 The Programming Methods 

In message passing, we create many con- 
current processes and enclose every data 
structure within some process; processes 
communicate by exchanging messages. In 
message-passing methods, no data objects 
are shared among processes. Each process 
may access its own local set of private data 
objects only. In order to communicate, 
processes must send data objects from one 
local space to another; to accomplish this, 
the programmer must explicitly include 
send-data and receive-data operations in 
his code (Figure 1). 

At the other extreme, we dispense with 
processes as conceptually independent en- 
tities and build a program in the shape of 
the data structure that will ultimately be 
yielded as the result. Each element of this 
data structure is implicitly a separate pro- 
cess, which will turn into a data object upon 
termination. To communicate, these im- 
plicit processes don’t exchange messages; 

they simply “refer” to each other as ele- 
ments of some data structure. Thus, if pro- 
cess P has data for Q, it doesn’t send 
a message to Q; it terminates, yielding 
a value, and Q reads this value directly. 
These are “live-data-structure” programs 
(Figure 2). 

The message-passing and live-data- 
structure approaches are similar in the 
sense that, in each, all data objects are 
distributed among the concurrent proc- 
esses; there are no global, shared structures. 
In message passing, though, processes are 
created by the programmer explicitly; they 
communicate explicitly and may send 
values repeatedly to other processes. In a 
live-data-structure program, processes are 
created implicitly in the course of building 
a data structure; they communicate implic- 
itly by referring to the elements of a data 
structure, and each process produces only 
a single datum for use by the rest of the 
program. Details will become clear as we 
discuss examples. 
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Figure 3. Distributed data structures: Concurrent processes 
and data objects figure as autonomous parts of the program 
structure. Processes communicate by reading and writing shared 
data objects. 

Between the extremes of allowing all data 
to be absorbed into the process structure 
(message passing) or all processes to melt 
into data structures (live data structures), 
there is an intermediate strategy that main- 
tains the distinction between a group of 
data objects and a group of processes. 
Because shared data objects exist, pro- 
cesses may communicate and coordinate 
by leaving data in shared objects. These 
are “distributed-data-structure” programs 
(Figure 3). 

1.3 Where to Use Each 

It’s clear that result parallelism is natu- 
rally expressed in a live-data-structure 
program. For example, returning to the 
vector-sum program, the core of such an 
application is a live data structure. The live 
structure is an n-element vector called S; 
trapped inside each element of S is a pro- 
cess that computes A[i] + B[i] for the ap- 
propriate i. When a process is complete, it 
vanishes, leaving behind only the value it 
was charged to compute. 

Specialist parallelism is a good match to 
message passing: We can build such a pro- 
gram under message passing by creating 
one process for each network node and 
using messages to implement communica- 
tion over edges. For example, returning to 
the travel-time program, we implement 
each node of the logical network by a pro- 
cess; trucks are represented by messages. 
To introduce a truck into the network at 
New Hampshire, we send New Hampshire 
a “new truck” message; the message in- 
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eludes a representation of the truck’s route. 
New Hampshire computes an estimated 
transit time and sends another message, 
including both the route and the time-en- 
route-so-far to the next process along the 
route. Note that, with lots of trucks in the 
network, many messages may converge on 
a process simultaneously. Clearly, then, we 
need some method for queuing or buffering 
messages until a process can get around to 
dealing with them. Most message-passing 
systems have some kind of buffering mech- 
anism built in. 

Even when such a network model exists, 
though, message passing will sometimes be 
inconvenient in the absence of backup sup- 
port from distributed data structures. If 
every node in the network needs to refer to 
a collection of global status variables, those 
globals can only be stored (absent distrib- 
uted data structures) as some node’s local 
variables, forcing all access to be channeled 
through a custodian process. Such an ar- 
rangement can be conceptually inept and 
can lead to bottlenecks. 

Agenda parallelism maps naturally onto 
distributed-data-structuremethods.Agenda 
parallelism requires that many workers set 
to work on what is, in effect, a single job. 
In general, any worker will be willing to 
pick up any subtask. Results developed by 
one worker will often be needed by others, 
but one worker usually won’t know (and 
won’t care) what the others are doing. Un- 
der the circumstances, it’s far more conven- 
ient to leave results in a distributed data 
structure, where any worker who wants 
them can take them, than to worry about 
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and the last column, the final position, of 
each body. We have now carried out step 1 
in the design of a live data structure. The 
second step is to define each entry in terms 
of other entries. We can write a function 
position(i, j) that computes the position of 
body i on iteration j ; clearly position(i, j) 
will depend on the positions of each body 
at the previous iteration-will depend, that 
is, on the entries in column j - 1 of the 
matrix. Given a suitable programming lan- 
guage, we’re finished: We build a program 
in which M[i, j] is defined to be the value 
yielded by position (i, j ). Each invocation of 
position constitutes an implicit process, and 
all such invocations are activated and begin 
execution simultaneously. Of course, com- 
putation of the second column can’t pro- 
ceed until values are available for the first 
column: We must assume t.hat, if some 
invocation of position refers to M[x, y] and 
M[x, y] is still unknown, we wait for a 
value and then proceed. Thus, the zeroth 
column’s values are given at initialization 
time, whereupon all values in the first col- 
umn can be computed in parallel, then the 
second column, and so forth (Figure 4). 

Note that, if the forces are symmetric, 
this program does more work than neces- 
sary, because the force between A and B is 
the same as the force between B and A. 
This is a minor problem that we could 
correct, but our goal here is to outline the 
simplest possible approach. 

We can also approach this problem in 
terms of agenda parallelism. The task 
agenda states “repeatedly apply the trans- 
formation compute next position to all bod- 
ies in the set.” To write the program, we 
might create a master process and have it 
generate n initial task descriptors, one for 
each body. On the first iteration, each 
worker in a group of identical worker pro- 
cesses repeatedly grabs a task descriptor 
and computes the next position of the cor- 
responding body, until the pile of task de- 
scriptors is used up (and all bodies have 
advanced to their new positions); likewise 
for each subsequent iteration. A single 
worker will require time proportional to n2 
to complete each iteration; two workers 
together will finish each iteration in time 
proportional to n2/2, and so on. We 
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sending messages to particular recipients. 
Consider also the dynamics of a master- 
worker program, the kind of program that 
represents the most flexible embodiment of 
agenda parallelism. We have a collection of 
workers and need to distribute tasks, gen- 
erally on the fly. Where do we keep the 
tasks? Again, a distributed data structure 
is the most natural solution. If the subtasks 
that make up an agenda item are strictly 
parallel, with no necessary ordering among 
them, the master process can store task 
descriptors in a distributed bag structure; 
workers repeatedly reach into the bag and 
grab a task. In some cases, tasks should be 
started in a certain order (even if many can 
be processed simultaneously); in this case, 
tasks will be stored in some form of distrib- 
uted queue structure. 

For example, we discussed a parallel da- 
tabase search carried out in terms of the 
master-worker model. The bag into which 
the master process drops employee records 
is naturally implemented as a distributed 
data structure-as a structure, in other 
words, that is directly accessible to the 
worker processes and the master. 

1.4 An Example 

Consider a naive n-body simulator: On each 
iteration of the simulation, we calculate the 
prevailing forces between each body and all 
the rest, and update each body’s position 
accordingly.6 We will consider this problem 
in the same way we considered house build- 
ing. Once again, we can conceive of result- 
based, agenda-based, and specialist-based 
approaches to a parallel solution. 

We can start with a result-based ap- 
proach. It’s easy to restate the problem 
description as follows: Suppose we are 
given n bodies and want to run q iterations 
of our simulation; compute a matrix M such 
that M[i, j] is the position of the ith body 
after the jth iteration. The zeroth column 
of the matrix gives the starting position, 

‘There is a better (O(n)) approach to solving the n- 
body problem, developed by Greengard and Rokhlin 
[1987] of Yale; the new algorithm can be parallelized, 
but to keep things simple, we use the old approach as 
a basis for this discussion. 
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Position after 4th iteration 

q Terminated 

q Active 

Figure 4. A live-data-structure approach to the n-body prob- 
lem. To begin, we build an n X q matrix and install a process 
inside each element. The process trapped in element M[i, j] will 
compute the position of the ith body after the jth iteration, by 
referring to the previous column, in which each body’s last- 
known position will appear. The processes in column j are stuck 
until the processes in column j - 1 terminate, at which point all 
of column j can be computed in parallel. Thus, each column 
computes in parallel until values are known for the entire matrix. 

can store information about each body’s does so, and the cycle repeats (Figure 6). 
position at the last iteration in a distributed (A similar but slightly cleaned up version 
table structure, where each worker can refer of such a program is described by Seitz 
to it directly (Figure 5). [1985].) 

Finally, we might use a specialist-parallel 
approach: We create a series of processes, 
each one specializing in a single body-that 
is, each responsible for computing a single 
body’s current position throughout the sim- 
ulation. At the start of each iteration, each 
process informs each other process by mes- 
sage of the current position of its body. All 
processes are behaving in the same way; it 
follows that, at the start of each iteration, 
each process sends data to but also receives 
data from each other process. The data 
included in the incoming crop of mes- 
sages are sufficient to allow each process 
to compute a new position for its body. It 

1.5 How Do the Three Techniques Relate? 

The methodology we are developing re- 
quires (1) starting with a conceptual class 
that is natural to the problem, (2) writing 
a program using the programming method 
that is natural to the class, and then, (3) if 
necessary, transforming the initial program 
into a more efficient variant that uses some 
other method. If a natural approach also 
turns out to be an efficient approach, then 
obviously no transformation is necessary. 
If not, it’s essential to understand the 
relationships between the techniques and 
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Tasks 

Worker Processes 

Figure 5. A distributed-data-structure version. At each iteration, 
workers repeatedly pull a task out of a distributed bag and compute 
the corresponding body’s new position, referring to a distributed 
table for information on the previous position of each body. After 
each computation, a worker might update the table (without 
erasing information on previous positions, which may still be 
needed) or might send newly computed data to a master process, 
which updates the table in a single sweep at the end of each 
iteration. 

@ FVzee; ;IdrryeseIlling 

Data object describing 
this body’s current position 

Figure 6. The message-passing version. Whereas the 
live-data-structure program creates nq processes (q was 
the number of iterations, and there are n bodies) and the 
distributed-data-structure program creates any number 
of workers it chooses, this message-passing program cre- 
ates exactly n processes, one for each body. In each of the 
other two versions, processes refer to global data structures 
when they need information on the previous positions of 
each body. (In the live-data-structure version, this global 
data structure was the “live” structure in which the pro- 
cesses themselves were embedded.) But in the message- 
passing version, no process has access to any data object 
external to itself. Processes keep each other informed by 
sending messages back and forth. 
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Figure 7. The game of parallelism. 

D?lO~~liZl-<I 
Data 
Objects 
__________.____... 
Captive 
Datn 
Objects 

the performance implications of each. After 
describing the relationships in general, we 
discuss one case of this transformation-for- 
efficiency in some detail. 

1.5.1 The Relationships 

The main relationships are shown in Fig- 
ure 7. Both live data structures and message 
passing center on captive data objects: 
Every data object is permanently associ- 
ated with some process. Distributed-data- 
structure techniques center on delocalized 
data objects, objects not associated with 
any one process, freely floating about on 
their own. We can transform a live-data- 
structure or a message-passing program 
into a distributed structure program by us- 
ing abstraction: We cut the data objects 
free of their associated processes and put 
them in a distributed data structure in- 
stead, Processes are no longer required to 
fix their attention on a single object or 
group of objects; they can range freely. To 
move from a distributed structure to a live- 
data-structure or a message-passing pro- 
gram, we use specialization: We take each 
object and bind it to some process. 

It is clear from the foregoing that live 
data structures and message passing are 
strongly related, but there are also some 
important differences. To move from the 
former to the latter, we need to make com- 
munication explicit, and we may optionally 
use clumping. A process in a live-data- 
structure program has no need to commu- 

nicate information explicitly to any other 
process. It merely terminates, yielding a 
value. In a message-passing program, a pro- 
cess with data to convey must execute an 
explicit “send-message” operation. When a 
live-data-structure process requires a data 
value from some other process, it references 
a data structure; a message-passing process 
will be required to execute an explicit 
“receive-message” operation. 

Why contemplate a move from live data 
structures to message passing, if the latter 
technique is merely a verbose version of the 
former? It isn’t; message-passing tech- 
niques offer an added degree of freedom, 
which is available via “clumping.” A pro- 
cess in a live-data-structure program devel- 
ops a value and then dies. It can’t live on 
to develop and publish another value. In 
message passing, a process can develop as 
many values as it chooses and disseminate 
them in messages whenever it likes. It can 
develop a whole series of values during a 
program’s lifetime. Hence, clumping: We 
may be able to let a single message-passing 
process do the work of a whole collection 
of live-data-structure processes. 

Table 1 summarizes the relationships in 
a different way. It presents an approxi- 
mate and general characterization of the 
three classes. There are counterexamples 
in every category, but it’s useful to sum- 
marize the spectrum of process and pro- 
gram types, from the large number of 
simple, tightly coordinated processes that 
usua!ly occur in result parallelism, through 
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Table 1. Rough Characterization of the Three Classes 

Complexity of processes 

Skills Tasks 

Result 
Specialist 
Agenda 

One 
One 
Many 

One 
Many 
Many 

Simpler 

More complex 

Program structure 

Result 
Specialist 
Agenda 

Number of processes 

High 
Moderate 
Adjustable 

Coordination 

Tight 
Moderate 
Loose 

the typically smaller collection of more 
complex, more loosely coupled processes in 
agenda parallelism. 

1.5.2 Using Abstraction and Then Specialization 
to Transform a Live-Data-Structure 
Program 

Having described some transformations in 
the abstract, what good are they? We can 
walk many paths through the simple net- 
work in Figure 7, and we can’t describe 
them all in detail. We take up one signifi- 
cant case, describing the procedure in gen- 
eral and presenting an example; we close 
the section with a brief examination of 
another interesting case. 

Suppose we have a problem that seems 
most naturally handled using result paral- 
lelism. We write the appropriate live-data- 
structure program, but it performs poorly, 
so we need to apply some transformations. 

First, why discuss this particular case? 
When the problem is suitable, a live-data- 
structure program is likely to be rather easy 
to design and concise to express. It’s likely 
to have a great deal of parallelism (with the 
precise degree depending, obviously, on the 
size of the result structure and the depend- 
encies among elements). But it may also 
run poorly on most current-generation par- 
allel machines, because the live-data-struc- 
ture approach tends to produce fine-grained 
programs-programs that create a large 
number of processes each one of which 
does relatively little computing. Concretely, 
if our resulting data structure is, say, a ten- 
thousand-element matrix, this approach 

will implicitly create ten thousand proc- 
esses. There is no reason in theory why this 
kind of program cannot be supported effi- 
ciently, but on most current parallel com- 
puters, there are substantial overheads 
associated with creating and coordinating 
large numbers of processes. This is partic- 
ularly true on distributed-memory ma- 
chines, but even on shared-memory 
machines that support lightweight pro- 
cesses: the potential gain from parallelism 
can be overwhelmed by huge numbers 
of processes, each performing a trivial 
computation. 

If a live-data-structure program performs 
well, we’re finished; if it does not, a more 
efficient program is easily produced by ab- 
stracting to a distributed data-structure 
version of the same algorithm. We replace 
the live data structure with a passive one 
and raise the processes one level in the 
conceptual scheme: Each process fills in 
many elements, rather than becoming a sin- 
gle element. We might create one hundred 
processes and have each process compute 
one hundred elements of the result. The 
resulting program is coarser grained then 
the original-the programmer decides how 
many processes to create and can choose a 
reasonable number. We avoid the overhead 
associated with huge numbers of processes. 

This second version of the program may 
still not be efficient enough, however. It 
requires that each process read and write a 
single data structure, which must be stored 
in some form of logically shared memory. 
Accesses to a shared memory will be more 
expensive than access to local structures. 
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Ordinarily this isn’t a problem; distributed 
data-structure programs can be supported 
efficiently even on distributed-memory 
(e.g., hypercube) machines. But, for some 
communication-intensive applications, and 
particularly on distributed-memory ma- 
chines, we may need to go further in order 
to produce an efficient program. We might 
produce a maximally efficient third version 
of the program by using specialization to 
move from distributed data structures to 
message passing. We break the distributed 
data structure into chunks and hand each 
chunk to the process with greatest interest 
in that chunk. Instead of a shared dis- 
tributed data structure, we now have a 
collection of local data structures, each 
encapsulated within and only accessible to 
a single process. When some process needs 
access to a “foreign chunk,” a part of the 
data structure that it doesn’t hold locally, 
it must send a message to the process that 
does hold the interesting chunk, asking that 
an update be performed or a data value 
returned. This is a nuisance and usually 
results in an ugly program, but it elimi- 
nates direct references to any shared data 
structures. 

Under this scheme of things, we can see 
a neat and well-defined relationship among 
our three programming methods. We start 
with an elegant and easily discovered but 
potentially inefficient solution using live 
data structures, move on via abstraction to 
a more efficient distributed-data-structure 
solution, and finally end up via specializa- 
tion at a low-overhead message-passing 
program. (We might alternatively have 
gone directly from live data structures to 
message passing via clumping.) 

There is nothing inevitable about this 
procedure. In many cases, it’s either inap- 
propriate or unnecessary. It is inappro- 
priate if live data structures are not a 
natural starting point. It is unnecessary if 
a live-data-structure program runs well 
from the start. It is partially unnecessary 
if abstraction leads to a distributed-data- 
structure program that runs well; in this 
case, there’s nothing to be gained by 
performing the final transformation, and 
something to be lost (because the message- 
passing program will probably be sub- 

stantially more complicated than the 
distributed-data-structure version). It’s 
also true that message-passing programs 
are not always more efficient than distrib- 
uted-data-structure versions; often they 
are, but there are cases in which distributed 
data structures are the optimal approach. 

1.5.3 An Example 

For example, returning to the n-body sim- 
ulator, we discussed a live-data-structure 
version; we also developed distributed- 
data-structure and message-passing ver- 
sions, independently. We could have used 
the live-data-structure version as a basis 
for abstraction and specialization as well. 

Our live-data-structure program created 
n X q processes, each of which computed a 
single invocation of position and then ter- 
minated. We can create a distributed-data- 
structure program by abstraction. M is now 
a distributed data structure-a passive 
structure, directly accessible to all proc- 
esses in the program. Its zeroth column 
holds the initial position of each body; the 
rest of the matrix is blank. We create k 
processes and put each in charge of filling 
in one band of the matrix. Each band is 
filled in column-by-column. In filling in the 
jth column, processes refer to the position 
values recorded in the j - 1st column. We 
now have a program in which number of 
processes is under direct programmer con- 
trol; we can run the program with two or 
three processes if this seems reasonable (as 
it might if we have only two or three pro- 
cessors available). We have achieved lower 
process-management overheads, but the 
new program was easy to develop from the 
original and will probably be only slightly 
less concise and comprehensible. 

Finally, we can use specialization to pro- 
duce a minimal-overhead message-passing 
program. Each process is given one band of 
M to store in its own local variable space; 
M no longer exists as a single structure. 
Since processes can no longer refer directly 
to the position values computed on the last 
iteration, these values must be dissemi- 
nated in messages. At the end of each 
iteration, processes exchange messages; 
messages hold the positions computed by 
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each process on the last iteration. We have 
now achieved low process-management 
overhead and also eliminated the overhead 
of referring to a shared distributed data 
structure. But the cost is considerable: The 
code for this last version will be substan- 
tially more complicated and messier than 
the previous one, because each process will 
need to conclude each iteration with a 
message-exchange operation in which mes- 
sages are sent, other messages are received, 
and local tables are updated. We have also 
crossed an important conceptual threshold: 
Communication in the first two solutions 
was conceived in terms of references to data 
structures, a technique that is basic to all 
programming. But the last version relies on 
message passing for communication, thus 
substituting a new kind of operation that 
is conceptually in a different class from 
standard programming techniques. 

pose, for example, that we want to simulate 
a ten-thousand-element circuit. It is natu- 
ral to envision one process for each circuit 
element, with processes exchanging mes- 
sages to simulate the propagation of signals 
between circuit elements. But this might 
lead to a high-overhead program that runs 
poorly. Abstraction, again, allows us to cre- 
ate fewer processes and put each in charge 
of one segment of a distributed data struc- 
ture that represents the network state as a 
whole. 

In sum, there are many paths that a 
programmer might choose to walk though 
the state diagram shown in Figure 7. But 
the game itself is simple: Start at whatever 
point is most natural, write a program, 
understand its performance, and then, if 
necessary, follow the “efficiency” edges un- 
til you reach an acceptable stopping place. 

1.6 Where Are the Basic Techniques 
1.5.4 When to Abstract and Specialize Supported? 

How do we know whether we need to use 
abstraction or to move onward to a mes- 
sage-passing program? The decision is 
strictly pragmatic; it depends on the appli- 
cation, the programming system, and the 
parallel machine. Consider one concrete 
datum: Using C-Linda on current parallel 
machines, specialization leading to a mes- 
sage-passing program is rarely necessary. 
Most problems have distributed-data- 
structure solutions that perform well. In 
this context, though, abstraction to a dis- 
tributed-data-structure program usually is 
necessary to get an efficient program. 

Although it is our intention in this article 
to survey programming techniques, not 
programming systems, a brief guide to the 
languages and systems in which the basic 
techniques occur may be helpful. 

1.5.5 Another Path through the Network: 
Abstraction from Message Passing 

When live-data-structure solutions are 
natural, they may involve too many pro- 
cesses and too much overhead, so we use 
abstraction to get a distributed-data- 
structure program. It’s also possible for a 
message-passing, network-style program to 
be natural, but to involve too many pro- 
cesses and too much interprocess com- 
munication, in which case we can use 
abstraction, again, to move from message 
passing to distributed data structures. Sup- 

Message passing is by far the most wide- 
spread of the basic models; it occurs in 
many different guises and linguistic con- 
texts. The best-known of message-passing 
languages is Hoare’s influential fragment 
CSP [Hoare 19781, which inspired a com- 
plete language called Occam [May 19831. 
CSP and Occam are based on a radically 
tight-knit kind of message passing: Both 
the sending and the receiving of a message 
are synchronous operations. In both lan- 
guages, a process with a message to send 
blocks until the designated receiver has 
taken delivery. CSP and Occam are static 
languages as well: They do not allow new 
processes to be created dynamically as a 
program executes. CSP and Occam are for 
these reasons not expressive enough to sup- 
port the full range of message-passing-type 
programs we discuss here. 

Monitor and remote-procedure-call lan- 
guages and systems are another subtype 
within the message-passing category (with 
a qualification we note below). In these 
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systems, communication is modeled on pro- 
cedure call: One process communicates 
with another by invoking a procedure de- 
fined within some other process or within 
a passive, globally accessible module. This 
kind of quasi-procedure call amounts to a 
specialized form of message passing: Argu- 
ments to the procedure are shipped out in 
one message, results duly returned in an- 
other. The qualification mentioned above 
is that, in certain cases, systems of this sort 
are used for quasi-distributed-data-struc- 
ture programs. A global data object can be 
encapsulated in a module and then manip- 
ulated by remotely invoked procedures. 
(The same kind of thing is possible in any 
message-passing system, but is more con- 
venient given a procedure-style communi- 
cation interface.) Why quasi-distributed 
data structures? As we understand the 
term, a distributed data structure is directly 
accessible to many parallel processes si- 
multaneously. (Clearly we may sometimes 
need to enforce sequential access to avoid 
corrupting data, but in general, many read 
operations may go forward simultane- 
ously-and many write operations that 
affect separate and independent parts of 
the same structure may also proceed simul- 
taneously, for example, many independent 
writes to separate elements of a single ma- 
trix.) Languages in this class support data 
objects that are global to many processes, 
but in general, they allow processes one-at- 
a-time access only. Nor do they support 
plain distributed data objects; a global ob- 
ject must be packaged with a set of access 
procedures. 

Monitors were first described by Hoare 
[1974] and have been used as a basis for 
many concurrent programming languages, 
for example Concurrent Pascal [Brinch 
Hansen 19751, Mesa [Lampson and Redell 
19801 and Modula [Wirth 19771. (A con- 
current language, unlike a parallel lan- 
guage, assumes that multiple processes in- 
habit the same address space.) Fairly 
recently they have been revived for use 
in parallel programming, in the form 
of parallel object-oriented programming 
languages (e.g., Emerald [Jul et al. 881). A 
form of remote procedure call underlies 
Ada [U.S. Department of Defense 19821; 
Birrell and Nelson’s RPC kernel [Birrell 
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and Nelson 19841 is an efficient systems- 
level implementation. 

Another variant of message passing cen- 
ters on the use of streams: Senders (in 
effect) append messages to the end of a 
message stream, and receivers inspect the 
stream’s head. This form of communication 
was first proposed by Kahn [1974] and 
forms the basis for communication in most 
concurrent logic languages (e.g., Concur- 
rent Prolog [Shapiro 19871 and Parlog 
[Ringwood 19881) and in functional lan- 
guage extended with constructs for explicit 
communication (e.g., [Henderson 19821). 

Message passing of one form or another 
appears as a communication method in 
many operating systems-for example, the 
V kernel [Cheriton and Zwaenpoel 19851, 
Mach [Young et al. 19871 and Amoeba 
[ Mullender and Tanenbaum 19861. 

Distributed data structures are less fre- 
quently encountered. The term was intro- 
duced in the context of Linda [Carrier0 et 
al. 19861. Distributed data structures form 
the de facto basis of a number of specialized 
FORTRAN that revolve around parallel 
do-loops, for example, Jordan’s Force sys- 
tem [Jordan 19861. In this kind of system, 
parallelism is created mainly by specifying 
parallel loops-loops in which iterations 
are executed simultaneously instead of se- 
quentially. Separate loop iterations com- 
municate through distributed structures 
that are adaptations of standard FOR- 
TRAN structures. Distributed data struc- 
tures are central in Dally’s CST 
[Dally 19881 and Bal and Tanenbaum’s 
Orca [Bal and Tanenbaum 19871, and are 
supported in MultiLISP [Halstead 19851 as 
well. 

Live data structures are a central tech- 
nique in several languages that support 
so-called nonstrict data structures-data 
structures that can be accessed before they 
are fully defined. Id Nouveau [Nikhil et al. 
19861, MultiLISP [Halstead 19851, and 
Symmetric LISP [Gelernter et al. 19871 are 
examples. This same idea forms the im- 
plicit conceptual basis for the large class of 
functional languages intended for parallel 
programming (e.g., ParAlfl [Hudak 19861, 
Sisal [Lee et al. 19881 and Crystal 
[Chen 19861). Programs in these languages 
consist of a series of equations specifying 
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values to be bound to a series of names. 
One equation may depend on the values 
returned by other equations in the set; we 
can solve all equations simultaneously, sub- 
ject to the operational restriction that an 
equation referring to a not-yet-computed 
value cannot proceed until this value is 
available. The equivalent program in live- 
data-structure terms would use each equa- 
tion to specify the value of one element in 
a live data structure. 

2. PROGRAMMING TECHNIQUES FOR 
PARALLELISM 

We have discussed conceptual classes and 
general methods. We turn now to the prac- 
tical question: How do we build working 
parallel programs? In this section we 
sketch implementations of the pieces out 
of which parallel programs are constructed. 

We start with a systematic investigation 
of distributed data structures. We give an 
overview of the most important kinds of 
distributed structures, when each is used, 
and how each is implemented. This first 
part of the discussion should equip readers 
with a reasonable tool kit for building 
distributed-data-structure programs. Of 
course we intend to discuss all three pro- 
gramming methods, but the other two are 
easily derived from a knowledge of distrib- 
uted data structures, as we discuss in the 
following sections. We arrive at message 
passing by restricting ourselves to a small 
and specialized class of distributed struc- 
tures. We arrive at live data structures by 
building distributed structures out of pro- 
cesses instead of passive data objects. 

2.1 Linda 

Linda consists of a few simple operations 
that embody the “tuple-space” model of 
parallel programming. A base language 
with the addition of these tuple-space 
operations yields a parallel-programming 
dialect. To write parallel programs, pro- 
grammers must be able to create and coor- 
dinate multiple execution threads. Linda is 
a model of process creation and coordina- 
tion that is orthogonal to the base language 
in which it is embedded. The Linda model 

doesn’t care how the multiple execution 
threads in a Linda program compute what 
they compute; it deals only with how these 
execution threads (which it sees as so many 
black boxes) are created and how they can 
be organized into a coherent program. The 
following paragraphs give a basic introduc- 
tion. Linda is discussed in greater detail 
and contrasted with a series of other ap- 
proaches in Carrier0 and Gelernter [1989]. 

The Linda model is a memory model. 
Linda memory (called tuple space or TS) 
consists of a collection of logical tuples. 
There are two kinds of tuples: Process tu- 
ples are under active evaluation; data tuples 
are passive. The process tuples (which are 
all executing simultaneously) exchange 
data by generating, reading, and consuming 
data tuples. A process tuple that is finished 
executing turns into a data tuple, indistin- 
guishable from other data tuples. 

There are four basic TS operations, out, 
in, rd, and eval, and two variant forms, 
inp and rdp. out(t) causes tuple t to be 
added to TS; the executing process contin- 
ues immediately. in(s) causes some tuple t 
that matches temp!ate s to be withdrawn 
from TS; the values of the actuals in t are 
assigned to the formals in s, and the exe- 
cuting process continues. If no matching t 
is available when in(s) executes, the exe- 
cuting process suspends until one is, then 
proceeds as before. If many matching t’s 
are available, one is chosen arbitrarily. 
rd(s) is the same as in(s), with actuals 
assigned to formals as before, except that 
the matched tuple remains in TS. Predicate 
versions of in and rd, inp and rdp, attempt 
to locate a matching tuple and return 0 if 
they fail; otherwise, they return 1 and per- 
form actual-to-formal assignment as de- 
scribed above. (If and only if it can be 
shown that, irrespective of relative process 
speeds, a matching tuple must have been 
added to TS before the execution of inp or 
rdp and cannot have been withdrawn by 
any other process until the inp or rdp is 
complete, the predicate operations are 
guaranteed to find a matching tuple.) 
eval(t) is the same as out(t), except that 
t is evaluated after rather than before it 
enters TS; eval implicitly forks a new pro- 
cess to perform the evaluation. When com- 
putation of t is complete, t becomes an 
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ordinary passive tuple, which may be ined 
or read like any other tuple. 

A tuple exists independently of the pro- 
cess that created it, and in fact many tuples 
may exist independently of many creators 
and may collectively form a data structure 
in TS. It’s convenient to build data struc- 
tures out of tuples because tuples are ref- 
erenced associatively, somewhat like the 
tuples in a relational database. A tuple is 
a series of typed fields, for example, (“a 
string”, 15.01, 17, “another string”) 
or (0, 1). Executing the out statements 

out (“a string”, 15.01, 17, “another 
string”) 

out(O, 1) 

causes these tuples to be generated and 
added to TS. (The process executing out 
continues immediately.) An in or rd state- 
ment specifies a template for matching: 
Any values included in the in or rd must 
be matched identically; formal parameters 
must be matched by values of the same 
type. (It is also possible for formals to ap- 
pear in tuples, in which case a matching in 
or rd must have a type-consonant value in 
.the corresponding position.) Consider the 
following statement: 

in(“a string”, ? f, ? i, “another string”) 

Executing this statement causes a search 
of TS for tuples of four elements, first 
element “a string” and last element “an- 
other string”, middle two elements of the 
same types as variables f and i respectively. 
When a matching tuple is found, it is re- 
moved, the value of its second field is as- 
signed to f and its third field to i. The read 
statement, for example, 

rd(“a string”, ? f, ? i, “another string”) 

works in the same way, except that the 
matched tuple is not removed. The values 
of its middle two fields are assigned to f 
and i as before, but the tuple remains in 
TS. 

A tuple created using eval resolves into 
an ordinary data tuple. Consider the follow- 

ing statement: 

eval(“e”, 7, exp( 7)). 

It creates a three-element “live tuple” and 
continues immediately; the live tuple sets 
to work computing the values of the string 
“e”, the integer 7, and the function call 
exp(7). The first two computations are 
trivial (they yield “e” and 7); the third 
ultimately yields the value of e to the sev- 
enth power. Expressions that appear as 
arguments to eval inherit bindings from 
the environment of the eval-executing pro- 
cess for whatever names they cite explicitly 
and for read-only globals initialized at 
compile time. Thus, executing eval(“Q”, 
f(x, y)) implicitly creates a new process 
and evaluates “Q” and f(x, y) in a context 
in which the names f, y, and x have the 
same values they had in the environment 
of the process that executed eval. The 
names of any variables that happen to be 
free in f, on the other hand, were not cited 
explicitly by the eval statement, and 
no bindings are inherited for them.7 The 
statement 

rd(“e”, 7 , ? value)) 

might be used to read the tuple generated 
by this eval, once the live tuple has re- 
solved to a passive data tuple-that is, once 
the necessary computing has been accom- 
plished. (Executed before this point, it 
blocks until the active computation has 
resolved into a passive tuple.) 

2.2 The Basic Distributed Data Structures 

We can divide conventional “undistrib- 
uted” data structures into three categories: 
(1) structures whose elements are identical 
or indistinguishable, (2) structures whose 
elements are distinguished by name, and 
(3) structures whose elements are distin- 
guished by position. It’s useful to subdivide 
the last category: (3a) structures whose ele- 
ments are “random accessed” by position 

‘Future versions of the system may disallow the in- 
heritance by eval-created processes of read-only glob- 
als. There are simple transformations from programs 
that rely on this feature to ones that do not. 
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case need not be identical, but are treated 
in a way that makes them indistinguish- 
able. Bags are unimportant in sequential 
programming, but extremely important to 
parallel programming. The simplest kind of 
replicated-worker program depends on a 
bag of tasks. Tasks are added to the bag 
using 

out(“task”, TaskDescription) 

and withdrawn using 

in(“task”, ? NewTask) 

A simple example: consider a program that 
needs to apply some test to every 
element of a large file. (In one experiment 
we’ve done, the large file holds DNA 
sequences, and the test is “compare each 
sequence to a designated target sequence”; 
we need to discover which sequences in a 
database are “closest” under a string- 
matching-like algorithm to some desig- 
nated sequence.) The program consists of 
a master and workers; the task is “compare 
the target sequence to sequence s.” To with- 
draw a sequence from the bag, workers 
execute 

in(“sequence”, ? seq) 

The master reads sequences from the file 
and adds them to the bag (using a low- 
watermark algorithm to ensure that the bag 
doesn’t overfill [Carrier0 and Gelernter 
19881); to add a sequence, it executes 

out(“sequence”, seq) 

Note that we can regard the set of all 
(“sequence”, value) tuples as a bag of 
indistinguishable 2-tuples; alternatively, 
we can say that “sequence” is the name of 
a bag of values and that out(“sequence”, 
seq) means “add seq to the bag called 
“sequence”.” 

Consider an example with some of the 
attributes of each of the two previous cases. 
Suppose we want to turn a conventional 
loop, for example 

for ((loop control)) 
(something) 
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and (3b) structures whose elements are 
accessed under some ordering. 

In the world of sequential programming, 
category (1) is unimportant. A set of iden- 
tical or indistinguishable elements qualifies 
for inclusion, but such objects are rare in 
sequential programming. Category (2) in- 
cludes records, objects instantiated from 
class definitions, sets and multisets with 
distinguishable elements, associative mem- 
ories, Prolog-style assertion collections, 
and other related objects. Category (3a) 
consists mainly of arrays and other struc- 
tures stored in arrays, and category (3b) 
includes lists, trees, graphs, and so on. Ob- 
viously the groupings are not disjoint, and 
there are structures that can claim mem- 
bership in several. 

The distributed versions of these struc- 
tures don’t always play the same roles as 
their sequential analogs. Factors with no 
conventiona analogs can furthermore play 
a major role in building distributed struc- 
tures. Synchronization concerns arising 
from the fact that a distributed structure is 
accessible to many asynchronous processes 
simultaneously form the most important 
example. Notwithstanding, every conven- 
tional category has a distributed analog. 

2.2.1 Structures with Identical or 
Indistinguishable Elements 

The most basic of distributed data struc- 
tures is a lock or semaphore. In Linda, a 
counting semaphore is precisely a collection 
of identical elements. To execute a V on a 
semaphore “sem”, 

out(“sem”); 

to execute a P, 

in(“sem”). 

To initialize the semaphore’s value to n, 
execute out(“sem”) n times. Semaphores 
aren’t used heavily in most parallel appli- 
cations (as opposed to most concurrent sys- 
tems), but they do arise occasionally; we 
elaborate in the next section. 

A bag is a data structure that defines two 
operations: “add an element” and “with- 
draw an element.” The elements in this 
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into a parallel loop-all instances of some- 
thing execute simultaneously. This con- 
struct is popular in parallel FORTRAN 
variants. One simple way to do the trans- 
formation has two steps: First we define a 
function something( ) that executes one 
instance of the loop body and returns, say, 
1. Then we rewrite as follows: 

for ((loop control)) 
eval(“this loop”, something( )); 

for ((loop control)) 
in(“this loop”, 1); 

We have, first, created n processes; each is 
an active tuple that will resolve, when the 
function call something( ) terminates, to 
a passive tuple of the form (“this loop”, 
1). Second, we collect the n passive result 
tuples. These n may be regarded as a bag 
or, equivalently, as a single counting sem- 
aphore that is V’ed implicitly by each pro- 
cess as it terminates. A trivial modification 
to this example would permit each iteration 
to “return” a result. 

2.2.2 Name-Accessed Structures 

Parallel applications often require access to 
a collection of related elements distin- 
guished by name. Such a collection resem- 
bles a Pascal record or a C “struct.” We 
can store each element in a tuple of the 
form 

(name, value) 

To read such a “record field,” processes use 
rd(name , ? val); to update it, 

in(name, ? old); 
out(name, new). 

Consider, for example, a program that 
acts as a real-time expert monitor: Given a 
mass of incoming data, the system will post 
notices when significant state changes oc- 
cur; it must also respond to user-initiated 
queries respecting any aspect of the current 
state. One software architecture for such 
systems is the so-called “process lattice”: 
a hierarchical ensemble of concurrent pro- 
cesses, with processes at the bottom level 
wired directly to external sensors, and pro- 
cesses at higher levels responsible for 
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increasingly more complex or abstract 
states. The model defines a simple internal 
information-flow protocol, with data flow- 
ing up and queries downward, and each 
node directly accessible at the user inter- 
face. Our prototype deals with hemody- 
namic monitoring in intensive care units 
[Carrier0 and Gelernter 19881. Each pro- 
cess records its current state in a named 
tuple, whence it can be consulted directly 
by any interested party. The process that 
implements the “hypovolemia” decision 
procedure, for example, can update its state 
as follows: 

in(“hypovolemia”, ? old) 
out(“hypovolemia”, new). 

Any process interested in hypovolemia 
can read the state directly. These state- 
describing tuples can thus be collectively 
regarded as a kind of distributed record, 
whose elements can be separately updated 
and consulted. 

As always, the synchronization charac- 
teristics of distributed structures distin- 
guish them from conventional counter- 
parts. Any process attempting to read the 
hypovolemia field while this field is being 
updated will block until the update is com- 
plete and the tuple is reinstated. Processes 
occasionally need to wait until some event 
occurs; Linda’s associative matching makes 
this convenient to program. For example, 
some parallel applications rely ‘on “barrier 
synchronization”: Each process within 
some group must wait at a barrier until all 
processes in the group have reached the 
barrier; then all can proceed. If the group 
contains n processes, we set up a barrier 
called barrier-37 by executing 

out(“barrier-37”, n) 

Upon reaching the barrier point, each pro- 
cess in the group executes (under one 
simple implementation) 

in(“barrier-37”, ? val); 
out(“barrier-37”, val-1); 
rd(“barrier-37”, 0). 

That is, each process decrements the value 
of the field called barrier-37 and then 
waits until its value becomes 0. 
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22.3 Position-Accessed Structures 

Distributed arrays are central to parallel 
applications in many contexts. They can be 
programmed as tuples of the form (Array 
name, index fields, value). Thus, (“V”, 14, 
123.5) holds the 14th element of vector V, 
(“A”, 12, 18,5,123.5) holds one element 
of the three-dimensional array A, and so 
forth. For example, one way to multiply 
matrices A and B, yielding C, is to store A 
and B as a collection of rectangular blocks, 
one block per tuple, and to define a task as 
the computation of one block of the product 
matrix. Thus, A is stored in TS as a series 
of tuples of the form 

(“A”, 1, 1, (first block of A)) 
(“A”, 1, 2, (second block of A)) 

and B likewise. Worker processes repeat- 
edly consult and update a next-task tuple, 
which steps though the product array 
pointing to the next block to be computed. 
If some worker’s task at some point is to 
compute the i, jth block of the product, it 
reads all the blocks in A’s ith row band and 
B’s jth column band, using a statement 
like 

for (next=O; next < ColBlocks; 
next++) 

rd(“A”, i, next, ? RowBand[next]) 

for A and similarly for B; then, using 
RowBand and ColBand, it computes the 
elements of C’s i, jth block and concludes 
the task step by executing the 

out(“C”, i, j, Product) 

Thus, “C” is a distributed array as well, 
constructed in parallel by the worker pro- 
cesses and stored as a series of tuples of the 
form 

(“C”, 1, 1, (first block of C)) 
(“C”, 1, 2, (second block of C)). 

It’s worth commenting at this point on 
the obvious fact that a programmer who 
builds this kind of matrix-multiplication 
program is dealing with two separate 
schemes for representing data: the standard 
array structures of the base language and a 
tuple-based array representation. It would 
be simple in theory to demote the tuple- 

based representation to the level of assem- 
bler language generated by the compiler: 
Let the compiler decide which arrays are 
accessed by concurrent processes and must 
therefore be stored in TS; then have the 
compiler generate the appropriate Linda 
statements. Not hard to do-but would this 
be desirable? 

We tend to think not. First, there are 
distributed data structures with no conven- 
tional analogs, as we have noted; a sema- 
phore is the simplest example. It follows 
that parallel programmers will not be able 
to rely exclusively on conventional forms 
and will need to master some new struc- 
tures regardless of the compiler. But it’s 
also the case that the dichotomy between 
local memory and all other memory is 
emerging as a fundamental attribute (ar- 
guably the fundamental attribute) of par- 
allel computers. Evidence suggests that 
programmers cannot hope to get good per- 
formance on parallel machines without 
grasping this dichotomy and allowing their 
programs to reflect it. This is an obvious 
point when applied to parallel architectures 
without physically shared memory. Proces- 
sors in such a machine have much faster 
access to data in their local memories than 
to data in another processor’s local mem- 
ory-nonlocal data are accessible only via 
the network and the communication soft- 
ware. But hierarchical memory is also a 
feature of shared-memory architectures. 
Thus, we note an observation like the fol- 
lowing, which deals with the BBN Butterfly 
shared-memory multiprocessor: 

Although the Uniform System [a BBN- 
supplied parallel programming environ- 
ment] provides the illusion of shared 
memory, attempts to use it as such do 
not work well. Uniform System programs 
that have been optimized invariably 
block-copy their operands into local 
memory, do their computation locally, 
and block-copy out their results. . . . This 
being the case, it might be wise to opti- 
mize later-generation machines for very 
high bandwidth transfers of large blocks 
of data rather than single-word reads and 
writes as in the current Butterfly. We 
might end up with a computational 
model similar to that of LINDA. . . , with 
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naming and locking subsumed by the 
operating system and the LINDA in, 
read and out primitives implemented by 
very high speed block transfer hardware. 
[Olson 19861 

Because the dichotomy between local and 
nonlocal storage appears to be fundamental 
to parallel programming, programmers 
should (we believe) have a high-level, 
language-based model for dealing with 
nonlocal memory. TS provides such a 
model. 

Returning to position-accessed distrib- 
uted data structures, synchronization prop- 
erties can again be significant. Consider a 
program to compute all primes between 1 
and n (we examine several versions of this 
program in detail in the last section). One 
approach requires the construction of a dis- 
tributed table containing all primes known 
so far. The table can be stored in tuples of 
the following form: 

rprimes”, 1, 2) 
(“primes”, 2, 3) 
(Uprimes”, 3, 5) 
. . . 

A worker process may need the values of 
all primes up to some maximum; it reads 
upward through the table, using rd state- 
ments, until it has the values it needs. It 
may be the case, though, that certain values 
are still missing. If all table entries through 
the Kth are needed, but currently the table 
stops at j for j < k, the statement 

rd(“primes”, j + 1, ? val) 

blocks-there is still no j + 1st element in 
the table. Eventually the j + 1st element 
will be computed, the called-for tuple will 
be generated, and the blocked rd statement 
will be unblocked. Processes that read past 
the end of the table will simply pause, in 
other words, until the table is extended. 

Ordered or linked structures make up 
the second class of position-accessed data 
structures. It’s possible to build arbitrary 
structures of this sort in TS; instead of 
linking components by address, we link by 
logical name. If C, for example, is a cons 
cell linking A and B, we can represent it as 

the tuple 

(9.2 “, “cons”, cell), 

where cell is the two-element array [“A”, 
“B”]. If “A” is an atom, we might have 

(“A”, “atom”, value). 

For example, consider a program that 
processes queries based on Boolean com- 
binations of keywords over a large data- 
base. One way to process a complex query 
is to build a parse tree representing the 
keyword expression to be applied to the 
database; each node applies a subtransfor- 
mation to a stream of database records 
produced by its inferiors-a node might 
and together two sorted streams, for ex- 
ample. All nodes run concurrently. A Linda 
program to accomplish this might involve 
workers executing a series of tasks that are 
in effect linked into a tree; the tuple that 
records each task includes “left,” “right,” 
and “parent” fields that act as pointers to 
other tasks [Narem 19881. Graph struc- 
tures in TS arise as well; for example, a 
simple shortest-path program [Gelernter et 
al. 19851 stores the graph to be examined 
one node per tuple. Each node-tuple has 
three fields: the name of the node, an array 
of neighbor nodes (Linda supports variable- 
sized arrays in tuples), and an array of 
neighbor edge-lengths. 

These linked structures have been fairly 
peripheral in our programming experi- 
ments to date. But there is one class of 
ordered structure that is central to many of 
the methods we have explored, namely 
streams of various kinds. There are two 
major varieties, which we call in-streams 
and read-streams. In both cases, the stream 
is an ordered sequence of elements to which 
arbitrarily many processes may append. In 
the in-stream case, each one of arbitrarily 
many processes may, at any time, remove 
the stream’s head element. If many pro- 
cesses try to remove an element simultane- 
ously, access to the stream is serialized 
arbitrarily at run time. A process that tries 
to remove from an empty stream blocks 
until the stream becomes nonempty. In the 
read-stream case, arbitrarily many pro- 
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cesses read the stream simultaneously: 
Each reading process reads the stream’s 
first element, then its second element, and 
so on. Reading processes block, again, if the 
stream is empty. 

In- and read-streams are easy to build in 
Linda. In both cases, the stream itself con- 
sists of a numbered series of tuples: 

(‘Lstrm”, 1, vall) 
(“strm”, 2, va12) 
. . . 

The index of the last element is kept in a 
tail tuple: 

(“strm”, “tail”, 14) 

To append NewElt to “strm”, processes 
use the following: 

in(“strm”, “tail”, ? index); 
/* consult tail pointer */ 

out(“strm”, “ tail”, index+ 1); 
out(“strm”, index, NewElt); 

/* add element */ 

An in-stream needs a head tuple also, to 
store the index of the head value (i.e., the 
next value to be removed); to remove from 
the in-stream “strm”, processes use 

in(“strm”, “head”, ? index); 
/* consult head pointer */ 

out(“strm”, “head”, index+l); 
in(“strm”, index, ? Elt); 

/* remove element */. 

Note that, when the stream is empty, 
blocked processes will continue in the order 
in which they blocked. If the first process 
to block awaits the jth tuple, the next 
blocked process will be waiting for the 
j + lst, and so on. 

A read-stream dispenses with the head 
tuple. Each process reading a read-stream 
maintains its own local index; to read each 
element of the stream, we use 

index = 1; 
(loop) ( 

rd(“strm”, index++, ? Elt); 
. . . 

1 

As a specialization, when an in-stream is 
consumed by only a single process, we can 
again dispense with the head tuple and 
allow the consumer to maintain a local 
index. Similarly, when a stream is ap- 
pended-to by only a single process, we can 
dispense with the tail tuple, and the pro- 
ducer can maintain a local index. 

In practice, various specializations of 
in- and read-streams seem to appear more 
often than the fully general versions. 

Consider, for example, an in-stream with 
a single consumer and many producers. 
Such a stream occurs in one version of the 
prime-finding program we discuss: Worker 
processes generate a stream each of whose 
elements is a block of primes; a master 
process removes each element of the 
stream, filling in a primes table as it goes. 

Consider an in-stream with one producer 
and many consumers. In a traveling-sales- 
man program,’ worker processes expand 
subtrees within the general search tree, but 
these tasks are to be performed not in ran- 
dom order but in a particular optimized 
sequence. A master process writes an in- 
stream of tasks; worker processes repeat- 
edly remove and perform the head task. 
(This structure functions, in other words, 
as a distributed queue.) 

Consider a read-stream with one pro- 
ducer and many consumers. In an LU- 
decomposition program [Bjornson et al. 
19881, each worker on each iteration re- 
duces some collection of columns against a 
pivot value. A master process writes a 
stream of pivot values; each worker reads 
the stream. 

2.3 Message Passing and Live Data 
Structures 

We can write a message-passing program 
by sharply restricting the distributed data 
structures we use: In general, a message- 
passing program makes use only of streams. 
The tightly synchronized message-passing 
protocols in CSP, Occam and related lan- 
guages represent an even more drastic re- 
striction: Programs in these languages use 

a Written by Henri Bal of the Vrije Universiteit in 
Amsterdam. 

ACM Computing Surveys, Vol. 21, No. 3, September 1989 



346 l N. Carriero and D. Gelernter 

no distributed structures; they rely only (in 
effect) on isolated tuples. 

It’s simple, then, to write a message- 
passing program. First, we use eval to cre- 
ate one process for each node in the logical 
network we intend to model. Often we know 
the structure of the network beforehand; 
the first thing the program does, then, is to 
create all the processes it requires. (Con- 
cretely, C-Linda programs have an lmain 
function that corresponds to main in a C 
program. When the program starts, lmain 
is invoked automatically. If we need to use 
eval to create n processes immediately, the 
eval statements appear in lmain.) In some 
cases the shape of a logical network changes 
while a program executes; we can use eval 
to create new processes as the program 
runs. Having created the processes we need, 
we allow processes to communicate by writ- 
ing and reading message streams. 

Live-data-structure programs are also 
easy to write given the passive distributed 
structures we’ve discussed. Any distributed 
data structure has a live as well as a passive 
version. To get the live version, we simply 
use eval instead of out in creating tuples. 
For example, we’ve discussed streams of 
various kinds. Suppose we need a stream of 
processes instead of passive data objects. 
If we execute a series of statement of the 
form 

eval(“live stream”, i, f(i)), 

we create a group of processes in TS: 

(“live stream”, 1, 
(computation of f( 1))) 

(“live stream”, 2, 
(computation of f(2))) 

(“live stream”, 3, 
(computation of f(3))) 

. . . 

If f is, say, the function “factorial,” then 
this group of processes resolves into the 
following stream of passive tuples: 

(“live stream”, 1, 1) 
(“live stream”, 2,2) 
(“live stream”, 3, 6) 
. . . 

To write a live-data-structure program, 
then, we use eval to create one process for 

each element in our live structure. (Again, 
lmain will execute the appropriate evals.) 
Each process executes a function whose 
value may be defined in terms of other 
elements in the live structure. We can use 
ordinary rd or in statements to refer to the 
elements of such a data structure. If rd or 
in tries to find a tuple that is still under 
active computation, it blocks until compu- 
tation is complete. Thus, a process that 
executes 

rd(“live stream”, 1, ? x) 

blocks until computation of f(1) is com- 
plete, whereupon it finds the tuple it is 
looking for and continues. 

3. PUTTING THE DETAILS TOGETHER 

Finding all primes between 1 and n is a 
good example problem for two reasons: 
(1) It’s not significant in itself, but there 
are significant problems that are similar; at 
the same time, primes finding is simple 
enough to allow us to investigate the entire 
program in a series of cases. (2) The prob- 
lem can be approached naturally under sev- 
eral of our conceptual classes. This gives us 
an opportunity to consider what is natural 
and what isn’t natural, and how different 
sorts of solution can be expressed. 

3.1 Result Parallelism and Live Data 
Structures 

One way to approach the problem is by 
using result parallelism. We can define the 
result as an n-element vector; j’s entry is 1 
if j is prime, and otherwise 0. It’s easy to 
see how we can define entry j in terms of 
previous entries: j is prime if and only if 
there is no previous prime less than or equal 
to the square root of j that divides it. 

To write a C-Linda program using this 
approach, we need to build a vector in TS; 
each element of the vector will be defined 
by the invocation of an is-prime function. 
The loop 

for(i = 2; i < LIMIT; ++i) ( 
eval(“primes”, i, is-prime(i)); 

1 

creates such a vector. As discussed in Sec- 
tion 2.2.3, each tuple-element of the vector 
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is labeled with its index. We can now read 
the j th element of the vector by using 

rd(“primes”, j, ? ok). 

The program is almost complete. The is- 
prime(SomeIndex) function will involve 
reading each element of the distributed vec- 
tor through the square root of i and, if the 
corresponding element is prime and divides 
i, returning zero;g thus, 

limit = sqrt((double) SomeIndex) + 1; 

for (i = 2; i < limit; ++i) ( 
rd(“primes”, i, ? ok); 
if (ok && (SomeIndex% == 0)) 

return 0; 
I 
return 1; 

The only remaining problem is producing 
output. Suppose that the program is in- 
tended to print all primes 1 through 
LIMIT. Easily done: We simply read the 
distributed vector and print i if i’s entry 
is 1: 

for(i = 2; i <= LIMIT; ++i) ( 
rd(“primes”, i, ? ok); 
if (ok) printf(“%d\n”, i); 

I 

The complete program” is shown in Fig- 
ure 8. 

3.2 Using Abstraction to Get an Efficient 
Version 

This program is concise and elegant, and 
was easy to develop. It derives parallelism 
from the fact that, once we know whether 
k is prime, we can determine the primality 
of all numbers from k + 1 through 112’. But 
it is potentially highly inefficient: It creates 
large numbers of processes and requires 
relatively little work of each. We can 

B In practice, it might be cheaper for the ith process to 
compute all primes less than root of i itself, instead of 
reading them via rd. But we are not interested in 
efficiency at this stage. 
lo Users of earlier versions of C-Linda will note that, 
although formals used to be addresses, for example, 
“? &ok,” C-Linda 2.0 assumes that formals will be 
variables, on analogy with the left side of assignment 
statements. The code examples use the new version. 

Imain 
c 

int i. ok; 

for(i = 2; i < LIMIT; ++i) { 
eval(“primes”, i, is-prime(i)); 

I 

for(i -= 2; i <= LIMIT; ++i) { 
rd(“primea”, i, 7 ok) ; 
if (ok) printf (‘?!d\n”, i); 

1 

1 

is-prime(me) 
int me; 

q 
int i, limit, ok; 
double sqrt0 ; 

limit - sqrt((double) me) + 1; 

for (i = 2; i < limit; ++i) { 
rd("primes", i, 7 ok); 
if (ok t& (meXi == 0)) return 0; 

1 
return 1; 

1 

Figure 8. Prime finder: Result parallelism. 

use abstraction to produce a more effi- 
cient, agenda-parallel version. We reason as 
follows: 

(1) Instead of building a live vector in 
TS, we can use a passive vector and create 
worker processes. Each worker chooses 
some block of vector elements and fills in 
the entire block. “Determine all primes 
from 2001 through 4000” is a typical task. 

Tasks should be assigned in order: The 
lowest block is assigned first, then the next- 
lowest block, and so forth. If we have filled 
in the bottom block and the highest prime 
it contains is k, we can compute in parallel 
all blocks up to the block containing k’. 

How do we assign tasks in order? We 
could build a distributed queue of task as- 
signments, but there is an easier way. All 
tasks are identical in kind; they differ only 
in starting point. So we can use a single 
tuple as a next-task pointer, as we discuss 
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in the matrix-multiplication example in 
Section 2.2.3. Idle workers withdraw the 
next-task tuple, increment it, and then 
reinsert it, so the next idle worker will be 
assigned the next block of integers to ex- 
amine. In outline, each worker will execute 
the following: 

while(l) ( 
in(“next task”, ? start); 
out(“next task”, start + GRAIN); 

(find all primes from start to start + 
GRAIN) 

builds the table. Workers attach batches of 
primes to the end of an in-stream, which in 
turn is scanned by the master. Instead of 
numbering the stream using a sequence of 
integers, they can number stream elements 
using the starting integer of the interval 
they have just examined. Thus, the stream 
takes the following form: 

(“result”, start, FirstBatch); 
(“result”, start+GRAIN, 

SecondBatch); 
(“result”, start+(iZ*GRAIN) 

ThirdBatch); 
. . . 

GRAIN is the size of each block. The 
The master scans the stream by execut- 

value of GRAIN, which is a nrogrammer- 
ing the following loop. 

defined constant over each run, determines for (num = first-num; num < LIMIT; 
the granularity or task size of the compu- num += GRAIN) ( 
tation. The actual code is more involved in(“result”, num. ? new-urimes); 
than this: Workers check for the termina- . - ” 
tion condition and leave’ a marker value in (record the new batch for eventual 

the next-task tunle when thev find it. (See output); 

the code in Figures 9 and 10 for details:) (construct the distributed primes 

(2) We have accomplished “abstrac- 
table); 

tion,” and we could stop here. But, since 1. 
the goal is to produce an efficient program, 
there is another obvious optimization. In- 
stead of storing a distributed bit vector with 
one entry for each number within the range 
to be searched, we could store a distributed 
table in which all primes are recorded. The 
ith entry of the table records the ith prime 
number. The table has many fewer entries 
than the bit vector and is therefore cheaper 
both in space and in access time. (To read 
all primes up to the square root of j will 
require a number of accesses propor- 
tional not to 4, but to the number of 
primes through 4.) 

primes have been found so far and therefore 
cannot construct table entries for new 
primes without additional information, We 
could keep a primes count in TS, but 
it’s also reasonable to allow a master pro- 
cess to construct the table. 

We will therefore have workers send 

A worker examining some arbitrary block 
of integers doesn’t know a priori how many 

This loop dismantles the stream in order, 
ining the first element and assigning it to 
the variable new-primes, then the second 
element, and so on. 

The master’s job is now to record the 
results and to build the distributed primes 
table. The workers send prime numbers in 
batches; the master disassembles the 
batches and inserts each prime number into 
the distributed table. The table itself is a 
standard distributed array of the kind dis- 
cussed previously. Each entry takes the 
form: 

We store the square of the ith prime along 
with the prime itself so that workers can 
simply read, rather than having to com- 
pute, each entry’s square as they scan up- 
ward through the table. For details, see 
Figure 10. 

(“primes”, i, (ith prime), 
(ith prime squared)). 

their newly discovered batches of primes to (3) Again, we could have stopped at this 
the master process; the master process point, but a final optimization suggests it- 
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#include "1inda.h" 

#define GRAIN 2000 
#define LIMIT 1000000 
#define N'UH-INIT,PRIHE 15 

long primes[LIHIT/iO+ll = 
C2.3, 5, 7, 11, 13, 17, 19. 23, 29, 31, 37, 41, 43, 47); 

Pong p2[LIHIT/lO+i] = 
{4,9.25.49,121,169,289,361,529,841,961~13690 1681,1849,2209>; 

lmain(argc, argv) 
int argc: 
char +argv[J; 

c 
int eot. first-num, i, num, num-primes, num-workers; 
long new-primee[CRAIN], np2; 

nur,vorkere - atoi.(argv[l]); 
for (i = 0; i < nun-vorkera; ++i) 

eval("worker", vorker0); 

num-primes - HUFF-INIT-PRIHE; 
first,num * primesCnum-primes-l] + 2; 

out (“next task”, f irst-num) ; 

eot = 0; /t becomes 1 at “end of table" -- i.e., table complete l / 
for (nun - first-nun; num < LIMIT; num += GRAIN) { 

in("reault", num, ? new-primes: size); 

ior (i ii * 0; i < size; v-i, ++numprimes', E 
primes[num,primesl = nev_primesCil; 

if (!eot) C 
np2 = new-primes[i]+neu-primes[il; 
if (np2 > LIHIT) { 

eot = 1; 
np2 = -1; 

I 
out("primea", num-primes. new-primesCi1, np2); 
I 

I 
1 
/* " ? int" means "match any int; throw out the value" */ 
for (i = 0; i < nlit-=oikeie; t:i) L("-iorkei-" , ? >..A\. I.Lb, ) 

printf("%d: %d\n", num-primes, primes[num-primes-l]); 
1 

Figure 9. Prime finder (master): Agenda parallelism. 
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worker () 

(. 
long count, eot, i. limit, num, num-primes, ok, start; 
long my-priaes[GRAINl; 

num-primes = NW-INIT,PRME; 

eot = 0; 
while(l) { 

in("nert task" , ? num); 
if (num == -1) (. 

out("next task” , -1); 
return; 

3 
limit = nun + GRAIN; 
out(%ext task", (limit > LIMIT) ? -1 : limit); 
if (limit > LIMIT) limit = LIIIIT; 

start =num; 
for (count = 0; num < limit; num += 21 { 

while (!eot t& num > p2[num-primes-l]) { 
rd("primes". num-primes, ? primesbum-primes]. ? p2[num-primes]); 
if (pZ[num-primes] < 01 

eot = 1; 
else 

++num-primes; 
1 
for (i = 1. ok = 1; i < num-primes; ++i) { 

if (!(num%primesCil)) i 
ok = 0; 
break; 

I 
if (num < p2[il) break; 

3 
if (ok) { 

my-primes[countl = mm; 
++count ; 

I 
3 
/* Send the control process any primes found. */ 
out("result" ) start, my-primes: count); 

1 
1 

Figure 10. Prime finder (worker): Agenda parallelism. 

self. Workers repeatedly grab task assign- references to the distributed global table by 
ments and then set off to find all primes building local copies. Global references 
within their assigned interval. To test for (references to objects in TS) are more 
the primality of k, they divide k by all expensive than local references. 
primes through the square root of k; to find Whenever a worker reads the global 
these primes, they refer to the distributed primes table, it will accordingly copy the 
primes table. But they could save repeated data it finds into a local version of the table. 
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eight Ethernet-connected IBM RTs under 
Unix,‘l we get roughly a 5.6-times speedup 
over sequential running time, for an effi- 
ciency of about 70 percent. Somewhat lower 
efficiencies on coarser-grained problems 
are still very satisfactory on local-area nets. 
Communication is far more expensive on a 
local-area net than in a parallel computer, 
and for this reason networks are problem- 
atic hosts for parallel programs. They are 
promising nonetheless because, under some 
circumstances, they can give us something 
for nothing: Many computing sites have 
compute-intensive problems, lack parallel 
computers, but have networks of occasion- 
ally underused or (on some shifts) idle 
workstations. Converting wasted worksta- 
tion cycles into better performance on par- 
allel programs is an attractive possibility.12 

In comparing the agenda- to the result- 
parallel version, it’s important to keep in 
mind that the more complicated and effi- 
cient program was produced by applying a 
series of simple transformations to the el- 
egant original. So long as a programmer 
understands the basic facts in this do- 
main-how to build live and passive dis- 
tributed data structures, which operations 
are relatively expensive and which are 
cheap-the transformation process is con- 
ceptually uncomplicated and can stop at 
any point. In other words, programmers 
with the urge to polish and optimize (i.e., 
virtually all expert programmers) have the 
same kind of opportunities in parallel as in 
conventional programming. 

Note that, for this problem, agenda par- 
allelism is probably less natural than result 
parallelism. The point here is subtle, but is 
nonetheless worth making. The most nat- 
ural agenda-parallel program for primes 
finding would probably have been con- 
ceived as follows: Apply T in parallel to all 
integers from 1 to limit, where T is simply 
“determine whether n is prime.” If we 
understand these applications of T as com- 
pletely independent, we have a program 
that will work and is highly parallel. It is 

I’ Unix is a trademark of AT&T Bell Laboratories. 
I2 The iPSC-2 system is largely the work of Robert 
Bjornson and the Unix LAN kernel of Mauricio 
Arango and Donald Berndt. 
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It now refers to the global table only when 
its local copy needs extending. This is an 
optimization similar in character to the 
specialization we described in Section 1: It 
saves global references by creating multiple 
local structures. It isn’t “full specializa- 
tion,” though, because it doesn’t eliminate 
the global data structure, merely econo- 
mizes global references. 

Workers store their local tables in two 
arrays of longs called primes and p2 (the 
latter holds the square of each prime). 
Newly created workers inherit copies of 
these global arrays (declared above the 
master’s code in Figure 9) when they are 
created. The notation object: count in a 
Linda operation means “the first count 
elements of the aggregate named object”; 
in an in or a rd statement, ? object: count 
means that the size of the aggregate as- 
signed to object should be returned in 
count. 

3.3 Comments on the Agenda Version 

This version of the program is substantially 
longer and more complicated than the orig- 
inal result-parallel version. On the other 
hand, it performs well in several widely 
different environments. On one processor 
of the shared-memory Sequent Symmetry, 
a sequential C program requires about 459 
seconds to find all primes in the range of 
one to three million. Running with 12 work- 
ers and the master on 13 Symmetry proces- 
sors, the C-Linda program in Figures 9 and 
10 does the same job in about 43 seconds, 
for a speedup of about 10; relative to the 
sequential version, giving an efficiency of 
about 82 percent. One processor of an Intel 
iPSC-2 hypercube requires about 421 sec- 
onds to run the sequential C program; 1 
master and 63 workers running on all 64 
nodes of our machine require just under 8 
seconds, for a speedup of about 52; and an 
efficiency of, again, roughly 82 percent. 

If we take the same program and increase 
the interval to be searched in a task step 
by a factor of 10 (this requires a change to 
one line of code: We define GRAIN to be 
20,000), the same code becomes a very 
coarse-grained program that can perform 
well on a local-area network. Running on 
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not an attractive solution, though, because First, how will integers be communicated 
it’s blatantly wasteful: In determining between pipe segments? We can use a sin- 
whether j is prime, we can obviously make gle-producer, single-consumer in-stream. 
use of the fact that we know all previous Stream elements look like 
primes through the square root of j. 

The master-worker program we devel- (“seg”, (destination), (stream index), 
oped on the basis of the result-parallel ver- (integer)). 

sion is more economical in approach, and 
we regard this version as a “made” rather 

I.I ere, destination means “next pipe seg- 

than a “born” distributed-data-structure 
ment”; we can identify a pipe segment by 

program. 
the prime it is responsible for. Thus, a pipe 
segment that removes multiples of 3 ex- 
pects a stream of the form 

3.4 Specialist Parallelism (“seg”, 3, (stream index), (integer)). 
Primes finding had a natural result-parallel 
solution, and we derived an agenda-parallel How will we create new pipe segments? 

solution. There is a natural specialist- Clearly, the “sink” will use eval; when it 

parallel solution as well. creates a new segment, the sink detaches 

The sieve of Eratosthenes is a simple its own input stream and plugs this stream 

prime-finding algorithm in which we imag- into the newly created segment. Output 

ine passing a stream of integers through a from the newly created segment becomes 

series of sieves: A 2-sieve removes multiples the sink’s new input stream. The details 

of 2, a 3-sieve likewise, then a &sieve, and are shown in Figure 11. 

so forth. An integer that has emerged suc- The code in Figure 11 produces as output 

cessfully from the last sieve in the series is merely a count of the primes discovered. It 

a new prime. It can be ensconced in its own could easily have developed a table of 

sieve at the end of the line. primes and printed the table. There is a 

We can design a specialist-parallel pro- more interesting possibility as well. Each 

gram based on this algorithm. We imagine segment of the pipe is created using eval; 

the program as a pipeline that lengthens as hence, each segment turns into a passive 

it executes. Each pipe segment implements tuple upon termination. Upon termination 

one sieve (i.e., specializes in a single prime). (which is signaled by sending a 0 through 

The first pipe segment inputs a stream of the pipe), we could have had each seg- 

integers and passes the residue (a stream ment yield its prime. In other words, we 

of integers not divisible by 2) onto the next could have had the program collapse upon 

segment, which checks for multiples of 3 termination into a data structure of the 

and so on. When the segment at the end of form’ 
the pipeline finds a new prime, it extends 
the sieve by attaching a new segment to the 

(“source”, 1,2) 

end of the program. 
(“pipe seg~,, 2, 3) 

One way to write this program is to start 
(“pipe seg”, 3, 5) 

with a two-segment pipe. The first pipe 
(“pipe seg,~, 4, 7) 

segment generates a stream of integers; the * . : 
last segment removes multinles of the last- 

(“sink”, MaxIndex, MaxPrime). 

knownprime. When the last segment (the 
“sink”) discovers a new greatest prime, it 
inserts a new pipe segment directly before 
itself in line. The newly inserted segment 
is given responsibility for sieving what had 
formerly been the greatest prime. The sink 
takes over responsibility for sieving the new 
greatest prime. Whenever a new prime is 
discovered, the process repeats. 

We could then have walked over and 
printed out this table. 

This solution allows less parallelism than 
the previous one. To/see why, consider the 
result-parallel algori m: It allowed simul- 
taneous checking o P all primes between 
k + 1 and 12’ for each new prime k. Suppose 
there are p primes in this interval for some 
k. The previous algorithm allowed us to 
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Imain 
I 

eval("source" , source()) ; 
eval("sink", sink()); 

I 
source 0 
f 

int i, out-index = 0; 

for (i = 5: i < LIXIT; i += 2) out("seg", 3, out-index++, i); 
out("seg", 3. out-index, 0); 

I 
aink 

int in-index - 0. nun, prime - 3, prime-count = 2; 

while(l) C 
in("seg", prime, in-index++, ? num); 
if (!num) break; 
if (num X prime) C 

++prime-count; 
if (num+num < LIMIT) { 

eval("pipe aeg", pipe-seg(prime, num. in-index)); 
prime = num; 
in-index = 0; 

I 
1 

1 
printf("count: %d.\n", prime-count); 

1 
pipe-seg(prime, next, in-index) 

int prime, next, in-index; 
C 

int num, out-index = 0; 

while(l) 1 
in("seg", prime. in-index++, ? num); 
if (!num) t 

out("seg", next, out-index, num); 
return; 

1 
if (num X prime) out("eeg", next, out-index++, rune); 

1 
1 

Figure 11. Prime finder: Specialist parallelism. 

discover all p simultaneously, but in this of discoveries; but the discoveries still occur 
version they are discovered one at a time, sequentially. 
the first prime after k causing the pipe to The specialist-parallel solution is not 
be extended by one stage, then the next quite as impractical as the result-parallel 
prime, and so on. Because of the pipeline, version, but it is impressively impractical 
“one at a time” means a rapid succession nonetheless. Consider one data point: In 
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searching the range from one to one thou- 
sand, the structure-parallel version is 30 
times slower on an 1%processor Multimax 
than the sequential C program on a single 
processor. These results make an instruc- 
tive demonstration of an important if 
largely sub rosa phenomenon in parallel 
programming. A parallel program is always 
costlier than a conventional, sequential 
version of the same algorithm: Creating and 
coordinating processes take time. Running 
an efficient parallel program on many pro- 
cessors allows us to recoup the overhead 
and come out ahead in absolute terms; thus, 
the master-worker primes-finding experi- 
ment demonstrates absolute speedup over 
a comparable sequential program. An in- 
efficient parallel program may demonstrate 
impressive relative speedup-it may run 
faster on many processors than on one, 
which is true of the specialist-parallel pro- 
gram under discussion-without ever am- 
ortizing the “overhead of parallelization” 
and achieving absolute speedup. Readers 
should be alert to this point in assessing 
data on parallel programming experiments. 

For this problem, our specialist-parallel 
approach is clearly impractical. Those are 
the breaks. But readers should keep in mind 
that exactly the same program structure 
could be practical if each process had more 
computing to do. In some related problem 
areas, this would be the case. Furthermore, 
the dynamic, fine-grained character of this 
program makes it an interesting but not 
altogether typical example of the message- 
passing genre. A static, coarse-grained 
message-passing program (e.g., of the sort 
we described in the context of the n-body 
problem) would be programmed using 
many of the same techniques, but would be 
far more efficient. 

3.5 Simplicity 

The prime-finding example raises a final 
interesting question. Our efficient parallel 
version is significantly more complicated 
than a conventional, sequential prime 
finder. Does parallelism mean that pro- 
gramming necessarily becomes a more com- 
plicated activity than it used to be? 

It’s clear that a “simple problem” in the 
sequential world is not necessarily still sim- 
ple in the parallel world. But, to grasp the 
implications of this fact, we need to con- 
sider two others: Many problems that are 
“sequentially simple” are also simple in 
parallel, and some problems that are com- 
plex under sequential assumptions are sim- 
pler in parallel. Computing prime numbers 
efficiently is the kind of problem that, 
because of substantial interdependence 
among subtasks and the “sequential” na- 
ture of the underlying algorithm (larger 
primes are determined on the basis of 
smaller primes), is substantially trickier in 
parallel than it is sequentially.13 Many of 
the most successful and widely used appli- 
cations of parallelism, on the other hand, 
involve problems that are much simpler 
than this to parallelize, and in these cases 
the parallel codes are much closer to the 
sequential originals. These problems gen- 
erally parallelize at a fairly coarse grain and 
require only limited intertask communica- 
tion. They use exactly the same techniques 
we have developed here. They are less in- 
teresting as case studies, but often of great 
practical significance. A final category of 
application is simpler in parallel than it 
would be as a sequential program. The ICU 
monitor program discussed in Section 2.2.2 
is a good example: It’s most naturally ex- 
pressed as an ensemble of concurrently ac- 
tive experts. This kind of application may 
sound esoteric, but it’s our view that pro- 
grams of this sort, programs involving large 
collections of heterogeneous experts com- 
municating via a simple global protocol, 
will become increasingly widespread and 
significant. 

What’s the bottom line? It would be fool- 
ish to deny, when all is said and done, 
that parallelism does make programming a 
more complex skill to master. Expanding 
the range of choices makes any job harder; 
expanding the capabilities of a machine 
(whether a hardware or a software ma- 

I3 As we discuss in [Carrier0 and Gelernter 19881, the 
problem was brought to our attention by a researcher 
who found it anything but simple to write an efficient 
parallel solution to a related primes-finding problem. 
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we’ve discussed; larger parallel machines, 
with thousands of nodes and more, will in 
some cases require finer-grained programs 
if they are to keep all their processors busy. 
But the coarser-grained techniques are vir- 
tually guaranteed to remain significant as 
well. For one thing, they will be important 
when parallel applications run on loosely 
coupled nodes over local- or wide-area net- 
works. (Whiteside and Leichter have re- 
cently shown that a Linda system running 
on 14 VAXes over a local-area network can, 
in one significant case at least, beat a Cray 
[Whiteside and Leichter 19881. This Cray- 
beating Linda application is in production 
use at SANDIA.) Coarser-grained tech- 
niques will continue to be important on 
“conventional” parallel computers as well, 
so long as programmers are required or 
inclined to find maximally efficient ver- 
sions of their programs. 

Attempting an initial survey of a new, 
rapidly changing field is a difficult propo- 
sition. We don’t claim that our categoriza- 
tion is definitive. We’ve left some issues 
out and swept others under the rug. We do 
think that this survey is a reasonable start- 
ing point, both for researchers intent on a 
better understanding of the field as a whole 
and for programmers with a parallel ma- 
chine and some compute-intensive appli- 
cations at hand. The evidence is clear: 
Parallelism can lead to major gains in 
performance; parallel programming is a 
technique that any good programmer can 
master. In short, as Portnoy’s analyst so 
aptly put it [Roth 19851, Now uee may 
perhaps to begin. Yes? 
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chine) often results in a more complicated 
design. (Compare a color to a black-and- 
white television, by way of analogy, or a 
modern workstation to a PDP-8.) 

The parallel primes finder is a more com- 
plicated (software) machine than the se- 
quential version, but it has acquired the 
new and valuable capacity to spread itself 
over a large collection of processors, where 
the sequential version can’t cope with more 
than one. Good programmers will have no 
difficulty learning the new techniques in- 
volved, and once they do, they will have 
access to a new and powerful class of soft- 
ware machinery. 

4. CONCLUSIONS 

In the primes example, one approach is the 
obvious practical choice. But it is certainly 
not true that, having canvassed the field, 
we have picked the winner and identified 
the losers; that’s not the point at all. The 
performance figures quoted above depend 
on the Linda system and the parallel 
machine we used. Most important, they 
depend on the character of the primes 
problem. We lack space to analyze more 
than one problem in this way. The fact is, 
though, that in almost every case that we 
have considered, an efficient parallel solu- 
tion exists. Agenda-parallel algorithms pro- 
grammed under the master-worker model 
are often but not always the best stopping 
point; all three methods can be important 
in developing a good program. Discovering 
a workable solution may require some work 
and diligence on the programmer’s part, but 
no magic and nothing different in kind 
from the sketch-and-refine effort that is 
typical of all serious programming. All that 
is required is that the programmer under- 
stand the basic methods at his disposal and 
have a programming language that allows 
him to say what he wants. 

We expect technology to move in a direc- 
tion that makes finer-grained programming 
styles more efficient. This is a welcome 
direction for several reasons: Fine-grained 
solutions are often simpler and more ele- 
gant than coarser-grained approaches, as 
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