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arallelism is an intuitive and appealing concept. Consider a com- 
putational science or engineering problem you’ve been working 

on. If executing it on a single CPU ylelds results in, say, 10 hours, why 
not use 10 CPUs and get the results after just an hour? 

In theory, parallelism is that simple-applying multiple CPUs to a 
single problem. For the computational scientist, it overcomes some 
of the constraints imposed by single-CPU computers. Besides offering 
faster solutions, applications that have been parallelized-converted 
into parallel programs-can solve bigger, more complex problems 
whose input data or intermediate results exceed the memory capacity 
of one CPU. Simulations can be run at finer resolution. Physical phe- 
nomena can be modeled more realistically. 

In practice, however, parallelism carries a high price tag. Parallel pro- 
gramming involves a steep learning curve. It is also effort-intensive; 
the programmer must t h d  about the application in new ways and may 
end up rewriting virtually all of the serial (single-CPU) code. What’s 
more-whether “parallel” refers to a group of workstations or to a top- 
of-the-line hgh-performance computing system, a parallel computer’s 
runtime environment is inherently unstable and unpredictable. The 
techniques for debugging and tuning the performance of serial pro- 
grams do not extend easily into the parallel world. It is perfectly possi- 
ble to work months on parallelizing an application, only to find that it 
yields incorrect results or that it runs slower now than before. 

How do you know whether or not to make the investment? The  
purpose and nature of your application are the most important indi- 
cators of how successful parallelization will be. Your choice of parallel 
computer and plan of attack will have significant impact, too, not just 
on performance but also on the level of effort required to achieve it. 
This article offers practical, basic rules of thumb that can help you 
predict if parallelism might be worthwhile, given your application and 
the effort you want to invest. The techniques I present for estimating 
likely performance gains are drawn from the experiences of hundreds 
of computational scientists and engineers at national labs, universities, 
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Figure 1. Precondition test: how much performance do you need? 

and research facilities. The information is more 
anecdotal than experimental, but it reflects the 
very real problems that must be overcome if par- 
allel programming is to yield useful benefits. 

Preconditions for parallelism 
Basically, your application’s purpose is a good 

indicator of how much effort you’re likely to in- 
vest in improving its performance. Unless you 
have a burning desire to learn parallel program- 
ming, your performance needs should be used as 
a “precondition” test. Three factors establish an 
application’s performance objectives. As Figure 
1 illustrates, these fall into a spectrum reflecting 
what you might gain through parallelization. 

First, how frequently will the application be 
used before changes are needed? If the answer is 
thousands of times between revisions, this is a 
highly productive application that probably mer- 
its significant programmer effort to improve its 
performance. A program that must change fre- 
quently, on the other hand, will not let you amor- 
tize the time invested in those improvements. 

The second factor is the time currently 
needed to execute the application. Let’s assume 
you now wait days to get your results. Reducing 
that time to a fraction may improve your pro- 
fessional productivity significantly. In contrast, if 
you can measure runtime in minutes, you are 
unlikely to be satisfied with the payoff in terms 
of performance improvement versus effort re- 
quired. Note that these are relative measures. If 
your application is a real-time emergency man- 

agement system, even a few seconds’ improve- 
ment might be significant. 

Third, to what extent are you satisfied with 
the current resolution or complexity of your re- 
sults? If the speed or memory capacity of serial 
computers constrains you to a grid whose units 
are much coarser than you want-say, repre- 
senting the ocean surface in 10-degree units, 
when what you really need is a granularity of 2 
degrees-parallelism may be the only feasible 
way to break that constraint. 

According to the experiences of other scien- 
tists and engineers, your needs should rate a t  
least one “white” in Figure 1’s spectrum before 
you even consider investing the effort to paral- 
lelize your application. Conversely, even one 
“black” factor should be interpreted as an indi- 
cation that your performance needs probably do 
not merit much parallelization effort. Further, 
note that even three whites do not guarantee 
that parallelism will pay off; they simply indi- 
cate that you need parallelism’s potential power. 
Apply the rules of thumb described in this arti- 
cle to determine if the effort you must invest will 
be small enough to make the whole process 
worthwhile. 

How your problem affects 
perform an ce 
The nature of the problem is the key contributor 
to ultimate success or failure in parallel program- 
ming. In particular, data access patterns and asso- 
ciated computation indicate how easy or difficult 
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Seismic imaging application 

Figure 2. An example of perfect parallelism: seismic imaging. 

Simulation Volume-rendering Time-step Animation 
results image sequence 

Figure 3. Example of pipeline parallelism: simulation of earth substructure. 

it will be. Geoffrey Fox was the first researcher to 
study how the characteristics of applications con- 
strain their performance. He established that most 
techmcal applications fall into one of three cate- 
gories, which he called problem architectures, and 
that each is suited to certain types of parallel com- 
puters.’>’ Here, I extend Fox’s concept to a fourth 
category, pipeline parallelism, and describe how you 
can use problem archtecture to help determine 
how likely you are to achieve respectable perfor- 
mance-and at what cost. 

Consider a seismic imaging p r ~ b l e m . ~ , ~  Data 
on responses to seismic shock waves are gath- 
ered at field sites, then computed to derive con- 
tour plots of the subsurface geologcal structure 
at each site. The computation can be a sequence 
of serial jobs, each computing an image from 
one input data set; or parallelism can be intro- 
duced by having multiple data sets processed at 
the same time, as portrayed in Figure 2 .  

From the parallel programmer’s perspective, 
this is the simplest problem style, referred to as 
peyfect (or “job-level”) paral le lk .  Fundamentally, 
the calculations on each data set are wholly inde- 
pendent. That is, the images could be computed 
on independent machnes running copies of the 
application, as long as the appropriate input data 
were available to each copy. It’s easy to achieve 
significant performance gains from applications 
fitting this style of parallelism, so they are some- 
times called “embarrassingly parallel” (but no 
programmer should be embarrassed to have one). 

Now suppose that the images are not com- 
pletely independent; perhaps substructure re- 
sponses are being simulated in a series of time 
steps, as shown in Figure 3. Data from different 
time steps are used to generate images showing 
change over time. Data produced by the simu- 
lation must be rendered in a three-dimensional 
volume, then formatted for graphical display. If 
this application were carried out serially, the 
simulator’s output data sets would serve as input 
to the volume-rendering program, whose out- 
put would in turn serve as input to the format- 
ting application. Parallelism can be introduced 
by overlapping processing, so that volume ren- 
dering begins as soon as the first time step’s data 
are available. Then, while the simulator pro- 
duces the third data set, volume rendering pro- 
ceeds on the second data set, and the first is for- 
matted and displayed. 

This model is called pipeline parallelimz, since 
data are effectively “piped” from one computa- 
tional stage to another. The key is that results 
are passed just one way through the pipe (that 
is, the simulation of the next time step does not 
require information from the volume-rendering 
or formatting stages). Start-up is delayed ini- 
tially as data become available a t  each stage, so 
overall performance gains will depend on the 
relative number of time steps to be processed 
once all points along the pipe are active. Pipeline 
parallelism also introduces potential problems. 
If the stages are not all computationally equiva- 
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lent, faster stages will overtake the slower ones, 
finishing sooner. One solution is to execute 
computationally intensive stages on faster 
CPUs, but balancing the work precisely can be 
quite difficult. Either way, the programmer must 
accommodate a possibly unequal work load with 
tests to check when input data are ready and to 
ensure that buffer or disk space can hold output 
data. For this reason, pipeline parallelism is not 
as simple as perfect parallelism. 

In many applications, results cannot be con- 
strained to a one-way flow among processing 
stages. Consider, for example, an atmospheric 
dynamics p r ~ b l e m . ~ . ~  The data represent a 3D 
model of the atmosphere, where an occurrence 
in one region influences areas above and below 
the disturbance, and perhaps to a lesser extent, 
those on either side. Over time, the effects prop- 
agate to an ever-larger area extending in all di- 
rections; even the disturbance’s source may ex- 
perience reverberations or other movements 
from neighboring regions. If this application 
were executed serially, calculations would be 
performed across all the data to obtain some in- 
termediate atmospheric state, then a new itera- 
tion would begin. Parallelism is introduced with 
multiple CPUs participating in one iteration, 
each applying the calculations to a data subset 
(see Figure 4). Each iteration is completed 
across all data before the next iteration begins. 

This is called fully synchronous parallelism, 
meaning that-at least conceptually-each cal- 
culation is applied synchronously (or simultane- 
ously) to all data. The  key here is that future 
computations or decisions depend on the results 
of all preceding data calculations. Usually, there 
aren’t enough CPUs to apply a calculation to all 
data at the same time, so each CPU actually it- 
erates through a subset. If the subsets are not 
homogeneous, the computational intensity will 
vary on different CPUs. For example, a distur- 
bance in the uppermost stratum starts by modi- 
fylng data representing the upper layers, while 
lower layers are unaffected. This spatial varia- 
tion means that if each CPU applies calculations 

Initial atmospheric partitions 
I I 

t + + 
Atmospheric modeling application - 

Resulting partitions 

Figure 4. Example of fully synchronous parallelism: simulation of at- 
mospheric dynamics. 

to a subset representing a horizontal stratum, 
only one or two CPUs actually perform inten- 
sive work at this point. Meanwhile, synchronic- 
ity demands that the other CPUs cannot pro- 
ceed to the next set of calculations, so they must 
wait until the busy ones catch up. 

Alternatively, if CPUs apply calculations to ver- 
tical regions, computational work may be uni- 
formly distributed at  this point in the program, 
but this will be offset at later points when com- 
putation varies along the horizontal dimension 
instead. Consequently, fully synchronous paral- 
lelism requires more programmer effort than 
pipeline parallelism to achieve good performance. 

The fourth style of parallelism is illustrated 
by a related application, which models the dif- 
fusion of contaminants through groundwater 
(Figure 5 ) .  Initially, only the groundwater parti- 
tions close to the contamination source are af- 
fected, but over time the contaminants spread, 
building up irregular areas of concentration. 
The  amount of computation depends on the 
amount of contaminant and the geophysical 
structure, so it varies dramatically from one par- 
tition (and time step) to another. In a serial pro- 
gram, this means that time step length will be 
irregular and perhaps unpredictable. Parallelism 
is introduced by dividing the work among mul- 
tiple CPUs at  each time step. During early time 
steps, each CPU may apply calculations to just a 

water partitions water partitions water partitions 

Figure 5. Example of loosely synchronous parallelism: contaminant flow through groundwater, 
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few partitions, and the computation’s duration 
may be brief because concentrations are low; 
later, as concentrations build up and progres- 
sively affect more partitions, a single CPU may 
perform many more computations on many 
more partitions at each step. 

This exemplifies loosely synchronous parallelism. 
When each time step ends, CPUs that have fin- 
ished their work must wait for the others to com- 
plete before sharing intermediate results and go- 
ing on to the next time step. Thus, i h s  style’s key 
characteristic is that the CPUs each do parts of 
the problem, exchanging information intermit- 
tently. Loosely synchronous parallelism, com- 
bining the difficulties of pipeline and fully syn- 
chronous parallelism, is the most difficult to 
program. The need to exchange information 
among CPUs (here, at time-step boundaries) re- 
quires tests so that one CPU can determine 
when the others’ data are ready and can avoid 
overwriting values not yet used. These CPUs ef- 
fectively proceed at their own rates between 
those exchanges. With loosely synchronous par- 
allelism, it’s difficult to distribute computational 
work evenly among the CPUs, since the work 
load now varies both temporally and spatially. 

Analyzing your problem’s architecture may 
seem like an unnecessary exercise, but it will 
help you decide if parallelism is worth it. First, 
consider how your application uses data. Clas- 
sify your application as perfect, pipeline, fully 
synchronous, or loosely synchronous paral- 
lelism. (The case studies on pages 23-25 present 
examples of how this is done.) Then determine 
how the computational characteristics will in- 
fluence effort-to-parallelize by applymg the fol- 
lowing rules of thumb: 

(1) If your application fits the model of perfect 
parallelism, the parallelization task is rela- 
tively straightforward and likely to achieve 
respectable performance. 

(2) If your application is an example of pipeline 
parallelism, you have to do more work; if 
you can’t balance the computational inten- 
sity, it may not prove worthwhile. 

(3) If your application is fully synchronous, a 
significant amount of effort is required and 
payoff may be minimal; the decision to par- 
allelize should be based on how uniform 
computational intensity is likely to be. 

(4) A loosely synchronous application is the 
most difficult to parallelize, and probably is 
not worthwhile unless the points of CPU 
interaction are very infrequent. 

Note that you may need to analyze how com- 
putation (as well as data) is dispersed over the 
lifetime of an execution. This information may 
be useful even if you decide not to parallelize, 
since it provides valuable insight into serial per- 
formance. For our purposes, a general under- 
standing of problem architecture is essential for 
determining if your application is likely to per- 
form well on the type(s) of parallel computer 
available to you. 

blow your machine affects 
Performance 
Generally, a parallel computer is any collection 
of processing elements connected by some type 
of communication network. (Here, the process- 
ing elements are referred to as CPUs for sim- 
plicity, but they involve memory as well.) Also 
known as multicomputers, such systems en- 
compass a range of sizes and prices, from a 
group of workstations attached to the same 
LAN to an expensive, high-performance ma- 
chne with hundreds or thousands of CPUs con- 
nected by ultra high speed switches. Clearly, 
CPU speed, capacity, and communication 
medium constrain the performance of any par- 
allel application. But from the programmer’s 

perspective, the way in which - multiple CPUs are controlled 
Control model Single instruction, Multiple instruction, and share information may 

have even more impact, influ- 
encing not just the ultimate 
performance results but also 
the level of effort needed to 

Figure 6 shows a basic “fam- 
Single program, Multiple program, ily tree” for parallel computer 

multiple data multiple data 
Programming model (SPMD) (MPMD) architectures. The conrrol model 

dictates how many different in- 
Figure 6. ”Genealogy” of parallel computing systems. (continued on p .  26) 
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Applying the Rules of Thumb: Three Case Studies 

The text describes precondition tests and 16 rules of 
thumb to help you decide whether parallelization is likely to 
pay off. The example presented here is based on a volume 
renderer application developed at the Cornell Theory Cen- 
ter as part of the Global Basins Research Network collabora- 
tion. A serial version of the volume renderer was written by 
Daniel Kartsch and Catherine Devine. It was parallelized by 
Hugh Caffey, first for the IBM ES 3090-600 (a shared-mem- 
ory multiprocessor) and later for networks of IBM RS-6000 
workstations (using the PVM message-passing library). 

where each time step generates a large array 
(approximately 500 Kbytes) of 3D data. To analyze the 
processes being simulated, it's necessary to convert the 3D 
data array to a 2D image that can be displayed on the com- 
puter screen. The final result is a series of those images, one 
per time step, that can be studied one a t  a time or 
displayed as an animated sequence. 

Case Study 1 
Parallelization is being considered because users want to 

run the simulation for thousands of time steps. This isn't prac- 
tical with the current version, since it would take too long to 
get results (almost 150 hours of computer time would be 
needed for each 1,000 steps). Since the image rendering 
takes place in a separate processing phase, an increase in time 
steps would also mean that temporary storage of the data ar- 
rays could occupy a gigabyte or more of disk space. 

Step 1: Preconditions 
Although the simulation is not executed on a daily basis, 

it's a stable application and likely to be used hundreds to 
thousands of times between modifications. It requires hours 
of computer time even for a relatively short simulation (1 5 
hours for 100 time steps). Because of the performance 
constraints, scientists have been unable to get the number of 
steps they really wanted. In terms of the precondition tests, 
then, this application scores very high (light gray for 
frequency, white for execution time, white for resolution 
needs). 

Consider a time-step simulation of geophysical processes, 

Step 2: Problem architecture 
The application encompasses two phases, each with 

somewhat different data access and computational interre- 
lationships. During the simulation itself, each time step 
evolves from the predecessor step and cannot be treated as 
independent. The rendering phase, on the other hand, 
processes each data array in totally independent fashion to 
generate the images. 

One way to view the problem's architecture, then, is  to 
consider the phases independently. The rendering phase is 

embarrassingly parallel; it's fairly easy to imagine replacing 
the single copy of the rendering program with 50 concur- 
rent copies, each working on one data array and producing 
one image. The simulation phase is much more 
constrained, fitting the loosely synchronous model. At each 
time step, the grid data representing the geophysical struc- 
ture must be accessed multiple times, and computation 
varies according to the structural characteristics a t  each grid 
point; moreover, the data a t  each step depend on the 
results of the previous step. 

However, it's just as easy to think of this problem as a 
pipeline situation. The simulation delivers a data array to 
the renderer, then proceeds to calculate the next time step 
while the first one is being converted to an image. Since the 
data always flow from simulation to renderer, there really is 
no need to accumulate all the data arrays from all the time 
steps before starting to generate images. (Note that view- 
ing the application in a slightly different way can help elimi- 
nate the data storage problem associated with thousands of 
time steps; this underscores the importance of taking some 
time to think about your application, since it ultimately can 
have significant impact on performance.) 

Once problem architecture is established, we can apply 
the first four rules of thumb to understand something 
about how much effort parallelization is likely to require. 
According to rule 2, balancing the computational intensity 
between the two phases could be problematical but is likely 
to be the critical issue. 

Step 3: &lachine 
Mapping the problem to the appropriate machine style is 

relatively straightforward using the next four rules of thumb. 
According to rule 6, the application will probably perform 
best on a shared-memory machine. Since the working stor- 
age requirements are significant for both the simulation and 
rendering phases, an SMP is probably not appropriate; it is 
unlikely that either phase can fit on a single node. The same 
rule of thumb indicates that a distributed-memory system 
might also be acceptable. (Note that we can rule out SIMD. 
If that were the only machine available, we would likely dis- 
continue the analysis at this point.) 

Step 4: Language 
As rule of thumb 9 points out, language options are likely 

to be limited. Since both phases of the application are 
currently implemented in Fortran, and since we intend to use 
a shared-memory multiprocessor, parallelization will be 
accomplished using Fortran plus compiler directives to con- 
trol accesses to shared memory variables (the data arrays 
produced by the simulation and consumed by the renderer). 

(continued on p .  24) 
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(continued from p. 23) 

Step 5: Perfonnarice espcctations 

The next step is to time the baseline version of the appli- 
cation (rule i 0). Timing calls are inserted at  the beginning 
and end of each phase (simulation and rendering). Since in- 
put/output activities will require serial execution, we also 
gather timings on the l/O portions of each phase. The mea- 
surements reveal a total of 554 seconds: 4 for initial input, 
307 to perfcrm the time-step calculations, 11 to store the 
data array, 9 more to reread the array a! the start of the ren- 
dering phase, 205 for rendering calculat.ions, and 18 Tor 
writing out the display image. 

To calculate the parallel content for rule 11, we consider 
the portions that could be pdrallelized, comparing their du- 
ration with that of the overall code. It is important to analyze 
how behavior mir;ht change in the parallel version. In this 
case, the writing and subsequent reading of the data array 
will be eiiminaied once the application is converted to 
pipeline form. Consequently, we eliminate their timirigs from 
the total, yielding a somewhat reduced whole-code time: 

512 
534 

= - = 0.959 

For rule 12, we consider the impact of producing a full se- 
quence of 1,800 time steps. Only the simulation's first step 
requires that data be input to initialize the arrays; remaining 
steps will use data already available in memory or calculated 
by the preceding step. This i s  the only major chmge, since 
the rendering phase must reinitialize i ts arrays for each im- 
age processed. We adjust the parallel content equation by 
e!iminating the 4 seconds For data input, since it will be neg- 
ligible for long sinwlations: 

57 2 
530 

paralleicmient = ~ = 0.966 

Rules 13-1 5 remind u s  of the fragility of those estimates, 
but do not raise any warning flags. Because oclr target is a 
shared-memory system, rule 16 can be ignored. 

Results 
The rules of thumb indicate that our problem lends itself 

to parallelism, is likely to bc relatively straightforward and 
to yield reasonable performance on a shared-memory sys- 
tem, and has a sufficiently high parallel content to make the 
effort worthwhile. 

The application on which this example is based was, in 
fact, paralielized for a shared-memory multicomputer. As in- 
dicated by the text's discussion of machine architectures, 
the major programming hurdle in parallelizing this applica- 
Lion was the addition or locking mechanisms to protect the 

shared data arrays. In particular, since the second phase exe- 
c '  .-,.,< .I.., . i  .,: I.... . '!A.,t+. I !i!:,ti the first, the renderer had to be prevented 

generated by the simuiator. However, the effffort required to 
parallelize the application was minimal since an efficient, 
well-debugged baseline serial version was already available. 

The resulting performance was 307 seconds per time 
step (the t i n e  required for th2 s/ower simulation phase), 
plus 4 seconds for the initial sitnulation input and 223 sec- 
onds to render the final step after all simulations were com- 
plete. For executions involving 1,800 time steps, the total 
was approxinately 156 hours--as compared with the 267 
hours that a serial version would have required. 

f r .  .n3 I n  : r  y 'I," : L~ . :tad an input array before it had been fully 

Case Study 2 

petus for reexamining the simulation phase, which was 
proving to be the performance bottieneck. Improvements 
in the serial version resulted in a significantly reduced exe- 
cution time, to .I 87 seconds per simulated time step. This 
had a moderate effect on overall performance (now 11 6 
hours for 1,800 time steps), but it also shifted the 
performance bottleneck to the rendering phase. 

Can this phase be improved by parallelization? Also, 
since the job load on the shared-memory system has 
become very hea$gy, it might be desirable 10 offload as 
much work as possible to a cluster or workstations 
connected by a local area network. 

The success of the first parallelization helped provide irn- 

Step I.: Preconditions 
These tests yieid the same results as before (although it is  

now possible to senerate long simulations, they still require 
days or weeks of computing time). 

Step 2 :  Problem , 3 rc h' Itectui-e 

phase. The image is constructed iising a technique known 
35 ray casting with trilinear interpolation.' Imaginary rays 
are fired from a hypothetical viewpoint through the data ar- 
ray Along each ray, a search is performed to find values 
within the array that correspond to value thresholds that 
have been defined by the user and associated with particu- 
lar colors. Values within threshold ranges are transformed to 
produce graphical effects (color, transparency, reflectancy). 

The important characteristic of this application is that the 
rays are compLitationally independent and coilld theoreti- 
cally be calculated simultaneously. However, the number of 
calculations performed along each ray varies. If a ray finds 
no values within the range of interest, no calculations what- 
ever are needed. If values are detected, Ihe number of cal- 
culations to be performed depends on whether this is the 
first value within a particular color range, whether other 
colors have already been detected, and several other factors 

This time, we consider the structure of just the rendering 
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related to shading and highlighting algorithms. 

style of parallelism. According to rules 1-4, this application 
will be difficult to parallelize and requires that the points of 
CPU interaction be infrequent. Since interaction will be re- 
quired only at the beginning and end of each ray search, 
we hope performance gains are possible. 

Overall, these characteristics reveal a loosely synchronous 

Step 3: Machine 
Using rules 5-8, we find that shared-memory is  again 

preferable, but that distributed-memory systems-like the 
workstation cluster-might work as long as there are many 
computations between CPU interactions. 

Step 4: Language 
Like many workstation clusters, ours is limited in terms of 

the languages and libraries supported. Given the fact that 
the existing application is in Fortran, we choose to use PVM 
message passing to implement the parallelism. 

Step 5: Performance expectations 
Timing the baseline version of the rendering phase 

reveals that 223 seconds are being used: 6 for setup and 
initialization of arrays, 199 for ray-casting calculations, and 
18 for generating the output file: 

199 
223 

parallelcontent = - = 0.893 

Since each image is computationally independent of all 
others, there will be no noticeable effects when the 
problem size increases. Rules 10-1 5 warn that this applica- 
tion is only marginally appropriate for parallelization. 

equivalent of our workstation cluster. According to our sys- 
tem support staff, the peak CPU speed of each workstation 
is  approximately 1 10 Mflops/sec, with latency and 
bandwidth about 2,000 microseconds and 2 Mbytes/sec, 
respectively. This yields a message equivalent of 
approximately 275,000 flops. Unless a very large number of 
calculations can be performed between CPU interactions, 
we are unlikely to achieve respectable performance. 

This time, we apply rule 16 to estimate the message 

Results 
This time, the rules of thumb provide much less positive 

indication for parallelization. In the real-world case, 
however, the programmer already had some experience in 
parallelizing other applications and wanted to see how 
much performance could be gained through message pass- 
ing on a workstation cluster. The major programming hur- 
dle was how to minimize CPU interactions. Given the 
extremely high message equivalent, the programmer had 
to be creative in handling the division of rays among CPUs. 
Considerable time and effort were spent debugging and 

tuning the parallel code. The resulting performance was 71 
seconds per image, a significant improvement over the pre- 
vious time of 223. 

Case Study 3 

independent of the simulation itself, it could be used for 
rendering other types of images as well. The decision was 
made to see just how much performance could be exacted 
from the renderer through parallelism. 

The precondition tests yield slightly weaker results than 
the previous analyses. Since the renderer is no longer tied to 
the simulation, average time-to-results is somewhat faster. 

In reanalyzing the problem architecture for the rendering 
phase, we find that there is an inner producer-consumer re- 
lationship: The ray-casting (now carried out in parallel) 
modifies the data array, which is then passed to a plotting 
routine to convert the computed colors to RGB values suit- 
able for display on a computer screen. As in the first case 
study, the one-way flow of data shows this to be a pipeline 
model. The same rules of thumb are applied, with the same 
results as before. A shared-memory system is again 
indicated by preference, but our distributed-memory 
system might work, given sufficient computations between 
CPU interactions. We choose to continue using PVM mes- 
sage passing for implementation. 

This time, the entire rendering phase consumes only 71 
seconds: 6 for setup and initialization, 47 for ray-casting 
calculations, 13  for plotting, and 5 for writing the output 
file. The target for parallelization efforts is very significantly 
reduced: 

parallelcontent = - = 0.18 

The message equivalent is unchanged. Although there is  
measurable room for improvement, it's far below the 
threshold indicated by rules 10-1 6. 

Since the rendering phase had been maintained 

13 
71 

Results 

not warranted. Since the intent of the real-world case was 
to push the limits of performance, the programmer 
proceeded anyway. By pipelining the ray-casting and plot- 
ting calculations, it was actually possible to reduce execu- 
tion time by a few seconds per image; however, the 
amount of effort required was substantial. Even for an expe- 
rienced programmer, the investment was inordinate for 
such a small gain in performance. 

Clearly, the rules of thumb indicate that parallelization is 

Reference 
1. M. Levoy, "Display of Surfaces from Volume Data," /E€€  

Computer Graphics &Applications, Vol. 8, No. 3, May 1988, 
pp. 29-37. 
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(continuedfrom p .  22) 
structions can execute simultaneously. The terms 
SLMD (single instruction, multiple data) and 
MIMD (multiple instruction, multiple data) date 
from parallel computing’s early days’; both are 
still in evidence although no longer the only dis- 
t i n p s h n g  feature of parallel computers. Mmory 
model indicates how many CPUs can directly ac- 
cess a given memory location. All CPUs access a 
single memory in shared-memory computers, 
whereas distributed-memory computers use a 
separate memory for each CPU. Memory is 
shared among small groups of CPUs in symmet- 
ric multiprocessor (SMP) computers but when 
groups are clustered to form larger systems, each 
group’s memory remains isolated. The pnp-am- 
ming model refers to restrictions on the number 
of executables (object images) that can participate 
in a parallel execution. In the multiple-program, 
multiple-data model, the programmer creates a 
separate executable for each CPU; for the single- 
program, multiple-data model, all instructions to 
be carried out by all the CPUs are combined into 
a single executable. Programming models are dis- 
cussed in more detail in a later section. 

The interaction of control model and mem- 
ory model results in four classes of parallel com- 
puter architecture: SIMD, shared-memory, dis- 
tributed-memory, and SMP. Each of these is 
described individually below; Table I provides 
a summary of that information. 

SIMD multicomputers 
On a SIMD multicomputer, sometimes called 

a processor array, all CPUs execute the same in- 

struction in lockstep fashion-examples are 
MasPar’s MP-2 and Thinlung Machines’ Con- 
nection Machine. Figure 7a illustrates the gen- 
eral concept: a single control unit tracks the cur- 
rent instruction, which the CPUs apply 
simultaneously to different operands. 

The control unit is the programmer’s key to 
both the benefits and the costs of parallelization. 
SIMD machines are relatively easy to program 
and use memory efficiently. Whenever the pro- 
gram uses Fortran90-style array operations or 
makes calls to the array functions library, the 
compiler automatically generates parallel code. 
The main programming hurdle is to cast basic 
calculations as array operations. If your applica- 
tion doesn’t fit the fully synchronous model, it 
will be difficult or impossible to parallelize it for 
a SIMD architecture. 

Acheving good performance can be quite dif- 
ficult, even if the application apparently fits the 
model. When an instruction involves arrays as 
operands (as in Figure 7a), the control unit ap- 
pears to cause all CPUs to execute the instruc- 
tion on the appropriate element pairs in one 
step. In actuality, however, few operations in- 
volve arrays whose dimensions exactly match the 
number of CPUs. Most instructions require that 
the CPUs iterate through groups of elements. 
If the number of elements isn’t an integral mul- 
tiple of the number of CPUs, the “extra” CPUs 
will effectively lose cycles whle the last elements 
are processed. 

Other performance problems are tied to lost, 
or wasted, CPU effort. When an operation 
is conditional (for example, dividing vector a 
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Control unit 

X(l) = A(l) + B(l) X(2) = A(2) + B(2) X(N) = A(N) + B(N) I 
CPU N ... CPU 1 CPU 2 

(a) 

CPU 1 CPU 2 ... CPU N 
(b) 

Switch(es) or network 
I I I 

Distributed 
memories 

(one uer CPU) . .  
X = A(2) I t  B(2) = SUM(A) 1 I B(2)=B(8)+8(13) I 

CPU 1 CPU 2 ... CPU N 
(c) 

Switch(es) or network 

... 

Node1 Node2 
(4 

Figure 7. Comparison of parallel computing architectures: (a) SIMD multicomputer; (b) shared- 
memory MlMD multicomputer; (c) distributed-memory MlMD multicomputer; (d) cluster of symmetric 
multiprocessors (SMPs). 

by vector b only where the element of b is 
nonzero), all CPUs actually perform the opera- 
tion; the results are simply discarded from any 
CPU where the condition proves false. The  
worst case occurs for a scalar operation (such as 
the addition of two floating-point numbers), 
since all CPUs redundantly perform the opera- 
tion even though only one copy of the result 
is needed. The  condition represents a serial 
bottleneck, since the machine’s hundreds or 
thousands of CPUs are effectively reduced to 
a single CPU. Just a few of these can counteract 
all the performance gains realized by array 
operations. 

Shared-memory multicomputers 
Unlike SIMD machines, MIMDs give each 

CPU its own control unit. At any moment dur- 
ing execution, different CPUs may execute dif- 

ferent instructions. This lets CPUs perform cal- 
culations at  different rates, but it also means that 
the programmer cannot necessarily assume any- 
thing about the relative order in which a given 
instruction is executed on two different CPUs. 

On a shared-memory multicomputer, the 
CPUs interact by accessing memory locations 
in a single, shared memory, exemplified by tra- 
ditional supercomputers such as Cray Y/MPs 
and Fujitsu VPs. They tend to be the fastest, 
largest, and most expensive form of parallel 
computers. Although more difficult to program 
than SIMD machines, shared-memory multi- 
computers offer a more natural fit with a much 
larger range of applications. 

As shown in Figure 7b, each CPU executes its 
own instruction, applied to operands stored in 
the shared memory. Rather than specifylng ar- 
ray operations-though these may become more 
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common as Fortran90 parallel compilers become 
generally available-the programmer uses com- 
piler directives on computationally intensive 
loops. The process is similar to preparing pro- 
grams for vector processing and will be familiar 

The balance between 

to some computational scientists 
and engneers. The basic idea is 
to take advantage of program 
loops that perform a large num- 
ber of calculations (typically ap- 
plymg the same calcu- 
lations to multiple elements of 
arrays). A parallel compiler con- 
verts the loop into a collection 
of loops that will be performed 
by multiple CPUs, each apply- 
ing the calculations to a subset 
of the data. At execution time, 
each CPU proceeds through its 

instructions, accessing shared-memory locations 
without knowledge of other CPUs’ activities. 

Shared-memory accesses can be a potential 
source of race conditions, where program results 
are sensitive to specific memory access ordering 
-in effect, it’s a race to see which CPU arrives 
first. Figure 7b shows one example of this, where 
two CPUs each attempt to modify the current 
value of B(2); the final value will depend on the 
relative order of the two store operations. Since 
relative timing can vary from subtle changes in 
the runtime environment, a program with a race 
condition may appear to work normally for ex- 
tended periods, then suddenly “blow up” or pro- 
duce inconsistent results6 A major part of the 
programmer’s time is likely to be spent identi- 
fying potential races and safeguarding shared 
data through a locking mechanism that excludes 
other CPUs from access when a data value is be- 
ing modified. Frequent locking adversely affects 
performance as CPUs are forced to wait their 
access turn, so the trick is to provide just the 
right amount of protection. 

Shared-data protection is not the only area re- 
quiring programmer effort. As with vector com- 
puting, the performance of shared-memory par- 
allelism largely depends both on the size and 
intensity of computational loops7 and on the com- 
piler’s analysis capabilities. The programmer may 
have to restructure loops to help the compiler rec- 
ognize potential parallel code. For some applica- 
tions, it is impossible to restructure calculations 
enough to achieve good performance. This is par- 
ticularly true of fully synchronous problems like 
the atmospheric dynamics example, where data 
accesses are sporadic and hghly interdependent. 

Distributed-memory multicomputers 
On distributed-memory multicomputers, too, 

each CPU executes its own instruction stream, 
but as the name implies, each CPU has a private 
memory. Most current hgh-performance paral- 
lel machnes have distributed memory: examples 
are Cray T3D, IBM SP-2, Intel Paragon, and 
Meiko CS-2. Based on workstation microproces- 
sor technology, these systems are versatile and 
cost-effective. Their major disadvantage is their 
inherent difficulty in efficiently using resources. 

(Confusion results from some distributed- 
memory machines that are marketed as quasi- 
shared-memory. The Kendall Square Research 
machines, for example, used software layers to 
make the distributed memories look like a single 
memory, while Cray’s T3D has a shared-mem- 
ory-style compiler so that programs can be writ- 
ten as if for just one memory. In practice, per- 
formance depends largely on how well the 
programmer understands the functioning of 
multiple memories. Still other machines use 
special hardware letting small groups of CPUs 
share memory locations; see the subsection on 
symmetric mu1 tiprocessors .) 

Figure 7c illustrates how distributed memo- 
ries operate. To interact or share information, 
the CPUs send each other messages, typically 
over high-speed switches. As shown, the vector 
a referenced by one CPU is not in the same lo- 
cation as that referenced by other CPUs. If data 
are read-only, they can be copied into all the 
CPUs’ memories and accessed quickly, with no 
need to lock out other CPUs. When there is no 
particular need to share, arrays can be split up 
and stored across multiple memories so that, for 
example, each CPU’s vector a actually repre- 
sents one column of a large array. 

To share data, however, the program must ex- 
plicitly send them back and forth among the 
CPUs. This leads to potential race conditions, 
since it takes time to propagate one CPU’s up- 
dates to the copies stored a t  other CPUs. Dis- 
tributed-memory systems are also prone to live- 
lock, where a CPU waits for data that never 
arrive, or deadlock, where two or more CPUs 
are stuck waiting for each other. Compilers can 
analyze a program to detect all possible locations 
where races, livelock, or deadlock might occur, 
but they do so conservatively, typically estimat- 
ing a hundred or more “potential” problems for 
every real error. Distributed-memory programs 
tend to be harder to debug and test than SIMD 
or shared-memory programs.* 

In terms of performance, the balance between 
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CPU speed and communication speed is criti- 
cal (for reasons elaborated later). Current tech- 
nology results in relatively fast CPUs being 
coupled with relatively slow communications. 
(Note that the same model applies to work- 
station clusters, which essentially are distrib- 
uted-memory multicomputers with ultra-slow 
communications.) The key to obtaining perfor- 
mance is thus the programmer’s ability both to 
minimize communication, in terms of interac- 
tion points and the data transferred at  each in- 
teraction, and to time them so that the CPUs 
are kept busy. For a perfectly parallel applica- 
tion, this may be trivial. But pipeline and loosely 
synchronous applications will achieve re- 
spectable performance only if there are rela- 
tively little data to exchange and/or relatively 
long time periods in which to effect the ex- 
changes. Fully synchronous applications are en- 
tirely unsuited to this type of system. 

SMPs and SMP clusters 
So-called symmetric multiprocessor machines 

recently joined the parallel computing market- 
place. They also use workstation microproces- 
sor technology, but couple several CPUs (typi- 
cally four or eight) with a shared memory. The 
word “symmetric” refers to the fact that each 
CPU can retrieve data stored at  a given mem- 
ory location in the same amount of time. SMPs 
resemble shared-memory multicomputers, but 
are slower and less expensive, with less CPU 
power. Examples include SGI’s Powerchallenge 
and Sun’s Sparcserver product lines. 

It is also possible to cluster SMPs into larger 
groups with correspondingly more CPU power, 
as shown in Figure 7d. The resulting configu- 
ration behaves much like a distributed-memory 
multicomputer, except that each node has mul- 
tiple CPUs sharing a common memory (Con- 
vex’s Exemplar best illustrates this, since the 
cluster is connected by a high-performance 
switch; there also are a growing number of SGI 
and Sun clusters). 

To date, the major performance successes 
have been scored by programmers who treat 
SMPs as a collection of distinct, small-scale 
shared-memory systems. With the exception of 
the Exemplar, the performance of the networks 
and switches connecting the SMPs has been dis- 
appointing. Parallelism involving even moder- 
ate numbers of CPUs tends to be bounded in 
performance by communication speed (typically 
comparable to that of a workstation cluster). 
When assessing an application’s likely perfor- 

mance, an SMP cluster should be treated as a 
shared-memory multicomputer if your entire 
application can fit on one SMP node, or as a dis- 
tributed-memory multicomputer if it requires 
CPUs distributed across the cluster. 

Matching problem to machine 
In general, then, each type of parallel com- 

puter is appropriate for applications with cer- 
tain characteristics. If an inappropriate match is 
made, the programmer will certainly be forced 
to expend excessive effort, with possibly disap- 
pointing performance results. The following 
rules of thumb summarize the interaction be- 
tween application model and machine type: 

(5) A perfectly parallel application will proba- 
bly perform reasonably well on any MIMD 
architecture, but may be difficult to adapt to 
a SIMD multicomputer. 

(6) A pipeline-style application will probably 
perform best on a shared-memory machine 
or clustered SMP (where a given stage fits 
on a single SMP), although it should be 
adaptable to a distributed-memory system 
as well, as long as the communication net- 
work is fast enough to pipe the data sets 
from one stage to the next. 

(7) A fully synchronous application will per- 
form best on a SIMD multicomputer, if you 
can exploit array operations. If the compu- 
tations are relatively independent, you 
might achieve respectable performance on 
a shared-memory system (or clustered SMP 
if a small number of CPUs is sufficient). Any 
other match is probably unrealistic. 

(8) A loosely synchronous application will per- 
form best on a shared-memory system (or 
clustered SMP if a small number of CPUs 
is sufficient). If there are many compu- 
tations between CPU interactions (see 
“Setting realistic expectations”), you can 
probably achieve good performance on a 
distributed-memory system as well. 

How your language affects 
performance 
The programming language you use will obvi- 
ously affect the effort required to parallelize 
your application. What’s more, extreme varia- 
tion in compiler capabilities and runtime sup- 
port environments means that the language will 
also constrain the performance you can hope to 
attain. The type of programming model, shown 
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as the lowest level in machine genealogy in Fig- 
ure 6, is often a key indicator of both effort and 
performance. 

With a SPMD model, each CPU will execute 
the same object code. On a SIMD multicom- 
puter, exactly the same instructions will be exe- 
cuted in lockstep synchrony. On MIMD sys- 
tems, the CPUs have individual copies of the 
program and proceed through it at differing 
rates, perhaps executing entirely different in- 
struction sequences (for example, subject to If 
conditions). Either way, the programmer has 
only one program to track, which can be an ad- 
vantage for debugging. There may well be a 
performance cost, particularly on MIMD sys- 
tems. All data and instructions to be accessed by 
any CPU effectively must be accessible to all 
CPUs, increasing the memory required and of- 
ten degrading memory access time as well. 

In contrast, the MPMD model lets each CPU 
have a distinct executable. (Note that since this 
conflicts with basic S M D  computing concepts, 
the model applies only to MIMD machines). 
Many experienced parallel programmers prefer 

MPMD for two reasons. First, it utilizes mem- 
ory space more efficiently. Code space require- 
ments are reduced for pipeline and loosely syn- 
chronous applications, where CPUs typically 
execute totally different code. Data space can 
also be reduced for programs with large arrays, 
since the programmer can subdivide them in 
portions accessible to just those CPUs that re- 
ally need them. Second, the programmer can 
split the functionality of different computational 
stages into separate programs, to be developed 
and debugged independently or reused as com- 
ponents of other programs. But it becomes 
harder to deal with some types of errors and per- 
formance problems, as it’s difficult for program- 
mers to conceptualize how the activities of inde- 
pendent CPUs might influence one another. 

Strictly speaking, “programming model” is a 
feature of programming languages, rather than 
parallel computers. Many machines described 
here, however, impose the SPMD model on the 
programmer because their operating system and 
tools view a parallel program as a single entity, 
and cannot report information on multiple exe- 
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cutables. While it may be possible to run multi- 
ple executables in MPMD fashion on a pre- 
dominantly SPMD system, the operating sys- 
tem and tools will consider them a collection of 
unrelated programs. The programmer may have 
to forego many aspects of system support, in- 
cluding consolidated I/O, use of debuggers, and 
access to program-wide timing information. 

Table 2 lists the parallel languages and li- 
braries available (see the literature9>” for sur- 
veys of language features). The programmer 
rarely has much real choice, however. Except for 
the libraries, all languages enforce a particular 
programming model. Most are also limited to 
particular machine types (and perhaps manufac- 
turers). Message-passing libraries are the most 
broadly available, having been ported across all 
the MIMD architectures. This means that mes- 
sage-passing applications are the most portable; 
on the other hand, the programmer essentially 
sacrifices compiler error detection capabilities 
and may inhibit compiler optimizations.” 

Once you determine your application and ma- 
chine, you will probably be limited to just a cou- 
ple of parallel languageflibrary choices. This will 
be further constrained by such factors as your 
expertise in Fortran versus C, access to col- 
leagues who have used the parallel language, the 
ability to call other scientific or math library 
routines you need, and the availability of pub- 
lic-domain languages on your particular system 
(for example, PVM, MPI, p4, pC++, Data Par- 
allel C, Fortran M).4 

The rule of thumb that applies to language se- 
lection, then, is quite simple: 

(9) With few exceptions, you don’t pick the lan- 
guage; it picks you. 

Setting realistic expectations 
Computer scientists may find parallel program- 
ming to be interesting in itself, but that’s not the 
objective of most scientists and enpeers. As Boe- 
ing’s Ken Neves said, “Nobody wants parallelism. 
What we want is performance”.12 If applying SO 
CPUs to a task doesn’t yield results much sooner 
than a single CPU, the computing resource is 
used inefficiently. Even more important, the fact 
that an application can execute across SO CPUs 
means that someone has expended time and en- 
ergy parallelizing it. Failure to attain reasonable 
performance with a reasonable level of effort 
wastes human productivity, too. 

To avoid that kind of failure, assess the appli- 

cation’s potential before deciding about paral- 
lelization. This assumes that your problem lends 
itself to parallelism, that your machine offers a 
reasonably good fit to that problem, and that 
you know what language will be used. It also 
presupposes that you have an existing serial pro- 
gram that already implements your application; 
I will refer to this as the “baseline.” Strict devo- 
tees of parallel programming 
claim that a new parallel pro- * gram should be- built from 
scratch, but this is unrealistic 
for most users. (Surveys of ex- 
perienced parallel programmers 

With few 

show that 59 percent modify or 
compose programs from exist- 
ing code; the 31 percent who 
start from scratch are typically 
computer scientists and applied 
mathematicians8) Moreover, a 
solid baseline program provides 
a built-in mechanism for check- 
ing the validity of the parallel program’s results 
(does it yield the same results as the serial code 
for all inputs?), as well as a basis for measuring 
performance improvements (how much faster is 
version X than the baseline?). 

However, a sloppily implemented baseline 
must first be cleaned up if it 1s to provide realis- 
tic estimates of future performance. Although 
this may involve a significant amount of work 
(for example, restructuring Common blocks if a 
large application redefines them at many 
points), the investment is guaranteed to pay off, 
since it will improve the serial version’s main- 
tainability-and perhaps its performance-even 
if you decide not to parallelize. If you do pro- 
ceed, a clear, robust code will be essential to pro- 
duce a reliable parallel implementation. 

Performance estimates are based on timings 
of the baseline program. Insert calls to the sys- 
tem library to obtain wall-clock readings just be- 
fore and after the portion(s) of the application 
with potential for parallelism (based on infor- 
mation in the preceding sections); collectively, 
these represent the potentiadly parallel code. In 
addition, insert timing calls as the program’s first 
and last statements, so that you can also deter- 
mine whole code time. Figure 8 shows where tim- 
ing calls would be placed to measure a simple 
simulation program. Exclude the input and out- 
put phases from the potentially parallel portion, 
since they represent serial bottlenecks (U0 can- 
not be performed in parallel on most machines). 
Identify other major operations that must be ex- 

you don’t pick 
the language; 
it picks you. 
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Figure 8. Timing the baseline program to estimate likely parallel petformance: whole-code versus 
potentially parallel timings. Each large dot represents a call to a timing routine. 

ecuted serially (such as global summations) and The goal of parallelism, clearly, is to reduce 
exclude them, too. the whole code-dme so that results are produced 

faster. Equally clearly, performance gains can 
only be made by reducing the time spent in the 
potentially parallel portion, since this is the only 
area where multiple CPUs can really be applied. 
Ideally, the entire simulation portion of the ex- 
ample could execute in parallel. 

The timing results obtained by executing the 
baseline program make it possible to calculate 
the program’s parallel content, p ,  defined as a pro- 
portion: 

potentially parallel time 90 
xhole code time 93 

= - = 0.9677 

Ths inhcates that 96.8 percent of the code is 
potentially paratlelizable, while only 3.2 percent is 
necessarily serial content. To understand the im- 
pact of those figures, Amdahl’s law (see the box 
on t h ~ s  page) is applied to calculate the theoreti- 
cal speedup as a function of the parallel content 
@) and the number of CPUs that will be used (Nj: 

theoretical speedup 

.0323 + (.9677/N) 

Figure 9a shows how this theoretical speedup 
changes for increasing numbers of N. It is com- 
pared with idealspeedup, which reflects the ideal 
that applying N CPUs to a program should 
cause it to complete N times faster. Obviously, 
between ideal and theoretical speedup there is 
a gap that widens as Nincreases. The gap size is 
solely a function of the program’s serial content. 
Ths suggests that for every program, it will not 
be worthwhile to go beyond some number of 
CPUs. As Table 3 shows, even applying an infi- 
nite number of CPUs to the example will 
achieve at most a 30-times speedup. 

Note that the curves may change as the prob- 
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Table 3. Theoretical speedup, assuming a parallel 
content of 96.77 percent. 

lem size increases (for example, when the time 
steps in the simulation double). If increasing 
problem size is essentially equivalent to increas- 
ing the amount of parallelizable computation, 
the potential parallel content will increase. This, 
in turn, will improve the curve for theoretical 
speedup, diminishing the gap from ideal 
speedup. However, if increasing problem size 
also increases the length of the serial bottlenecks, 
the gap may widen. You should consider how 
much size variation is likely for your application, 
and estimate its effect on theoretical speedup. 

Unfortunately, theoretical speedup is rarely 
achieved by a parallel application. There will ac- 
tually be an obsemed speedup curve that exhibits a 
widening gap from theoretical speedup (Figure 
9b), reflecting the external overhead’s effect on 
total execution time. This overhead comes from 
two sources, both essentially beyond the pro- 
grammer’s control: the additional CPU cycles 
expended in simply managing parallelism, and 
delays, or wasted time, spent waiting for I/O, 
communications among CPUs, and competition 
from the operating system or other users. Theo- 
retical speedup does not consider these factors. 

Another lack of precision in theoretical 
speedup is that it assumes perfect concurrency. 
Parallel code run on five CPUs will speed up 
five times only if all CPUs simultaneously 
(a) start the parallel portion, (b) perform all co- 
ordination activities (such as exchanging data), 
and (c) complete their calculations. Combined, 
this is perfect concurrency, shown in Figure loa. 
It assumes that computational intensity is com- 
pletely homogeneous, which may be almost true 
for dense linear algebra, but certainly won’t be 
for sparse or irregular problems. It also assumes 

Q 

U a, a, 
Q (I) 

Idea‘ speeduY lo  9 4 
Theoretical speedup 
for p = 0.9677 

Parallel content = 96.8% 

Serial content = 3.2% 

1 2  3 4 5 6 7 8 9 10 
Number of processors (4 

Ideal speeduy Theoretical speedup 

1 2  3 4 5 6 7 8 9 10 

(b) Number of processors 

Figure 9. Estimating parallel performance: (a) theoretical speedup 
differs from ideal speedup as a function of the program‘s serial con- 
tent; (b) observed speedup will fall well below theoretical speedup, 
due to environmental factors and imperfect concurrency. 

that the CPUs are identical and have identical 
access to all limiting resources, such as memory 
and the communication network. 

What actually happens is imperfect concurrency 
(Figure lob), because CPUs find it necessary to 
wait for access to each other or to resources. Some 
factors responsible for poor concurrency are 
within the programmer’s control, but some aren’t: 

+ Uneven computational intensity across CPUs: 
This can be improved by careful program- 
ming, but the nature of the application itself 
may be causing the problem. 

+ CPU.. waitingfor infomation controlled by other 
CPUs (such as shared variables or messages): 
Experienced parallel programmers spend 
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starts 
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Figure IO. Concurrency: (a) perfect concurrency, where all CPUs be- 
gin, interact, and complete at the same time; (b) slight variations in 
timing affect concurrency and cause the program to fall short of 
theoretical speedup. 

most of their efforts ensuring that data are 
“produced early, consumed late” to minimize 
this wait, but some applications simply require 
excessive interaction. 

+ Vagaries of  the runtime environment (such as 
competition from other users, system inter- 
rupts, 1/0 delays, or network “hiccups”): The 
average user can do little, other than schedule 
off-hour program runs. 

Concurrency worsens as the number of CPU 
interaction points increases relative to the 
amount of computation performed, which gives 
rise to program granularity. A coarse-grained pro- 
gram requires many computations between each 
point of CPU interaction, while a fine-grained 
one performs proportionately few computations. 
Consider, for example, a loop or subroutine con- 
taining many instructions. If the CPUs execut- 
ing it reference and modify values scattered 
through a single matrix, the program will be 
fine-grained, because the CPUs must be notified 
whenever another CPU updates a value. If each 
CPU applies the operations to a different ma- 
trix, the code will be coarse-grained. As the num- 
ber of instructions shrinks-or the need to share 
updated values increases-the granularity be- 
comes finer. 

On a shared-memory computer, it is difficult 

to calculate a priori the minimum granularity to 
achieve acceptable performance. For distrib- 
uted-memory computers (including networks of 
workstations and, to a lesser extent, clustered 
SMPs), however, you can get a crude approxi- 
mation based on its published CPU speed and 
communication properties. Most hardware ven- 
dors publicize two measures of message-passing 
performance. Latenly is the time, typically mea- 
sured in microseconds, spent initiating a mes- 
sage transmksion. Bandwidth is the speed, typi- 
cally in Mbytes per second, at which message 
data are transmitted. Essentially, latency repre- 
sents the fixed overhead of a message commu- 
nication; the same cost is incurred to set up any 
message, regardless of its length. Bandwidth 
represents the variable overhead, because the 
cost incurred to transmit a message is a function 
of message length. Nominally, then, the cost of 
sending a message can be described as 

message size 
bandwidth 

message time = latency + 

The  real “cost” of sending a message, how- 
ever, is the number of CPU cycles wasted as a 
program waits to sendheceive a message. Quite 
simply, a CPU that is spending even a few cy- 
cles idling, rather than doing useful computa- 
tion, will not show good performance. By con- 
sidering what each communication is actually 
costing in terms of lost CPU power, you can 
predict the granularity level necessary to achieve 
reasonable performance on a specific parallel 
computer. A message-eguiv~lent’~ measures the 
approximate number of floating-point opera- 
tions that could be executed in the time needed 
to send one message 1,024 bytes long: 

message equivalent = 

CPU speed * [latency + (1K / bandwidth)] 

where CPUspeed is the so-called peak speed of a 
single CPU in Mflops, latency is assumed to be 
in microseconds, and bandwidth in Mbytes per 
second. (Peak CPU speed is an unrealistic mea- 
sure but serves as a useful basis for calculating 
this crude approximation of needed granularity.) 

Table 4 shows the values calculated for five 
current parallel computers. It is clear that sys- 
tem A (actually a set of Ethernet-connected 
workstations) will require an extremely coarse- 
grained program if the CPUs are to do anything 
more useful than wait for communications. In 
contrast, system C (a parallel computer highly 
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Table 4. ”Message-equivalent” approximations calculated for five existing parallel coimputers, indicating 
how many floating-point operations should occur between CPU interactions for good performance. 

tuned for fast communications) would tolerate 
almost a hundred times as many points of com- 
munication. System B (a so-called general-pur- 
pose parallel computer) falls between the two. 
Systems D (an SMP) and E (a cluster of those 
SMPs connected by a high-speed switch) show 
just how much impact the communication speed 
really has. 

Note that none of these systems would really 
tolerate a medium- or fine-grained program. 
Good performance requires that computation 
exceed the message-equivalent on a regular ba- 
sis, so each CPU would need to perform tens (or 
hundreds or millions) of thousands of operations 
between interaction points to attain good per- 
formance. 

What is the impact of all these factors on pro- 
grammer effort? They should be viewed as 
“warning signals” that alert you to potential 
problems you are unlikely to overcome, regard- 
less of the effort you are willing to invest. More 
rules of thumb: 

(10) Timings measured on a baseline (serial) 
version of your application provide a solid 
starting point for estimating potential pay- 
offs and reliability. 

(1 1) The debilitating impact of serial content on 
theoretical speedup means that you prob- 
ably shouldn’t consider parallelizing a pro- 
gram with parallel content less than 95 per- 
cent, unless you’re already experienced in 
parallel programming, or unless you will be 
able to replace a significant portion of the 
serial version with parallel algorithms that 
have been proven to be good performers. 

(12) Apply your knowledge of the program to 
estimate how varying problem size will af- 
fect the theoretical speedup curve. 

(13) Theoretical speedup is only an upper 
bound on what is possible; the attained per- 
formance will almost certainly be much 
lower. 

(14) Although you can improve concurrency to 
some extent, it will largely depend on the 
application itself and the average load on 
the computer. 

(1 S) A coarse-grained program will perform rel- 
atively well on any parallel machine; a 
medium- or fine-grained one will probably 
be respectable only on a SIMD multicom- 
puter. 

(16) To understand the granularity require- 
ments of a distributed-memory computer, 
calculate its message equivalent. To be 
worth parallelizing, your program proba- 
bly needs to perform rnany thousands of 
floating-point operations between each 
CPU interaction point. 

The three case studies presen.ted on pages 23-25 
show how applylng these 16 rules of thumb can 
affect your final decision. 

ow much performance can you really ex- H pect to get? Consider an analogy with the 
physical world14: I can’t ride my bicycle faster 
than 40 miles per hour, so that is its peak per- 
formance. However, my average speed will de- 
pend on environmental conditions, such as my 
current fitness level, road condition and steep- 
ness, amount of traffic, and weather conditions. 
Some of these are under my control, but most 
are not. Consequently, my sustained perfor- 
mance is typically 15 miles per hour. 

Wild claims about parallel performance 
abound, typically emanating from the marketing 
departments of computer manufacturers. Such 
claims are hard even for experienced parallel 
programmers to interpret; they often mislead 
newcomers into unrealistic notions of perfor- 
mance.” A fanciful example might be that X 
Corporation’s HypoMetaStellar is a 400- 
gigaflops machine. The quoted figure will be ag- 
gregate peak performance (that is, the peak CPU 
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speed times the number of CPUs) and is almost 
worthless in estimating application performance. 
The claim may also be substantiated by bench- 
mark results proving the HypoMetaStellar is 10 
times faster than any supercomputer, but that too 
is essentially meaningless for the parallel pro- 
grammer. What counts is the fraction of peak 
performance regularly sustained by your appli- 
cation. For most applications, that fraction will 
probably be only 10-20 percent of peak perfor- 
mance. After all, even highly m e d  parallel pro- 
grams rarely achieve more than 20 percent. 

Consider what you 
hope to gain, and how 
much time or ~ ~ a l i t y  

that gain will buy you. 

Various other parallel perfor- 
mance metrics are also cited to 
“prove” that a parallel machine 
will guarantee your application 
good performance. As SahniL6 
demonstrates, however, the 
only reliable performance met- 
ric is the parallel runtime for 
your particular application. 
That clearly cannot be known 
in advance. In particular, it can- 
not be predicted accurately us- 
ing statistics from any other ap- 
plication, no matter how similar 

it is in purpose or structure. 
Is parallel performance achievable? Ab- 

solutely. But it is not easily achieved, nor can it 
be achieved for every problem. Even more dis- 
turbingly, it may require an enormous invest- 
ment of human effort. Achieved performance 
depends on five interdependent factors: 

+ the degree of parallelism inherent in the ap- 
plication; 

+ the parallel computer architecture on which 
that application executes; 

+ how well the language and runtime system ex- 
ploit that architecture; 

+ how effectively the program code exploits the 
language, runtime system, and architecture; 
and 

+ the runtime environment at  the time of exe- 
cution. 

Inherent parallelism should be considered a 
precondition for even entertaining the idea of 
parallelization. Recall that an application’s par- 
allel content constrains even its theoretical per- 
formance. If there’s more than a tiny fraction of 
serial content, parallelism almost certainly will 
not be worthwhile. Moreover, changing the al- 
gorithm to reduce the application’s serial con- 
tent will have more impact than whatever effort 

you are willing to invest in tuning. The parallel 
arclvtecture and runtime environment are prob- 
ably out of your control, unless you have access 
to a wide range of parallel computing platforms. 
The efficiency of the language and runtime sys- 
tem is definitely beyond any programmer’s con- 
trol. That leaves the efficiency of your program, 
which essentially boils down to how much ef- 
fort you’re willing to invest in learning and ap- 
plying parallel slulls. 

Is parallelism for you? Consider what you 
hope to gain-quicker access to results, ability 
to handle larger problems, finer resolution, or 
increased complexity. Think about how much 
that gain will buy you in time or quality, and 
what it’s worth to you. Balance those considera- 
tions against the propensity your application ap- 
pears to have for parallelism. Factor in the ex- 
tent to which you think performance should pay 
off your programming efforts. Then take tim- 
ings on a cleaned-up version of your serial base- 
line and use them to estimate the best perfor- 
mance that could be obtained through 
parallelization. Assuming there are no counter- 
indications (such as a mismatch between your 
problem architecture and the type of machine 
available to you), parallelism will probably pay 
off if your upper-bound estimate on future per- 
formance is at  least five to ten times bigger than 
what would be minimally worthwhile. Then fac- 
tor in the extent to which you think perfor- 
mance should pay off your programming efforts. 

Theoretically, any problem can be pro- 
grammed in any language for execution on any 
parallel computer. Realistically, recognize that 
if a problem does not lend itself to parallelism, 
or if it doesn’t match your computer’s capabili- 
ties, parallelization simply won’t be worth the 
effort. + 
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