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Preface to the Second Edition

The goal of this book is the same as the goal of the original edition, namely,

to present a one-semester, brief treatment of the key ideas, models, and so-

lution methods in elementary differential equations. As in the first edition,

there remains an intimate connection between the mathematics and applica-

tions. There are many excellent texts on differential equations designed for the

standard sophomore course, but, in spite of the fact that most courses are one

semester in length, they have evolved into calculus-like presentations that in-

clude a large collection of methods and applications, packaged with student

manuals, and Web-based notes, projects, and supplements. All of this comes in

several hundred pages of text with busy formats. Many students do not have

the time or desire to read voluminous texts and explore Internet supplements.

Therefore, the format of this text is different; it is more concise. I have tried to

write to the point with plain language. Many worked examples and exercises

are included. A student who works through this primer will have the tools to go

to the next level in applying differential equations to more difficult problems in

engineering, science, and applied mathematics. It gives some instructors who

want more concise coverage an alternative to existing texts.

There are a few substantial changes to this new edition. Many users of

the text, including several of my colleagues at Nebraska, have contacted me

with suggestions and corrections, and I have tried to address their comments.

The typographical errors have been corrected, there are more routine exercises

designed for practice, there are more examples worked out in the text, and

explanations have been expanded in places where the exposition was too terse.

One major change is the reorganization of the first two chapters; for example,

separation of variables is introduced much earlier in the book, and linear equa-

tions are solved using integrating factors rather than variation of parameters.
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Second, the last two chapters, on systems of differential equations, have been

divided into three. This gives the instructor more flexibility in covering systems.

Chapter 5 gives a gentle introduction to systems in general, both linear and

nonlinear, without going into depth or matrix methods. Therefore, an instruc-

tor desiring only to spend a short amount of time on systems can cover most of

Chapter 5. An instructor wishing to spend a substantial portion of the course

on systems can find linear systems discussed in detail in Chapter 6, includ-

ing matrices and eigenvalues, and nonlinear systems in Chapter 7, including

linearization and nonlinear dynamics.

As in the first edition, there is flexibility regarding use of software. Students

may use a calculator or a computer algebra system to solve some problems

numerically or symbolically, and templates of MATLAB R© and Maple programs

and commands are given in an appendix. The instructor can include as much

of this, or as little of this, as he or she desires, or easily adapt the text to other

systems, such as Maple Mathematica, R, or whatever.

For many years I have taught this material to students who have had a

standard three-semester calculus sequence. It was well received by those who

appreciated having a small definitive parcel of material to learn. Moreover, this

text gives students the opportunity to start reading mathematics at a slightly

higher level than they experienced in precalculus and calculus. Therefore, the

text can begin a bridge in their progress to study more advanced material at the

junior–senior level, where books leave more to the reader and are not packaged

in elementary wordy formats.

Chapters 1, 2, 3, 5, 6, and 7 should be covered in order. They provide a

route to geometric understanding, the phase plane, and the qualitative ideas

that are important in differential equations. Included are the usual treatments

of separable and linear first-order equations, along with second-order linear

homogeneous and nonhomogeneous equations. There are many applications to

ecology, physics, engineering, and other areas. These topics give students basic

skills in the subject. Chapter 4, on Laplace transforms, may be covered at any

time after Chapter 3, or even omitted. Always an issue in teaching differential

equations is how much linear algebra to cover. In two extended sections in

Chapter 6 we introduce a moderate amount of matrix theory, including the

solution of linear systems, determinants, and the eigenvalue problem. In spite

of the book’s brevity, it still contains more material than can be comfortably

covered in a single, three-hour, semester course. Chapters 1–5 make a good

introductory 3-hour course.

The sections in the book, and entries in the table of contents, marked with

an asterisk are optional and may be omitted. At the end of the text are practice

examination problems and solutions to most of the even exercises. The solutions

to the exercises vary from a hint, a brief answer, or a detailed outline to the
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solution.

I greatly welcome suggestions, comments, and corrections. Contact informa-

tion is on my web site: http://www.math.unl.edu/~dlogan, where additional

items may be found.

Finally, I would like to thank my editor Kaitlin Leach at Springer for her

enthusiastic support and efficient management of this project. And I greatly

appreciate the suggestions passed along to me from the many users of the first

edition.

I affectionately dedicate this book to my son David. His unique and insight-

ful perspectives on life, learning, teaching, and scholarship have challenged and

influenced me in myriad and remarkable ways. Thank you, David.

J. David Logan

Willa Cather Professor of Mathematics

Lincoln, Nebraska





To the Student

What is a course in differential equations about? Here are some informal

preparatory remarks to give you some sense of the subject before we take it up

seriously. This section should not be skipped!

You are familiar with algebra problems and solving algebraic equations. For

example, the solutions to the quadratic equation

x2 − x = 0

are easily found to be x = 0 and x = 1, which are numbers. A differential equa-

tion (often abbreviated DE ) is another type of equation where the unknown is

not a number, but a function. We call the unknown function u(t) and think of

it as a function of time. Simply, a DE is an equation that relates the unknown

function u(t) to some of its derivatives, which, of course, are not known either.

A simple example of a DE is

u′(t) = u(t),

where u′(t) denotes the derivative of u(t).1 We ask what function u(t) solves

this equation. That is, what function u(t) has a derivative that is equal to itself?

From calculus you know that one such function is u(t) = et, the exponential

function. We say this function is a solution of the DE, or it solves the DE. Is it

the only solution? If you try u(t) = Cet, where C is any constant whatsoever,

you will also find it is a solution. It is generally true that differential equations

have many solutions; fortunately these solutions are quite similar, and the fact

that there are many allows some flexibility in imposing other desired conditions.

For example, among them we can try to find a solution that passes through a

given point (t0, u0) in the tu plane.

1 We mostly use the “prime” notation for the derivative.
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The preceding DE was very simple and we could guess the answer from our

calculus knowledge. But, unfortunately (or, fortunately!), differential equations

are usually more complicated. Consider, for example, the DE

u′′(t) + 2u′(t) + 2u(t) = 0.

This equation involves an unknown function u(t) and both its first and second

derivatives. In words, we seek a function for which its second derivative, plus

twice its first derivative, plus twice the function itself, is zero. Now can you

quickly guess a function u(t) that solves this equation? It is not likely. One

solution is

u(t) = e−t cos t.

Another is

u(t) = e−t sin t

Let’s check this last one by using the product rule and calculating its deriva-

tives:

u(t) = e−t sin t,

u′(t) = e−t cos t− e−t sin t,

u′′(t) = −e−t sin t− 2e−t cos t+ e−t sin t.

Then, it is easy to see that

u′′(t) + 2u′(t) + 2u(t) = 0.

So it works! The function u(t) = e−t sin t solves the equation u′′(t) + 2u′(t) +

2u(t) = 0. You should check right now that the other function u(t) = e−t cos t

works as well. In fact, if you multiply each of these solutions by any constant

and add the result to get

u(t) = Ae−t sin t+Be−t cos t

you will find that it is a solution as well, regardless of the values of the constants

A and B. To repeat, differential equations have lots of solutions.

Partly, the subject of differential equations is about learning techniques, or

methods, for finding solutions.

Why differential equations? Why are they so important to deserve an entire

course of study? Well, differential equations arise naturally as models in areas

of science, engineering, economics, and lots of other subjects. Physical systems,

biological systems, and economic systems; all these are marked by change, or

dynamics. Differential equations model real-world systems by describing how

they change. The unknown function u(t) could be the current in an electrical

circuit, the concentration of a chemical undergoing reaction, the population
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of an animal species in an ecosystem, or the demand for a commodity in a

micro-economy. Differential equations represent laws that dictate change, and

the unknown u(t), for which we solve, describes exactly how the changes occur.

In fact, much of the reason that the calculus was developed by Isaac Newton

was to describe motion and to solve differential equations. The bottom line is

that many laws of nature relate the rate at which some quantity changes (the

derivative) to the quantity itself.

Let’s consider an example in classical mechanics. Suppose a particle of mass

m moves along a line with constant velocity V0. Suddenly, say at time t = 0,

there is imposed an external resistive force F on the particle that is proportional

to its velocity v = v(t) for times t > 0. Intuitively, the particle will slow down

and its velocity will change. From this information can we predict the velocity

v(t) of the particle at any time t > 0? We learned in calculus, and elementary

physics, that Newton’s second law of motion states that the mass of the particle

times its acceleration equals the force upon it, or ma = F . We also learned that

the derivative of velocity is acceleration, so a = v′(t). Therefore, if we write the

force as F = −kv(t), where k is a proportionality constant and the minus sign

indicates the force opposes the motion, then Newton’s law implies

mv′(t) = −kv(t).

This is a differential equation for the unknown velocity v(t). If we can find a

function v(t) that “works” in the equation, and also satisfies v(0) = V0, then

we will have determined the velocity of the particle at any time. Can you guess

a solution? After some practice in Chapter 1 you will be able to solve the

equation and find that the velocity decays exponentially; it is given by

v(t) = V0e
−kt/m, t ≥ 0.

Let’s check that it works:

mv′(t) = mV0

(
− k

m

)
e−kt/m = −kV0e

−kt/m = −kv(t).

Moreover, substituting t = 0, we find v(0) = V0. So it does check. The dif-

ferential equation itself is a model that governs the dynamics of the particle.

We set it up using Newton’s second law, and it contains the unknown function

v(t), along with its derivative v′(t). The solution v(t) dictates how the system

evolves in time.

Here is another example from demographics that shows how DEs arise nat-

urally. Suppose the population of a small city is 100,000 people, and the pop-

ulation grows at a rate of 4% per year, while at the same time, there are 8000

emigrants out of the city each year. If p = p(t) is the population at time t , what

DE can we write down that describes how the population changes? Notice that
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the rate of change of the population is the derivative, or p′(t). The statement

of the problem tells us what the rates are: the growth rate is 4%, which states

that the population increases by the amount 0.04p(t) each year; and the rate of

emigration is a constant 8000 per year, which decreases the rate. So, we must

have
p′(t) = 0.04p(t)− 8000,

which is a differential equation, or model, for the unknown population p = p(t).

The condition that there are initially 100,000 inhabitants can be translated into

the mathematical condition that p(0) = 100, 000, which is called an initial con-

dition, and it puts a constraint on the possible solutions. This type of problem

is typical in differential equations. Concisely, we are to solve

p′ = 0.04p− 8000 subject to p(0) = 100, 000.

As usual, we have not written the dependence of p on t; it is understood. Again

we note that the DE relates an unknown function to its rate, which is typical

in natural laws. The solution is

p(t) = 200, 000− 100, 000e0.04t.

Clearly, the population of the city is decreasing. (When is p(t) = 0?)

Historically, differential equations date to the mid-seventeenth century when

the calculus was developed by Isaac Newton (c. 1665) in the context of deter-

mining the laws of mechanics (published in Principia, 1687). In fact, some

would say that calculus was invented to describe how objects move. After-

wards, many of the who’s who in mathematics and science, for example, L.

Euler in the 1700s and A. Cauchy in the 1800s, developed the subject further

and differential equations have become the principal tool in applications in all

areas of mechanics, thermodynamics, electromagnetic theory, quantum theory,

and so on. It continues today with the study of dynamical systems and nonlin-

ear phenomena in biology, chemistry, economics, and almost every area where

the dynamics of systems is important.

In this text we study differential equations and their applications. We mostly

address two principal questions. (1) How do we find an appropriate DE model

that describes a physical problem? (2) How do we understand or solve the DE

after we obtain it? We learn modeling by examining models that others have

studied (such as Newton’s second law), and we try to create some of our own in

the exercises. We gain understanding and learn solution techniques by practice.

Now we are ready. Read the text carefully with pencil and paper in hand,

and work through all the examples. Make a commitment to solve most of the

exercises. Keep in mind that DEs come from natural laws, many of which

involve rates that processes occur. You will be rewarded with a knowledge of

one of the monuments of mathematics and science, and you will see the great

connection between nature and mathematics like you may never have imagined.



1
Differential Equations and Models

1.1 Introduction

In science, engineering, economics, and in most areas having a quantitative

component, we are interested in describing how systems evolve in time, that

is, in describing a system’s dynamics. In the simplest one-dimensional case the

state of a system at any time t is denoted by a function, which we generically

write as u = u(t). We think of the dependent variable u as the state variable of

a system that is varying with time t, which is the independent variable. Thus,

knowing u = u(t) is tantamount to knowing what state the system is in at

time t. For example, u(t) could be the population of an animal species in an

ecosystem, the concentration of a chemical substance in the blood, the number

of infected individuals in a flu epidemic, the current in an electrical circuit, the

speed of a spacecraft, the mass of a decaying isotope, or the monthly sales of

an advertised item. Knowledge of u(t) for a given system tells us exactly how

the state of the system is changing in time. Figure 1.1 shows a time series plot

of a generic state function. We use the variable u for a generic state; but if the

state is “population”, then we may use p or N ; if the state is voltage, we may

use V . For mechanical systems we often use x = x(t) for the position.

One way to obtain the state u(t) for a given system is to take measurements

at different times and fit the data to obtain a nice formula for u(t). Or we

might read u(t) off an oscilloscope or some other gauge or monitor. Such curves

or formulas tell us how a system behaves in time, but they do not give us

insight into why a system behaves in the way we observe. Therefore we try to

1J.D. Logan, A First Course in Differential Equations, Undergraduate Texts in Mathematics, 
DOI 10.1007/978-1-4419-7592-8_1, © Springer Science+Business Media, LLC 2011
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Figure 1.1 Time series plot of a generic state function u = u(t) for a system.

formulate explanatory models that underpin the understanding we seek. Often

these models are dynamic equations that relate the state u(t) to its rates of

change, as expressed by its derivatives u′(t), u′′(t), ..., and so on. Such equations

are called differential equations and many laws of nature take the form of such

equations. For example, we already observed in the introduction that Newton’s

second law for the motion of a mass acted upon by resistive external forces can

be expressed as a differential equation for the unknown velocity v = v(t) of the

mass.

In summary, a differential equation is an equation that describes how a

state u(t) changes. A common strategy in science, engineering, economics, and

the like, is to formulate a basic principle in terms of a differential equation for

some unknown state that characterizes a system and then solve the equation

to determine the state, thereby determining how the system evolves.

A differential equation (abbreviated DE ) is simply an equation for an un-

known state function u = u(t) that relates that state function to some of

its derivatives. Several notations are used in science and engineering for the

derivative, including

u′,
du

dt
,

·
u, . . . .

The overdot notation is common in physics and engineering, as is the fractional

notation du/dt, which reminds us of a rate, or a change in u divided by a change

in t. Mostly we use the simple prime notation. The reader should be familiar

with the definition of the derivative:

u′(t) = lim
h→0

u(t+ h) − u(t)

h
.

For small h, the difference quotient on the right side is often taken as an

approximation for the derivative. Similarly, the second derivative is denoted by

u′′,
d2u

dt2
,

··
u, . . . ,
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and so forth; the nth derivative is denoted by u(n). The first derivative of

a quantity is the “rate of change of the quantity” measuring how fast the

quantity is changing, and the second derivative measures how fast the rate is

changing. For example, if the state of a mechanical system is position, then its

first derivative is velocity and its second derivative is acceleration, or the rate

of change of velocity. Differential equations are equations that relate states to

their rates of change, and many natural laws are expressed in this manner. The

order of the highest derivative that occurs in the DE is called the order of the

equation. For example, u′ +2u = t is first order, and u′′−u′−7u = 0 is second

order.

Example 1.1

Here are four examples of differential equations that arise in various applica-

tions:

θ′′ +

√
g

l
sin θ = 0,

Rq′ +
1

C
q = sinωt,

p′ = rp(1 − p

K
),

mx′′ = −αx.

The first equation models the angular deflections θ = θ(t) of a pendulum of

length l; the second models the charge q = q(t) on a capacitor in an electrical

circuit containing a resistor and a capacitor, where the current is driven by

a sinusoidal electromotive force sinωt operating at frequency ω; in the third

equation, called the logistic equation, the state function p = p(t) represents

the population of an animal species in a closed ecosystem; r is the population

growth rate and K represents the capacity of the ecosystem to support the

population; the last is a model of motion, where x = x(t) is the position of

a mass acted upon by a force −αx. The unspecified constants in the various

equations, l, R, C, ω, r, K, m, and α are called parameters, and they can take

any value we choose. Most differential equations that model physical processes

contain such parameters. The constant g in the pendulum equation is a fixed

parameter representing the acceleration of gravity on earth. In mks units, g =

9.8 meters per second squared. The unknown in each equation, θ(t), q(t), p(t),

and x(t), is the state function. The first and last equations are second-order, and

the second and third are first-order. All the state variables in these equations

depend on time t. Because time-dependence is understood, we often save space

and drop that dependence when writing differential equations. So, for example,

in the first equation θ means θ(t) and θ′′ means θ′′(t). �
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This first chapter focuses on first-order differential equations and their ori-

gins. We write a generic first-order equation for an unknown state u = u(t) in

the form

u′ = f(t, u), (1.1)

where f represents some given expression of t and u. There are several technical

words we introduce later to classify DEs.

A function u = u(t) is a solution1 of the DE (1.1) on an interval I : a < t < b

if it is differentiable on I and, when substituted into the equation, it satisfies

the equation identically for every t ∈ I; that is,

u′(t) = f(t, u(t)), for every t ∈ I.

“Satisfies identically” means “can be reduced to 0 = 0.” To check if we have

a solution, we merely substitute the function into the differential equation and

check that it works.

Before proceeding, let’s look at two more applications to get the idea more

firmly established.

Example 1.2

(Population Growth) Ecology is the study of how organisms interact with

their environment. A fundamental problem in population ecology is to deter-

mine what mechanisms operate to regulate animal populations. Let p = p(t)

denote the population of an animal species at time t. For the human popula-

tion, Thomas Malthus (an economist in the late 1700s) proposed the model, or

law,
p′

p
= r,

which states in words that the “per capita growth rate is a constant value r’,

given in dimensions of time−1. We can regard r as depending on births and

deaths in the population; for example, r = b−m, where b is the per capita birth

rate and m is the per capita mortality rate. This per capita law can clearly be

written

p′ = rp,

which says that the growth rate is proportional to the population. Intuitively,

this seems to make sense. It is easily verified (check this!) that there are in-

finitely many solutions (or a family of solutions) to this equation given by

p(t) = Cert,

1 We are overburdening the notation by using the same symbol u to denote both a
variable and a function. It would be more precise to write “u = ϕ(t) is a solution,”
but we choose to stick to the common use, and abuse, of a single letter.
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where C is any constant whatsoever. This family of solutions is called a one-

parameter family of solutions. Here, we are using the word parameter for C

differently from using the word parameter for r. The number r, the per capita

growth rate, is arbitrary, but it is assumed to be fixed; C is completely arbitrary.

C is like the constant of integration in an antiderivative formula; for example,

all the antiderivatives of cos t are sin t+ C.

At first you might ask how there can be infinitely many solutions to a

population growth problem. But if we think further, there is usually an initial

condition imposed on the population; that is, p(0) = p0, where p0 is fixed. This

initial condition fixes C and then we get a unique population formula. Here,

p(0) = p0 = C exp(r · 0) = C. Thus we have selected out a particular solution

p(t) = p0e
rt

of the DE. That is, of the many solutions, we have chosen the one that satisfies

the initial condition. The infinitely many solutions of a first-order equation are

called the general solution. Therefore, the Malthus model predicts exponential

population growth growth if r > 0 (Figure 1.2). �

p

t

p

p = p  exp(rt)
o

o

Figure 1.2 The Malthus model for population growth: p(t) = p0e
rt, where

r > 0.

Finally, note the important difference between the phrases “per capita

growth rate” and “growth rate.”To say that the per capita growth rate is 2%

(per time) is to say that p′/p = 0.02, which gives exponential growth; to say

that the growth rate is 2% (animals per time) is to say p′ = 0.02, which forces

p(t) to be of the form p(t) = 0.02t+K (K constant), which is the linear growth

law.
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Example 1.3

(Decay) If r < 0 (negative per capita growth rate) in the previous example,

then it predicts exponential decay, or extinction. In other contexts, decay mod-

els radioactive decay, for example, as occurs in Carbon-14 dating. Rather than

using the letter r and saying r is negative, it is preferable to use the letter k

with a negative sign, taking k > 0. So we write the exponential decay model as

u′ = −ku.

Here, k is called the decay rate and it is positive. The general solution of the

decay equation is

u(t) = Ce−kt,

where C is an arbitrary constant. Clearly, if u(0) = u0 is a given initial state,

then C = u0 and the particular solution is

u(t) = u0e
−kt.

The reader should memorize the growth and decay equations and their expo-

nential solutions. They occur frequently in many applications. �

Example 1.4

(Heat Transfer) An object of uniform temperature T0 (e.g., a potato) is placed

in an oven of constant temperature Te. It is observed that over time the potato

heats up and eventually its temperature becomes that of the oven environment,

Te. We want a model that governs the temperature T (t) of the potato at any

time t. Newton’s law of cooling (heating), a model inferred from experiment,

dictates that the rate of change of the temperature of the object is proportional

to the difference between the temperature of the object and the environmental

temperature. That is,

T ′ = −h(T − Te). (1.2)

The positive proportionality constant h is the heat loss coefficient and it mea-

sures how fast an object releases or absorbs heat. There is a fundamental as-

sumption here that the heat is instantly and uniformly distributed throughout

the body and there are no temperature gradients, or spatial variations, in the

body itself. (When could you not make this assumption?) From the DE we

observe that T = T (t) = Te is a constant solution. Because it is not changing,

it is called an equilibrium solution. If T > Te then T ′ < 0, and the temperature

decreases; if T < Te then T ′ > 0, and the temperature increases.

We can find a formula (solution) for the temperature T (t) satisfying (1.2)

using a simple change of variables method. If we let u = T − Te be a new
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dependent variable, then u′ = T ′ and (1.2) may be written u′ = −hu. But

this is just the exponential decay equation from the last example. We have

memorized its general solution as u = Ce−ht. Therefore T − Te = Ce−ht, or

T (t) = Te + Ce−ht.

This is the general solution of (1.2), which contains an arbitrary constant C.

When we impose an initial condition T (0) = T0, then we find C = T0 − Te,

giving the particular solution to the differential equation:

T (t) = Te + (T0 − Te)e
−ht.

We now see clearly that T (t) → Te as t → ∞. A plot of the solution showing

how an object heats up is given in Figure 1.3. �

T = T(t)

T

t

T

T

e

o

Figure 1.3 Temperature history in Newton’s law of cooling showing how the

temperature approaches the equilibrium temperature.

Remark 1.5

If the environmental, or ambient, temperature fluctuates, then Te is not con-

stant but rather a given function of time Te(t). The governing equation becomes

T ′ = −h(T − Te(t)).

In this case there is no constant, or equilibrium, solution. Writing this model

in a different way,

T ′ = −hT + hTe(t).

Let us interpret this DE physically. The first term on the right is internal to

the system (the body being heated) and, considered alone with zero ambient
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temperature, leads to an exponentially decaying temperature (recall that T ′ =

−hT has solution T = Ce−ht). Therefore, there is a transient determined by

the natural system that decays away. The external environmental temperature

Te(t) gives rise to time-dependent dynamics and eventually takes over to drive

the system; we say the system is “driven”, or forced, by the environmental

temperature. In Chapter 2 we develop methods to solve this type of equation

with time-dependence in the environmental temperature function. �

EXERCISES

1. Verify by direct substitution that the given DE has the solution as indi-

cated.

a) u′ = 2u
t , u = t2.

b) u′ = 4u− 8, u = 3e4t + 2.

c) u′ = − t
u u =

√
6 − t2.

2. Which of the following functions,

u(t) =
1

t
, u(t) =

2

t
, u(t) =

1

t− 2
,

is a solution to the DE u′ = −u2?

3. Show that u(t) = ln(t+C) is a one-parameter family of solutions of the DE

u′ = e−u, where C is an arbitrary constant. Plot several members of this

family (use, say, values C = −2, −1, 0, 1, 2). Find and plot a particular

solution that satisfies the initial condition u(0) = 0.

4. Find a solution u = u(t) of u′ + 2u = t2 + 4t+ 7 in the form of a quadratic

function of t, that is, of the form u = at2 + bt+ c, where a, b, and c are to

be determined.

5. Find value(s) of m such that u = tm is a solution to 2tu′ = u.

6. Find solutions of the form u(t) = tm (i.e., find values of m) of the DE

t2u′′ − 6u = 0.

7. Plot the one-parameter family of curves u(t) = (t2 − C)e3t for different

values of C, and find a differential equation whose solution is this family.

Hint: Find u′ and then try to get a relation between t, u, and u′.

8. (Carbon dating) The half-life of Carbon-14 is 5730 years. That is, it takes

this many years for half of a sample of Carbon-14 to decay. If the decay

of Carbon-14 is modeled by the DE u′ = −ku, where u is the amount
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of Carbon-14, find the decay constant k. (Answer: 0.000121 yr−1). In an

artifact the percentage of the original Carbon-14 remaining at the present

day was measured to be 20 %. How old is the artifact?

9. In 1950, charcoal from the Lascaux Cave in France gave an average count

of 0.09 disintegrations of C14 (per minute per gram). Living wood gives

6.68 disintegrations. Estimate the date that individuals lived in the cave.

(The amount of C14 is often measured in disintegrations per minute per

gram.)

10. A small solid initially of temperature 22◦C is placed in an ice bath of 0◦C.

It is found experimentally, by measuring temperatures at different times,

that the natural logarithm of the temperature T (t) of the solid plots as a

linear function of time t; that is,

lnT = −at+ b.

Show that this equation is consistent with Newton’s law of cooling. If the

temperature of the object is 8◦C degrees after two hours, what is the heat

loss coefficient? When will the solid be 2◦C?

11. (Cooking) A small turkey at room temperature 70◦F is placed into an

oven at 350◦F. If h = 0.42 per hour is the heat loss coefficient for turkey

meat, how long should you cook the turkey so that it is uniformly 200◦F?

Comment on the validity of the assumptions being made in this model?

12. A pan of water at 46◦C was put into a refrigerator. Ten minutes later the

water was 39◦C, and ten minutes after that it was 33◦C. Estimate the

temperature inside the refrigerator.

13. (Forensics) The body of a murder victim was discovered at 11:00 A.M. The

medical examiner arrived at 11:30 A.M. and found the temperature of the

body was 94.6◦F. The temperature of the room was 70◦F. One hour later,

in the same room, he took the body temperature again and found that it

was 93.4◦F. Estimate the time of death.

14. (Home heating) Suppose the temperature inside your winter home is 68◦F

at 1:00 P.M. and your furnace then fails. If the outside temperature is 10◦F

and you notice that by 10:00 P.M. the inside temperature is 57◦F, what

will be the temperature in your home the next morning at 6:00 A.M.?

15. Find the general solution, involving an arbitrary constant, of the following

DEs:

a) u′ = (R− a)u, where R and a are constants.

b) 5u′ − u = 0.
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c) u′ = 7 − 2u. Hint: Let v = 7 − 2u.

16. (Cold-blooded animals) A small cold-blooded animal, for example, a lizard,

gains or loses energy from or to its environment according to Newton’s law

of cooling, and it gains energy from solar radiation. The DE for its body

temperature is

mc
dT

dt
= q − k(T − Te),

where m is its mass, c its specific heat (calories per mass, per degree), q the

solar energy in calories per time, and k the heat loss coefficient, measured

in calories per degree, per time.

a) Show that each term in the equation has dimensions energy per time.

Try to reason how this model arises.

b) What is the animal’s constant equilibrium temperature, or its temper-

ature after a long time?

c) Find the general solution (involving an arbitrary constant) of the DE

model. Hint: Let u = −kT + kTe + q be a new dependent variable.

d) Find the particular solution subject to an initial condition T (0) = T0.

17. Show that the DE u′ = e−t2 has a solution

u(t) = 1 +

∫ t

0

e−s2

ds.

This solution contains an integral that cannot be found explicitly. Never-

theless, it is an explicit solution. You can plot it by calculating the integral

numerically (say, using your calculator) for different values of t. Or you can

use software. For example, the commands in MATLAB R© are as follows. are:

f=inline(’exp(-t.∧2)’,’t’);

for n=0:30

t(n+1)=n/10;

u(n+1)=1+quad(f,0,t(n+1));

end

plot(t,u)

1.2 General Terminology

We now introduce some of the terminology for the general first-order differential

equation, writing it in the form

u′ = f(t, u), (1.3)
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where f represents some given, or known, expression of t and u.

If f does not depend explicitly on t (i.e., the DE has the form u′ = f(u)),

then we call the DE autonomous . Otherwise it is nonautonomous . For example,

the equation u′ = −3u2 + 2 is autonomous, but u′ = −3u2 + cos t is nonau-

tonomous. Both the population growth equation and Newton’s law of cooling

are autonomous. Autonomous means “self-governing”, which may seem strange

for a DE. It means that time can be shifted with no effect; if you do an ex-

periment one day, then you expect to get the same results the next day; the

dynamics of what is going on does not change. If f is a linear function in the

variable u, then we say (1.3) is linear ; else it is nonlinear . For example, the

equation u′ = −3u2 + 2 is nonlinear because f(t, u) = −3u2 + 2 is a quadratic

function of u, not a linear one. The most general form of a first-order linear

equation is

u′ = p(t)u+ q(t),

where p and q are given functions. For example, in the DE u′ = 5u − 7t2, we

have p(t) = 5 and q(t) = −7t2. Note that in a linear equation both u and u′

occur alone and to the first power, but the time variable t can occur in any

manner. Linear equations occur often in both theory and applications, and

their study forms a significant part of the subject of differential equations.

Example 1.6

To get an idea of what to expect, let’s work through the simple differential

equation

u′ = −2tu.

Here, in terms of the preceding notation, f(t, u) = −2tu. This first-order equa-

tion is linear because f is a linear function of u. It is nonautonomous. The

unknown function is u = u(t), and we want to determine it. Whatever it is,

the DE tells us that its derivative is minus 2 times t times u itself. Can you

guess such a function u(t)? Maybe not. One of our goals is to learn methods

that show how to find u(t). Here, we just tell you that the solution is

u(t) = Ce−t2 ,

where C is any constant whatsoever; C is called an arbitrary constant. This

means there are infinitely many solutions to the differential equation, one for

each value of C. This is usually the case; there are infinitely many solutions to a

differential equation. For this particular differential equation, all the solutions

are multiples of the function e−t2 , which plots as the standard bell-shaped curve

encountered frequently in statistics. (Plot this function on your calculator.) To
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check that we have a solution, we can substitute into the DE and see:

u′(t) =
(
Ce−t2

)′
= C(−2t)e−t2 = −2t

(
Ce−t2

)
= −2tu(t).

Therefore, u′(t) = −2tu(t), and it checks. Regardless of the value of C, the

solution is valid for every real number (time) t, and so we have a solution for

t ∈ I = (−∞,+∞). This interval I is the interval of existence.

Once we have these solutions containing an arbitrary constant C, we can

impose another condition that fixes the value of C and we obtain a unique

solution. For example, if we specify that the solution satisfy u(0) = 3, or have

the value u = 3 when t = 0, then

u(0) = Ce−02

= C = 3.

Therefore, a unique solution to the DE and the condition u(0) = 3 is

u(t) = 3e−t2.

The condition u(0) = 3 is called an initial condition, and such conditions are

usually imposed in physical problems because they specify the initial state of

the system. We should not expect to find how the state u = u(t) of the system

evolves for t > 0 if we do not know where it starts!

If we start our clock at t = 1, we can impose a condition there, such as

u(1) = 3. Then, to get C, we have

u(1) = Ce−12

= Ce−1 = 3,

giving C = 3e. Then the unique solution is

u(t) = 3ee−t2 = 3e1−t2.

The solution containing the general arbitrary constant C is called the general

solution to the equation. �

Example 1.7

This example illustrates what we might expect from a first-order linear DE.

Consider the DE

u′ = −u+ e−t.

We ask what function u(t) has the property that its derivative is the same as

the negative of the function, plus e−t. The function u(t) = te−t is a solution

to the DE on the interval I : −∞ < t < ∞. (Later, we learn how to find this

solution). In fact, for any arbitrary constant C the function u(t) = (t+ C)e−t
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is also solution. We can verify this by direct substitution of u and u′ into the

DE. Using the product rule for differentiation,

u′ = (t+ C)(−e−t) + e−t = −u+ e−t.

Therefore u(t) satisfies the DE regardless of the value of C. We say that this

expression u(t) = (t + C)e−t represents a one-parameter family of solutions

(one solution for each value of C). This example illustrates the usual state of

affairs for any first-order linear DE: there is a one-parameter family of solutions

depending upon an arbitrary constant C. This family of solutions is called the

general solution. The fact that there are many solutions to first-order differen-

tial equations is fortunate because we can adjust the constant C to obtain a

specific solution that satisfies other conditions that might apply in a physical

problem (e.g., a requirement that the system be in some known state at time

t = 0). For example, if we require u(0) = 1, then C = 1 and we obtain a unique

particular solution u(t) = (t+ 1)e−t. Figure 1.4 is a plot of the one-parameter

family of solutions for several values of C. Here, to repeat, we are using the

word parameter in a different way from that in Example 1.1; there, the word

parameter refers to a physical number in the equation itself that is fixed, yet

arbitrary (such as resistance R in a circuit). �

Example 1.8

Suppose we have an autonomous DE, say,

u′ = 3u2.

If we know that both u = u1(t) and u = u2(t) are solutions, is the sum v(t) =

u1(t) + u2(t) also a solution? Even though we may not know the solutions, we

can still show that this cannot be true. If u1 and u2 are solutions, then both

u′1 = 3(u′1)
2, u′2 = 3(u′2)

2.

But then,

v′ = u′1 + u′2 = 3(u′1)
2 + 3(u′2)

2 6= 3(u2
1 + u2

2) = 3v2.

So, v does not satisfy the equation. �

An initial value problem (abbreviated IVP) for a first-order DE is the prob-

lem of finding a solution u = u(t) to (1.3) that satisfies an initial condition

u(t0) = u0, where t0 is some fixed value of time and u0 is a fixed state. We

write the IVP concisely as

(IVP)

{
u′ = f(t, u),

u(t0) = u0.
(1.4)
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Figure 1.4 Time series plots of several solutions to u′ = e−t−u on the interval

−1 ≤ t ≤ 3. The solution curves, or the one-parameter family of solutions, are

u(t) = (t+C)e−t, where C is an arbitrary constant, here shown taking several

values between −2 and 2.

The initial condition usually picks out a specific value of the arbitrary constant

C that appears in the general solution of the equation. So, it selects one of the

many possible states that satisfy the differential equation. The accompanying

graph (Figure 1.5) depicts a solution to an IVP.

Geometrically, solving an initial value problem means to find a solution to

the DE that passes through a specified point (t0, u0) in the tu plane. Referring

to Example 1.7, the IVP

u′ = −u+ e−t, u(0) = 1

has solution u(t) = (t+1)e−t, which is valid for all times t. The solution curve

passes through the point (0, 1), corresponding to the initial condition u(0) = 1.

Re-emphasizing, the initial condition selects one of the many solutions of the

DE; it fixes the value of the arbitrary constant C.

There are many interesting mathematical, or theoretical, questions about

initial value problems.

1. (Existence) Given an initial value problem, must there always be a solu-

tion? This is the question of existence. Note that there may be a solution

even if we cannot find a formula for it.
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Figure 1.5 Solution to an initial value problem. The fundamental questions

are: (a) is there a solution curve passing through the given point, (b) is the

curve the only one, and (c) what is the interval (α, β) on which the solution

exists.

2. (Uniqueness) If there is a solution, is the solution unique? That is, is it

the only solution? This is the question of uniqueness.

3. (Interval of Existence) For which times t does the solution to the initial

value problem exist?

Obtaining resolution of these theoretical issues is an interesting and worth-

while endeavor, and it is the subject of advanced courses and books on differ-

ential equations. In this text we only briefly discuss these matters. The next

three examples illustrate why these are reasonable questions.

Example 1.9

Consider the initial value problem

u′ = u
√
t− 3, u(1) = 2.

This problem has no solution because the derivative of u is not defined in an

interval containing the initial time t = 1. There cannot be a solution curve

passing through the point (1, 2). �

Example 1.10

Consider the initial value problem

u′ = 2u1/2, u(0) = 0.
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The reader should verify that both u(t) = 0 and u(t) = t2 are solutions to

this initial value problem on −∞ < t < ∞. Thus, it does not have a unique

solution. More than one state evolves from the initial state. �

Example 1.11

Consider the two similar initial value problems

u′ = 1 − u2, u(0) = 0,

u′ = 1 + u2, u(0) = 0.

The first has solution

u(t) =
e2t − 1

e2t + 1
,

which exists for every value of t. Yet the second has solution

u(t) = tan t,

which exists only on the interval −π/2 < t < π/2. Therefore, the solution to

the first initial value problem is defined for all times, but the solution to the

second “blows up” in finite time. These two problems are quite similar, yet the

times for which their solutions exist are quite different. �

The following theorem, which is proved in advanced books, provides partial

answers to some of the questions raised above. The theorem basically states

that if the right side f(t, u) of the differential equation is nice enough, then

there is a unique solution in a neighborhood of the initial value.

Theorem 1.12

Let the function f(t, u) and the partial derivative2 fu(t, u) be continuous for

a < t < b and c < u < d. Then, for any value t0 in a < t < b and u0 in

c < u < d, the initial value problem

{
u′ = f(t, u),

u(t0) = u0,
(1.5)

has a unique solution on some open interval α < t < β containing t0. �

The theorem tells us nothing about how big the interval (α, β) is. The

interval of existence is the set of all time values for which the solution to the

initial value problem exists. Theorem 1.12 is called a local existence theorem

2 We use subscripts to denote partial derivatives, and so fu = ∂f/∂u.
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because it guarantees a solution only in a neighborhood of the initial time t0.

Notice that t0 and u0 have to lie in open intervals and not on the boundary

of those intervals. In Example 1.11 both right sides of the equations, f(t, u) =

1 − u2 and f(t, u) = 1 + u2, are continuous in the plane, and their partial

derivatives, fu = −2u and fu = 2u, are continuous in the entire plane. So

the initial value problem for each would have a unique solution regardless of

the initial condition. But, the intervals of existence are different. In Example

1.10 the function f(t, y) = 2u1/2 has fu(t, y) = 1/u1/2, which is continuous on

u > 0, and not at u = 0 where the initial point t = 0, u = 0 is given.

In addition to theoretical questions mentioned above, there are central issues

from the viewpoints of modeling and applications; these are the questions we

stated in the “To the Student” section.

1. How do we formulate a differential equation that models, or governs, a given

physical observation or phenomenon, such as Newton’s law of cooling?

2. How do we find a solution u(t) (either analytically, meaning a formula,

approximately, graphically, or numerically) of a differential equation?

The first question is addressed throughout this book by formulating model

equations for systems in particles dynamics, chemical reactor theory, circuit

theory, biology, and in other areas. We learn some basic principles that sharpen

our ability to invent explanatory models given by differential equations. The

second question is one of developing methods, and our approach is to illustrate

some standard analytic techniques that have become part of the subject. By

an analytic method we mean manipulations that lead to a formula for the solu-

tion u(t); such formulas are called analytic solutions or closed-form solutions.

For most real-world problems it is difficult or impossible to obtain an analytic

solution. By a numerical solution we mean an approximate solution that is ob-

tained by a computer algorithm; a numerical solution can be represented by a

dataset (table of numbers) or by a graph. In real physical problems, numerical

methods are the ones most often used. Approximate solutions can be formulas

that approximate the actual solution (e.g., a polynomial formula), or they can

be numerical solutions. Almost always we are interested in obtaining a graph-

ical representation of the solution. Often we apply qualitative methods . These

are methods designed to obtain important information from the DE without

actually solving it either numerically or analytically. For a simple example of

this, consider the DE u′ = u2 + t2. Because u′ > 0 we know that all solution

curves are increasing. Or, for the DE u′ = u2−t2, we know solution curves have

a horizontal tangent as they cross the straight lines u = ±t. Quantitative meth-

ods emphasize understanding the underlying model, recognizing properties of

the DE, interpreting the various terms, and using graphics to our benefit in in-

terpreting the equation and plotting the solutions. Often, qualitative methods
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are more important than actually learning specialized techniques for obtaining

a solution formula.

Many methods, both analytical and numerical, can be performed easily on

computer algebra systems such as Maple, Mathematica, or MATLAB R©, and

some can be performed on advanced calculators that have a built-in computer

algebra system, for example, a TI-89 or a TI Voyage 200. Although we often

use a computer algebra system to our advantage, especially to perform tedious

calculations, our main goal in this elementary text is to understand concepts

and develop techniques. Appendix B contains information on using MATLAB R©

and Maple.

EXERCISES

1. Verify by direct substitution that the two differential equations in Example

1.11 have solutions as indicated.

2. Show that the one-parameter family of straight lines u = Ct + f(C) is a

solution to the differential equation tu′−u+ f(u′) = 0 for any value of the

constant C.

3. Classify the first-order equations as linear or nonlinear, autonomous or

nonautonomous.

a) u′ = 2t3u− 6.

b) (cos t)u′ − 2u sinu = 0.

c) u′ =
√

1 − u2.

d) 7u′ − 3u = 2t.

e) uu′ = 1 − tu.

4. State explicitly how you know that the IVP

u′ = (t2 + 1)u− t, u(1) = 3

has a unique solution valid in some interval containing t = 1.

5. Can you guarantee that the IVP

u′ =
tu(1 − u)

1 − t2
, u(0) = 0.5

has a unique solution valid in some interval containing t = 0?

6. For which initial points (t0, u0) are you assured that the initial value prob-

lem
u′ = ln(t2 + u2), u(t0) = u0

has a unique solution?
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7. Verify that the initial value problem u′ =
√
u, u(0) = 0, has infinitely many

solutions of the form

u(t) =

{
0, t ≤ a
1
4 (t− a)2, t > a,

where a > 0 is fixed. Sketch these solutions for three different values of a.

What hypothesis fails in Theorem 1.12?

8. Consider the linear differential equation u′ = p(t)u + q(t). Is it true that

the sum of two solutions is again a solution? Is a constant times a solution

again a solution? Answer these same questions if q(t) = 0. Show that if u1

is a solution to u′ = p(t)u and u2 is a solution to u′ = p(t)u + q(t), then

u1 + u2 is a solution to u′ = p(t)u + q(t).

9. Using facts about concavity, show that the second-order DE u′′ − u = 0

cannot have a nontrivial solution (one other than the u = 0 solution)

that takes the value zero more than once. Hint: Construct a contradiction

argument; if it takes the value zero twice, it must have a negative minimum

or positive maximum at some point.

10. For any solution u = u(t) of the DE u′′ − u = 0, show that (u′)2 − u2 = C,

where C is a constant. Plot this one-parameter family of curves on a uu′ set

of axes. Hint: To show a quantity is constant, show that its time derivative

is zero; use the chain rule.

11. Show that if u1 = u1(t) and u2 = u2(t) are both solutions to the DE u′ +

p(t)u = 0, then u1/u2 is constant. Hint: The quotient rule for derivatives

is useful.

12. Verify that the linear initial value problem

u′ =
2(u− 1)

t
, u(0) = 1,

has a continuously differentiable solution (i.e., a solution whose first deriva-

tive is continuous) given by

u(t) =

{
at2 + 1, t < 0,

bt2 + 1, t > 0,

for any constants a and b. Yet, there is no solution if u(0) 6= 1. Do these

facts contradict Theorem 1.12?
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1.2.1 Geometrical Interpretation

What does a differential equation u′ = f(t, u) tell us geometrically? At each

point (t, u) of the tu plane, the value of f(t, u) is the slope u′ of the solution

curve u = u(t) that passes through that point. This is because

u′(t) = f(t, u(t)).

This fact suggests a simple graphical method for constructing approximate

solution curves for a first-order differential equation. Through each point of a

selected set of points (t, u) in some region (or window) of the tu plane we draw

a short line segment with slope f(t, u). The collection of all these line segments,

or mini-tangents, forms the direction field , or slope field , for the equation. We

may then roughly sketch solution curves that fit into this direction field; the

curves must have the property that at each point the tangent line has the same

slope as the slope of the direction field.

Example 1.13

The slope field for the differential equation u′ = −u+2t is defined by the right

side of the differential equation, f(t, u) = −u+ 2t. The slope field at the point

(2, 4) is f(2, 4) = −4 + 2 · 2 = 0. This means the solution curve that passes

through the point (2, 4) has slope 0. Because it is tedious to calculate several

mini-tangents, simple programs have been developed for advanced calculators

and computer algebra systems that perform this task automatically. Figure 1.6

shows a slope field and several solution curves that have been fit into the field.

The figure was created using MATLAB R©. See Appendix B for a set of simple

commands that plot the slope field. �

In this text we do not dwell on slope fields. It is sufficient to know how to

calculate the slope field at a few selected points (t, u). This gives the direction

of the solution curves through those points. Particularly, it is useful to find the

set of all points in the plane where the slope field is either positive or negative,

or has the same numerical value; these latter curves are call isoclines . The sets

of points where the slope field is zero are called nullclines ; these are especially

of interest in some problems because they indicate where the rate changes sign.

Example 1.14

Consider the DE

u′ = −tu+ u2 = u(u− t).
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Figure 1.6 The slope field in the window −2 ≤ t ≤ 4, −4 ≤ u ≤ 8, with

several approximate solution curves for the DE u′ = −u+ 2t.

The nullclines, found by setting u′ = 0, are u = 0 (the t axis) and the diagonal

line u = t (both shown dashed in Figure 1.7). We note that u′ > 0 when u > 0

and u > t, or u < 0 and u < t. And, u′ < 0 when u < 0 and u > t, or u > 0

and u < t. Slope lines have been placed on the plot in the appropriate four

regions, separated by the nullclines. Noting these slopes, it is possible to draw

approximate solution curves. Observe that the nullcline u = 0 is also a constant

solution to the differential equation. �

Example 1.15

For the linear differential equation

u = (t2 + 1)u− t,

sketch the nullcline. We set f(t, u) = (t2 + 1)u− t = 0. Therefore, the nullcline

is the curve

u =
t

t2 + 1
.

Along this curve in the plane (sketch it!) the solution curves cross horizontally,

with zero slope. �
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t

u u = t

u = 0

Figure 1.7 The slope field and nullclines u = 0, u = t (dashed) for the

differential equation u′ = −tu + u2, with two approximate solution curves fit

into the field. Note u = 0 is a solution to the DE.

Example 1.16

The nonlinear equation

u′ = u(u2 − t)

has nullclines u = 0 (the t-axis) and the parabolic curve u2 = t, or u = +
√
t,

u = −
√
t. �

Note that a problem in differential equations is just opposite of that in

differential calculus. In calculus we know the function (curves) and are asked

to find the derivative (slopes); in differential equations we know the slopes and

try to find the functions, or curves, that fit the slopes.

There is simplicity of the slope field for autonomous equations (no explicit

time, or t, dependence on the right side)

u′ = f(u).

The slope field is independent of time, so on each horizontal line in the tu plane,

where u has the same value, the slope field is the same.

Example 1.17

The DE u′ = 3u(5− u) is autonomous, and along the horizontal line u = 2 the

slope field has value 18. This means solution curves cross the line u = 2 with a

relatively steep slope u′ = 18. Notice that the nullclines are u = 0 and u = 5.

Do you see also that the nullclines are also constant solutions to the DE? �
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EXERCISES

1. By hand, sketch the slope field for the DE u′ = u(1 − u/4) in the window

0 ≤ t ≤ 8, 0 ≤ u ≤ 8 at the integer lattice points. What is the value of

the slope field along the lines u = 0 and u = 4? Show that u(t) = 0 and

u(t) = 4 are constant solutions to the DE.

2. Draw several isoclines of the differential equation u′ = u2 + t2, and from

your plots determine, approximately, the graphs of the solution curves.

3. Draw the nullclines for the equation u′ = 1−u2. Graph the locus of points

in the plane where the slope field is equal to −3 and +3.

4. Repeat Exercise 2 for the equation u′ = t−u2. Find the region in the plane

where the slope field is positive and where it is negative.

5. In the right-half tu plane (t ≥ 0), plot the nullclines of the differential equa-

tion u′ = 2u2(u− 4
√
t). Determine the sign of the slope field in the regions

separated by the nullclines. Sketch the solution curve passing through the

point (1, 4). Why can’t your curve cross the u axis?

1.3 Pure Time Equations

In this section we solve the simplest type of differential equation. First we need

to recall the fundamental theorem of calculus, which is basic and used regularly

in differential equations. For reference, we state the two standard forms of the

theorem. They show that differentiation and integration are inverse processes.

Fundamental Theorem of Calculus I. If g is a continuous function, the

derivative of an integral with variable upper limit is

d

dt

∫ t

a

g(s)ds = g(t),

where the lower limit a is any number.

Fundamental Theorem of Calculus II. If u is a differentiable function,

the integral of its derivative is

∫ b

a

u′(t)dt = u(b) − u(a).
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We use this second form to find the definite integral of functions, and we

often write it in the form
∫ b

a

f(t)dt = F (b) − F (a) = F (t)|ba,

where F is an antiderivative of f , or F ′ = f . For example,

∫ 3

1

t2dt =
1

3
t3|31 =

26

3
.

The first form of the fundamental theorem states that the function G(t) =∫ t

a
g(s)ds is an antiderivative of g (i.e., a function whose derivative is g). No-

tice that
∫ t

a g(s)ds + C is also an antiderivative for any value of C; therefore

antiderivatives are unique up to an additive constant. This last expression is

called the most general antiderivative of g(t). An illustration of form I is

d

dt

∫ t

2

sin(
√

1 + s2)ds = sin(
√

1 + t2).

The simplest differential equation is one of the form

u′ = g(t), (1.6)

where the right side of the differential equation is a known function g(t). This

equation is called a pure time equation. Thus, we seek a function u = u(t)

whose derivative is g(t). The fundamental theorem of calculus I states u must

be an antiderivative of g. We can write this fact as

u(t) =

∫ t

a

g(s)ds+ C,

or using the indefinite integral notation, as

u(t) =

∫
g(t)dt+ C, (1.7)

where C is an arbitrary additive constant, called the constant of integration.

Thus, all solutions of (1.6) are given by (1.7), and (1.7) is called the general

solution. The fact that (1.7) solves (1.6) follows from the fundamental theorem

of calculus I.

Example 1.18

Find the general solution to the differential equation

u′ = t2 − 1.
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Because the right side depends only on t, the solution u is an antiderivative of

the right side, or

u(t) =

∫
(t2 − 1)dt+ C =

1

3
t3 − t+ C,

where C is an arbitrary constant. This is the general solution and it graphs as a

family of cubic curves in the tu plane, one curve for each value of C. A particular

antiderivative, or solution to the equation, can be determined by imposing an

initial condition that picks out a specific value of the constant C, and hence a

specific curve. For example, if u(1) = 2, then 1
3 (1)3 − 1 +C = 2, giving C = 8

3 .

The solution to the initial value problem is then u(t) = 1
3 t

3 − t+ 8
3 . �

Example 1.19

For equations of the form u′′ = g(t) we can take two successive antiderivatives

to find the general solution. The following sequence of calculations shows how.

Consider the DE

u′′ = t+ 2.

Then

u′ =
1

2
t2 + 2t+ C1;

u =
1

6
t3 + t2 + C1t+ C2.

Here C1 and C2 are two arbitrary constants. For second-order equations we

always expect two arbitrary constants, or a two-parameter family of solutions.

It takes two auxiliary conditions to determine the arbitrary constants. In this

example, if u(0) = 1 and if u′(0) = 0, then C1 = 0 and C2 = 1, and we obtain

the particular solution u = 1
6 t

3 + t2 + 1. �

Example 1.20

The autonomous equation

u′ = f(u)

is not a pure time equation and cannot be solved by direct integration with

respect to t, because the right side is not a known function of t; it depends

on u, which is the unknown in the problem. Later we show how to solve these

types of autonomous equations. �

In a pure time equation, often it is not possible to find a simple expression

for the antiderivative, or indefinite integral. For example, the functions sin t/t
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and e−t2 have no simple analytic expressions for their antiderivatives (this can

be proved). In these cases we must represent the antiderivative of g in the form

u(t) =

∫ t

a

g(s)ds+ C,

with a variable upper limit on the integral. Here, a is any fixed value of time and

C is an arbitrary constant. We have used the dummy variable of integration

s to avoid confusion with the upper limit of integration, the independent time

variable t. It is really not advisable to write u(t) =
∫ t

a
g(t)dt.

Example 1.21

Solve the initial value problem

u′ = e−t2 , t > 0

u(0) = 2.

The right side of the differential equation has no simple expression for its an-

tiderivative. Therefore we write the antiderivative in the form

u(t) =

∫ t

0

e−s2

ds+ C.

The common strategy is to take the lower limit of integration to be the initial

value of t, here zero. Then u(0) = 0 +C = 2, or C = 2. We obtain the solution

to the initial value problem in the form of an integral,

u(t) =

∫ t

0

e−s2

ds+ 2. (1.8)

If we had written the solution of the differential equation as

u(t) =

∫
e−t2dt+ C,

in terms of an indefinite integral, then there would be no way to use the ini-

tial condition to evaluate the constant of integration, or evaluate the solution

at a particular value of t. Actually, the indefinite integral
∫
g(t)dt carries no

information; it is just another notation for the antiderivative. �

We emphasize that integrals with a variable upper limit of integration de-

fine a function, and we sometimes give those functions a name, particularly if
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they occur frequently. Referring to Example 1.21, researchers define the special

function “erf” (called the error function) by

erf(t) =
2√
π

∫ t

0

e−s2

ds.

The factor 2/
√
π in front of the integral normalizes the function to force

erf(+∞) = 1. The erf function erf(t) gives the area under a bell-shaped curve

(2/
√
π exp(−s2) from 0 to t. In terms of this special function, the solution (1.8)

can be written

u(t) = 2 +

√
π

2
erf(t).

The erf function, which is plotted in Figure 1.8, is an important function in

probability and statistics, and in diffusion processes. Its values are tabulated

in computer algebra systems and mathematical handbooks.
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Figure 1.8 Graph of the erf function plotted using the MATLAB R© com-

mands: t=-5::0.01:5; u=erf(t); plot(t,u).

Functions defined by integrals are common in the applied sciences and are

equally important as functions defined by simple algebraic formulas. To the

point, the reader may recall from calculus that the natural logarithm can be

defined by the integral

ln t =

∫ t

1

1

s
ds, t > 0.
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One alternate and important viewpoint is that differential equations often de-

fine special functions. For example, the initial value problem

u′ =
1

t
, u(1) = 0,

could be used to define the natural logarithm function ln t. Other special func-

tions of mathematical physics and engineering, for example, Bessel functions,

are usually defined as solutions to special differential equations. By solving

the differential equation numerically we can obtain values of the special func-

tions more efficiently than looking those values up in tabulated form. Other

techniques, involving power series, are studied in Chapter 3.

EXERCISES

1. Using antiderivatives, find the general solution to the pure time equation

u′ = t cos(t2); then find the particular solution satisfying the initial condi-

tion u(0) = 1. Plot the particular solution on the interval [−5, 5].

2. Solve the initial value problem u′ = (t+ 1)/
√
t, u(1) = 4.

3. Find a function u(t) that satisfies the initial value problem u′′ = −3
√
t,

u(1) = 1, u′(1) = 2.

4. Find all functions that solve the differential equation u′ = te−2t.

5. Solve u′ = 1/(t ln t).

6. Solve
√
tu′ = cos

√
t.

7. Find the solution to the initial value problem u′ = e−t/
√
t, u(1) = 0, in

terms of an integral with a variable upper limit. Graph the solution on the

interval [1, 4] using numerical integration or a software system to calculate

values of the integral. See Exercise 16 in Section 1.2.

8. The differential equation u′ = 3u+ e−t can be converted into a pure time

equation for a new dependent variable y using the transformation u = ye3t.

Find the pure time equation for y, solve it, and then determine the general

solution u of the original equation.

9. Generalize the method of Exercise 8 by devising a method to solve u′ =

au+ q(t), where a is any constant and q is a given function. In fact, show

that

u(t) = Ceat + eat

∫ t

0

e−asq(s)ds.

Using the fundamental theorem of calculus, verify that this function does

solve u′ = au+ q(t).
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10. Use the chain rule and the fundamental theorem of calculus to compute

the derivative of erf(sin t).

11. The Dawson function is defined by the expression

D(t) = e−t2
∫ t

0

es2

ds.

Find the differential equation for D(t).

12. An integral equation is an equation where the unknown u(t) appears under

an integral sign. Such equations arise in many applications. An example is

the equation

u(t) +

∫ t

0

e−p(t−s)u(s)ds = A; p,A constants,

Show that this integral equation can be transformed into an initial value

problem for u(t). Hint: Differentiate.

13. Transform the integral equation

u(t) = e−2t +

∫ t

0

su(s)ds

into an initial value problem for u(t).

14. Show how the initial value problem u′ = f(t, u), u(0) = u0, can be trans-

formed into the integral equation

u(t) = u0 +

∫ t

0

f(s, u(s))ds.

As an example, transform the initial value problem

u′ = 5tu2 + 1, u(1) = 0

into an integral equation.

1.4 Mathematical Models

We now return to applications. By a mathematical model we mean an equation,

or set of equations, that describes some physical problem or phenomenon that

has its origin in science, engineering, economics, or some other area. Here we are

interested in differential equation models. By mathematical modeling we mean

the process by which we obtain and analyze the model. This process includes
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introducing the important and relevant quantities or variables involved in the

model, making model-specific assumptions about those quantities, solving the

model equations by some method, and then comparing the solutions we obtain

to real data, and then interpreting the results. Often the solution method in-

volves computer simulation. The comparison to data may lead to revision and

refinement until we are satisfied that the model accurately describes the phys-

ical situation and is predictive of other similar observations. Therefore, the

subject of mathematical modeling involves physical intuition, formulation of

equations, solution methods, and analysis. In summary, in mathematical mod-

eling the overarching objective is to make sense of the world as we observe it by

inventing caricatures of reality. Scientific exactness is sometimes sacrificed for

mathematical tractability. Model predictions depend strongly on the assump-

tions, and changing the assumptions changes the model. If some assumptions

are less critical than others, we say the model is robust to those assumptions.

The best strategy to learn modeling is to begin with simple examples and

then graduate to more difficult ones. The reader is already familiar with some

models. In an elementary science or calculus course we learn that Newton’s

second law, force equals mass times acceleration, governs mechanical systems

such as falling bodies; Newton’s inverse-square law of gravitation describes the

motion of the planets; Ohm’s law in circuit theory dictates the voltage drop

across a resistor in terms of the current; the law of mass action in chemistry

describes how fast chemical reactions occur. In this course we learn models

based on differential equations. The importance of differential equations, as

a subject matter, lies in the fact that differential equations describe many

physical phenomena and laws in many areas of application. In this section we

introduce some simple problems and develop differential equations that govern

the physical processes involved.

The first step in modeling is to select relevant variables (independent and

dependent) and parameters that describe the problem. Physical quantities have

dimensions such as time, distance, degrees, and so on, and corresponding units

such as seconds, meters, and degrees Celsius. The model equations we write

down must be dimensionally correct; apples cannot equal oranges, and you

can’t add degrees and kilograms. Verifying that each term in our model has

the same dimensions is the first check in obtaining a correct equation. Also,

checking dimensions often gives insight into what a term in the model might be.

We always should be aware of the dimensions of the quantities, both variables

and parameters, in a model, and we should always try to identify the physical

meaning of the terms in the equations we obtain.

We should add that many students and even professional mathematicians

are skeptical about the use of and reliance on models to make predictions. This

is especially the case in, say, biology or economics, where systems are extraor-
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dinarily complex. Because of the complicated interactions between the model

agents and the uncertainty (randomness) in these types of processes, the situa-

tions seem to defy analysis. For example, if there were a good predictive model

of the dynamics of the economy, we would all be rich! If our models of food

webs were certain, our predictions of populations and extinctions would have

uncanny accuracy. Rather, many of the world’s events seem to be punctuated

by “black swans”, or totally unpredictable events. Nevertheless, mathematical

models play an essential role in engineering and science. Extracting the key

ideas in complex situations can often indicate optimal management strategies,

possible consequences of climate change, and other important results. Remem-

ber, when we use a population model, for example, we are not trying to predict

exact population numbers, but rather predict trends and changes based on

different processes included in the model.

All of these comments about modeling are perhaps best summarized in a

quote attributed to the famous psychologist, Carl Jung: “Science is the art of

creating suitable illusions which the fool believes or argues against, but the wise

man enjoys their beauty and ingenuity without being blind to the fact they are

human veils and curtains concealing the abysmal darkness of the unknowable.”

When one begins to feel too confident in the correctness of the model, he or

she should recall this quote.

1.4.1 Particle Dynamics

In the late sixteenth and early seventeenth centuries scientists were beginning

to quantitatively understand the basic laws of motion. Galileo, for example,

rolled balls down inclined planes and dropped them from different heights in

an effort to understand dynamical laws. But it was Isaac Newton in the mid-

1600s (who developed calculus and the theory of gravitation) who finally wrote

down a basic law of motion, known now as Newton’s second law . It is, in fact,

a differential equation for the state of a dynamical system. For a particle of

mass m moving along a straight line under the influence of a specified external

force F , the law dictates that “mass times acceleration equals the force on the

particle,” or

mx′′ = F (t, x, x′) (Newton’s second law).

This is a second-order differential equation for the unknown location or position

x = x(t) of the particle. The force F may depend on time t, position x = x(t),

or velocity x′ = x′(t). This DE is called the equation of motion or the dynamical

equation for the system. For second-order differential equations we impose two

initial conditions, x(0) = x0 and x′(0) = v0, which fix the initial position and

initial velocity of the particle, respectively. We expect that if the initial (t = 0)
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position and velocity are known, then the equation of motion should determine

the state x(t) for all times t > 0.

Example 1.22

(Motion in a Fluid) Suppose a particle of massm is falling downward through

a viscous fluid and the fluid exerts a resistive force on the particle proportional

to the square of its velocity. We measure positive distance downward from the

top of the fluid surface. There are two forces on the particle, gravity and fluid

resistance. The gravitational force ismg and is positive because it tends to move

the mass in a positive downward direction; the resistive force is −ax′2, and it is

negative because it opposes positive downward motion. The net external force

is then F = mg − ax′2, and the equation of motion is mx′′ = mg − a(x′2)2.

This is a second-order equation for the unknown position x = x(t), and it is

a model for this physical situation. In this case, the model can immediately

be reformulated as a first-order differential equation for the velocity v = x′.

Clearly, because v′ = x′′, we have

v′ = g − a

m
v2.

If we impose an initial velocity, v(0) = v0, then the differential equation and

initial condition give an initial value problem for v = v(t). Once we have

determined v(t), we can recover the position from the antiderivative formula

x(t) =
∫
v(t)dt + C, and determine C from the initial position.

Without solving the DE in the last example we can obtain important qual-

itative information from the DE itself. Over a long time, if the fluid were deep,

we would observe that the falling mass would approach a constant terminal

velocity vT . Physically, the terminal velocity occurs when the two forces, the

gravitational force and resistive force, balance. Thus 0 = g − (av2
T /m), or

vT =

√
mg

a
.

By direct substitution, we note that v(t) = vT is a constant solution of the

differential equation with initial condition v(0) = vT . We call such a constant

solution an equilibrium, or steady-state, solution. It is clear that, regardless of

the initial velocity, the system approaches this equilibrium state. This supposi-

tion is supported by the observation, from the differential equation, that v′ > 0

when v < vT and v′ < 0 when v > vT . Figure 1.9 shows what we expect from

the time series plots, illustrating several generic solution curves for different

initial velocities. In summary, we have learned a lot from qualitative reasoning,

without even solving the differential equation. �
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Figure 1.9 Generic solution curves, or time series plots, for the model v′ =

g − (a/m)v2. For v < vT the solution curves are increasing because v′ > 0;

for v > vT the solution curves are decreasing because v′ < 0. All the solution

curves approach the constant terminal velocity solution v(t) = vT .

Example 1.23

(Motion Under Gravity) A ball of mass m is tossed upward from a building

of height h with initial velocity v0. If we ignore air resistance, then the only

force is that due to gravity, having magnitude mg, directed downward. Taking

the positive direction upward with x = 0 at the ground, the model that governs

the motion (i.e., the height x = x(t) of the ball), is the initial value problem

mx′′ = −mg, x(0) = h, x′(0) = v0.

The gravitational force is negative because the positive direction is upward.

Because the right side is a known function (a constant in this case), the differ-

ential equation is a pure time equation and can be solved directly by integration

(antiderivatives), as in Section 1.2. If x′′(t) = −g (i.e., the second derivative is

the constant −g), then the first derivative must be x′(t) = −gt+ c1, where c1
is some constant (the constant of integration). We can evaluate c1 using the

initial condition x′(0) = v0. We have x′(0) = −g × 0 + c1 = v0, giving c1 = v0.

Therefore, at any time the velocity is given by

x′(t) = −gt+ v0.

Repeating, we take another antiderivative. Then

x(t) = −1

2
gt2 + v0t+ c2,
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where c2 is some constant. Using x(0) = h we find that c2 = h. Therefore the

height of the ball at any time t is given by the familiar physics formula

x(t) = −1

2
gt2 + v0t+ h.

which plots as a parabola. �

Example 1.24

(Oscillator) Imagine a mass m lying on a table and connected to a spring,

which is in turn attached to a rigid wall (Figure 1.10). At time t = 0 we displace

the mass a positive distance x0 to the right of equilibrium and then release it. If

we ignore friction on the table then the mass executes simple harmonic motion;

that is, it oscillates back and forth at a fixed frequency. To set up a model for the

motion we follow the doctrine of mechanics and write down Newton’s second

law of motion, mx′′ = F, where the state function x = x(t) is the position of

the mass at time t (we take x = 0 to be the equilibrium position and x > 0

to the right), and F is the external force. All that is required is to impose the

form of the force. Experiments confirm that if the displacement is not too large

(which we assume), then the force exerted by the spring is proportional to its

displacement from equilibrium. That is,

F = −kx. (1.9)

The minus sign appears because the force opposes positive motion, which is

to the right. The proportionality constant k (having dimensions of force per

unit distance) is called the spring constant , or stiffness of the spring, and

Equation (1.9) is called Hooke’s law . Not every spring behaves in this manner,

but Hooke’s law is used as a model for some springs; it is an example of what

in engineering is called a constitutive relation. It is an empirical result rather

than a law of nature. To give a little more justification for Hooke’s law, suppose

the force F depends on the displacement x through F = F (x), with F (0) = 0.

Then by Taylor’s theorem,

F (x) = F (0) + F ′(0)x+
1

2
F ′′(0)x2 + · · ·

= −kx+
1

2
F ′′(0)x2 + · · ·,

where we have defined F ′(0) = −k. So Hooke’s law has a general validity if

the displacement is small, allowing the higher-order terms in the series to be

neglected. We can measure the stiffness k of a spring by letting it hang from

a ceiling without the mass attached; then attach the mass m and measure the

elongation L after it comes to rest. The force of gravity mg must balance the
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x = 0

k
m

x(t)

Figure 1.10 Spring–mass oscillator.

restoring force kx of the spring, so k = mg/L. Therefore, assuming a Hookean

spring, we have the equation of motion

mx′′ = −kx (1.10)

which is the spring–mass equation. The initial conditions (released at time zero

at position x0) are

x(0) = x0, x′(0) = 0.

We expect oscillatory motion. If we attempt a solution of (1.10) of the form

x(t) = A cosωt for some frequency ω and amplitude A, we find upon substitu-

tion that ω =
√
k/m and A = x0. (Verify this!) Therefore, the displacement of

the mass is given by

x(t) = x0 cos
√
k/mt.

This solution represents an oscillation of amplitude x0, frequency
√
k/m , and

period 2π/
√
k/m. This motion is called simple harmonic motion. �

Example 1.25

(Damped Oscillator) Continuing with Example 1.24, if there is damping

(caused, e.g., by friction or submerging the entire system in a liquid bath),

then the spring-mass equation must be modified to account for the damping

force. The simplest assumption, again a constitutive relation, is to take the

resistive force Fr to be proportional to the velocity of the mass. Thus, also

assuming Hooke’s law for the spring force Fs, we have the damped spring–mass

equation

mx′′ = Fr + Fs = −cx′ − kx.

The positive constant c is the damping constant. Both forces have negative

signs because both oppose positive (to the right) motion. For this case we
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expect some sort of oscillatory behavior with the amplitude decreasing during

each oscillation. An exercise asks that you show solutions representing decaying

oscillations do, in fact, occur. �

Example 1.26

(Pendulum) For conservative mechanical systems, another technique for ob-

taining the equation of motion is to apply the conservation of energy law: the

kinetic energy plus the potential energy remain constant. We illustrate this

method by finding the equation governing a frictionless pendulum of length l

whose bob has mass m. See Figure 1.11. As a state variable we choose the angle

θ = θ(t) that the pendulum makes with the vertical. As time passes, the bob

traces out an arc on a circle of radius l; we let s denote the arclength measured

from rest (θ = 0) along the arc. By geometry, s = lθ. As the bob moves, its

kinetic energy is one-half its mass times the velocity squared; its potential en-

ergy is mgh, where h is the height above the zero-potential energy level, taken

where the pendulum is at rest. Therefore 1
2m(s′)2 +mgl(1− cos θ) = E, where

E is the constant energy. In terms of the angle θ,

1

2
l(θ′)2 + g(1 − cos θ) = C, (1.11)

where C = E/ml. The initial conditions are θ(0) = θ0 and θ′(0) = ω0, where θ0
and ω0 are the initial angular displacement and angular velocity, respectively.

As it stands, the differential equation (1.11) is first-order; the constant C can

be determined by evaluating the differential equation at t = 0. We get C =
1
2 lω

2
0 + g(1− cosθ0). By differentiation with respect to t, we can write (1.11) as

θ′′ +
g

l
sin θ = 0. (1.12)

This is a second-order nonlinear DE in θ(t) called the pendulum equation, and

it is the model for pendulum motion. It can also be derived directly from

Newton’s second law by determining the forces on the bob, which we leave

as an exercise. We summarize by stating that for a conservative mechanical

system the equation of motion can be found either by determining the energies

and applying the conservation of energy law, or by finding the forces and using

Newton’s second law of motion. �

EXERCISES

1. When a mass of 0.3 kg is placed on a spring hanging from the ceiling, it

elongates the spring 15 cm. What is the stiffness k of the spring?
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s = l q

Figure 1.11 A pendulum consisting of a massm attached to a rigid weightless

rod of length l. The force of gravity is mg, directed downward. The potential

energy is mgh where h is the height of the mass above the equilibrium position.

The kinetic energy is taken along the path of motion, the arc. The arc length

is s = lθ and the velocity is s′ = lθ′. So the kinetic energy is (m/2)l2(θ′)2.

2. Consider a damped spring–mass system whose position x(t) is governed

by the equation mx′′ = −cx′ − kx. Show that this equation can have a

“decaying-oscillation” solution of the form x(t) = e−λt cosωt for some λ

and ω. Hint: Substitute into the differential equation; show that the decay

constant λ and frequency ω can be determined in terms of the known

parameters m, c, and k.

3. A car of mass m is moving at speed V when it has to brake. The brakes

apply a constant force F until the car comes to rest. How long does it take

the car to stop? How far does the car go before stopping? Now, with specific

data, compare the time and distance it takes to stop if you are going 30

mph versus 35 mph. Take m = 1000 kg and F = 6500 N. Write a short

paragraph on recommended speed limits in residential areas.

4. Derive the pendulum equation (1.12) from the conservation of energy law

(1.11). (Take the derivative with respect to t, using the chain rule.)

5. A pendulum of length 0.5 meters has a bob of mass 0.1 kg. If the pendulum

is released from rest at an angle of 15 degrees, find the total energy in the

system.

6. If the amplitude of the oscillations of a pendulum is small, then sin θ is
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nearly equal to θ (why?), and the nonlinear equation (1.11) is approximated

by the linear equation θ′′ + (g/l)θ = 0.

a) Show that the approximate linear equation has a solution of the form

θ(t) = A cosωt for some value of ω that also satisfies the initial condi-

tions θ(0) = A, θ′(0) = 0. What is the period of the oscillation?

b) A 650 lb wrecking ball is suspended on a 20 m cord from the top of

a crane. The ball, hanging vertically at rest against the building, is

pulled back a small distance and then released. How soon does it strike

the building?

7. An enemy cannon at distance L from a fort can fire a cannon ball from the

top of a hill at height H above the ground level with a muzzle velocity v.

How high should the wall of the fort be to guarantee that a cannon ball

will not go over the wall? Observe that the enemy can adjust the angle of

its shot. Hint: Ignoring air resistance, the governing equations follow from

resolving Newton’s second law for the horizontal and vertical components

of the force: mx′′ = 0 and my′′ = −mg.

1.5 Separation of Variables

In this section we introduce a simple method for solving a general autonomous

equation

u′ = f(u). (1.13)

The method is called separation of variables. If we divide both sides of the

equation by f(u), we get
1

f(u)
u′ = 1.

Now, remembering that u is a function of t, we integrate both sides with respect

to t to obtain ∫
1

f(u)
u′dt =

∫
1dt+ C = t+ C,

where C is an arbitrary constant. A substitution u = u(t), du = u′(t)dt reduces

the integral on the left and we obtain
∫

1

f(u)
du = t+ C. (1.14)

This equation, once the integral is calculated, defines the general solution u =

u(t) of (1.13) implicitly. We may or may not be able to actually calculate the

integral and solve for u in terms of t to determine an explicit solution u = u(t).
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This method of separating the variables (putting all the terms with u on the

left side) is a basic technique in differential equations. Later we adapt it to

more general equations.

Example 1.27

(Growth and Decay) Consider the Malthus model

u′ = ru, (1.15)

where r is a given constant. If r < 0 then the equation models exponential de-

cay; if r > 0 then the equation models exponential growth. In a general context

the equation is called the growth–decay equation. We apply the separation of

variables method. Dividing by u (we could divide by ru, but we choose to leave

the constant on the right side) and taking antiderivatives gives
∫

1

u
u′dt =

∫
rdt+ C.

Because u′dt = du, we can write
∫

1

u
du = rt+ C.

Integrating gives

ln |u| = rt+ C or |u| = ert+C = eCert.

This means u = ±eCert. Therefore, the general solution of the growth–decay

equation can be written compactly as

u(t) = C1e
rt,

where C1 has been written for ±eC , and is an arbitrary constant. If an initial

condition
u(0) = u0 (1.16)

is prescribed on (1.16), it is straightforward to show that C1 = u0 and the

solution to the initial value problem (1.15)–(1.16) is

u(t) = u0e
rt. �

As we already remarked in Section 1, the growth–decay equation and its

solution given in Example 1.27 occur often enough in applications that they

are worthy of memorization. The equation models processes such as growth of

a population, mortality (death), growth of principal in a money account where

the interest is compounded continuously at rate r, and radioactive decay, such

as the decay of Carbon-14 used in carbon dating.
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Example 1.28

Solve the initial value problem

u′ =
1

2u+ 1
, u(0) = 1.

We first separate variables in the DE to get (2u+ 1)u′ = 1, and then integrate

both sides with respect to t to obtain
∫

(2u+ 1)u′dt =

∫
1dt.

But u = u(t) and du = u′(t)dt, and therefore
∫

(2u+ 1)du =

∫
1dt.

Carrying out the antidifferentiation, or integration, while introducing an arbi-

trary constant C, we get the general implicit solution

u2 + u = t+ C.

The initial condition u(0) = 1 translates to u = 1 at t = 0. Substituting into

the solution formula gives C = 2. So the implicit solution is

u2 + u = t+ 2.

We can determine the explicit solution by solving for u in terms of t. To do

this we write the solution as u2 + u− (t+ 2) = 0, which is quadratic in u. By

the quadratic formula,

u = u(t) =
1

2

(
−1 +

√
1 + 4(t+ 2)

)
,

which is the explicit solution to the initial value problem. We took the plus

sign before the square root to ensure that the initial condition is satisfied.

(Alternately, the constant of integration C could have been carried along and

determined at the end.) Because the quantity under the square root sign must

be nonnegative, the solution is valid on the interval t > −9/4. As an aside,

observe from the DE that u′ > 0 for u values greater than −1/2, and u(−9/4) =

−1/2. So, the solution is increasing over the interval of existence, and at t =

−9/4 there is a vertical tangent. �

We presented a simple algorithm to obtain an analytic solution to an au-

tonomous equation u′ = f(u), called separation of variables. Now we show

that this method is applicable to a more general class of equations. A separable

equation is a first-order differential where the right side can be factored into a
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product of a function of t and a function of u. That is, a separable equation

has the form

u′ = g(t)h(u). (1.17)

An autonomous equation is a special case of (1.17), with g(t) = 1. To solve

separable equations we take the expression involving u to the left side and then

integrate with respect to t, remembering that u = u(t). Therefore, dividing by

h(u) and taking the antiderivatives of both sides with respect to t gives
∫

1

h(u)
u′dt =

∫
g(t)dt+ C,

where C is an arbitrary constant of integration. (Both antiderivatives generate

an arbitrary constant, but we have combined them into a single constant C).

Next we change variables in the integral on the left by letting u = u(t), so that

du = u′(t)dt. Hence, ∫
1

h(u)
du =

∫
g(t)dt+ C.

This equation, once the integrations are performed, yields an equation of the

form

H(u) = G(t) + C, (1.18)

which defines the general solution u implicitly as a function of t. We call (1.18)

the general implicit solution. To obtain an explicit solution u = u(t), we must

solve (1.18) for u in terms of t; this may or may not be possible. As well, we

recall that if the antiderivatives have no simple analytic expressions, then we

write the antiderivatives with limits on the integrals, for example,
∫ t

a g(s)ds+C.

Remark 1.29

(Recipe) Note that the method of separation of variables for the equation

du

dt
= g(t)h(u)

just results in writing down

1

h(u)
du = g(t)dt,

and then integrating to get
∫

1

h(u)
du =

∫
g(t)dt+ C.

This is the recipe we actually use to solve problems. So, we dispense with

integrating both sides with respect to t and then changing variables. �
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Example 1.30

Solve the initial value problem

u′ =
t+ 1

2u
, u(0) = 1.

We recognize the differential equation as separable because the right side is

product
1

2u
(t+ 1).

Bringing the 2u term to the left side and integrating gives
∫

2u du =

∫
(t+ 1)dt+ C,

or

u2 =
1

2
t2 + t+ C.

This equation is the general implicit solution. We can solve for u to obtain two

forms for explicit solutions,

u = ±
√

1

2
t2 + t+ C.

Which sign do we take? The initial condition requires that u be positive. Thus,

we take the plus sign and apply u(0) = 1 to get C = 1. The solution to the

initial value problem is therefore

u =

√
1

2
t2 + t+ 1.

This solution is valid as long as the expression under the radical is not negative.

In the present case the solution is defined for all times t ∈ R and so the interval

of existence is the entire real line. �

Example 1.31

Solve the initial value problem for t > 1:

u′ =
2
√
ue−t

t
, u(1) = 4.

Note, as an aside, that we might expect trouble at t = 0 because the derivative

is undefined there. The equation is separable so we separate variables and

integrate with respect to t:

1

2

∫
1√
u
du =

∫
e−t

t
dt+ C.
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We can integrate the left side exactly, but the integral on the right cannot be

resolved in closed form. Thus we write the antiderivative as an integral with a

variable upper limit t, and we have

√
u =

∫ t

1

e−t

t
dt+ C.

Judiciously, we always choose the lower limit of integration at the value of t

where the initial condition is given; here, t = 1. This makes the initial condition

easy to apply. Clearly we get C = 2. Therefore

√
u =

∫ t

1

e−t

t
dt+ 2,

or, explicitly,

u(t) =

(∫ t

1

e−t

t
dt+ 2

)2

.

This solution is valid on 1 ≤ t <∞. In spite of the apparent complicated form

of the solution, which contains an integral, it is not difficult to plot using a

computer algebra system. See Appendix B.2. �

Many important models in applied areas turn out to be separable equations,

and thus the method of separation of variables is a key technique.

EXERCISES

1. Use the method of separation of variables to find the general solution to

the following autonomous differential equations.

a) u′ =
√
u.

b) u′ = e−2u.

c) u′ = 1 + u2.

d) u′ = 1
5−u .

e) u′ = 3u− a, where a is a constant.

f) u′ = u
4+u2 .

g) u′ = eu2

.

h) u′ = r(a− u), where r and a are constants.

2. In Exercises 1(a)–(f) find the solution to the resulting IVP when u(0) = 1.

3. Find the general solution in explicit form of the following equations.

a) u′ = 2u
t+1 .
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b) u′ = t
√

t2+1
cos u .

c) u′ = (t+ 1)(u2 + 1).

d) (2u+ 1)u′ − (t+ 1) = 0,

e) u′ + u+ 1
u = 0.

f) (t+ 1)u′ + u2 = 0,

4. Determine the maximum interval of existence of the solution x = x(t) to

x′ = 2tx2, x(0) = 1.

5. Find the solution to the initial value problem

u′ = t2e−u, u(0) = ln 2,

and determine the interval of existence.

6. Draw the phase line associated with the DE u′ = u(4 + u) and then solve

the DE subject to the initial condition u(0) = 1. Hint: It is helpful to use

a partial fractions expansion

1

u(4 + u)
=
a

u
+

b

4 + u
,

where a and b are to be determined, to do the integration.

7. Solve the following initial value problems.:

a) dx
dt = et+x, x(0) = 0.

b) dT
dt = 2at(T 2 − a2), T (0) = 0.

c) dy
dt = t2 tan y, y(0) = 0.

8. Find the general solution in implicit form to the equation

u′ =
(4 + 2t)u

lnu
.

Find the solution when u(0) = e and plot the solution. What is its interval

of existence?

9. Solve the initial value problem

u′ =
2tu2

1 + t2
, u(0) = u0

and find the interval of existence when u0 < 0, when u0 > 0, and when

u0 = 0.
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10. Find the general solution of the DE

u′ = 6t(u− 1)2/3.

Clearly, u = 1 is a constant solution. However, show that there is no value

of the arbitrary constant giving the solution u = 1. (A solution to a DE

that cannot be obtained from the general solution by fixing a value of the

arbitrary constant is called a singular solution).

11. Find the general solution of the DE

(a2 − t2)u′ + tu = 0,

where a is a fixed positive parameter. Find the solution to the initial value

problem when u(a/2) = 1. What is the interval of existence?

12. (Allometry) Allometric growth describes temporal relationships between

sizes of different parts of organisms as they grow (e.g., the leaf area and

the stem diameter of a plant). We say two sizes u1 and u2 are allometrically

related if their relative growth rates are proportional, or

u′1
u1

= a
u′2
u2
.

Show that if u1 and u2 are allometrically related, then u1 = Cua
2 , for some

constant C.

13. A differential equation of the form

u′ = F
(u
t

)
,

where the right side depends only on the ratio of u and t, is called homo-

geneous . This is a good equation to show the technique of transforming

an equation by a change of variables. Specifically, show that the substitu-

tion u = ty transforms a homogeneous equation into a first-order separable

equation for y = y(t). Use this method to solve the equation

u′ =
4t2 + 3u2

2tu
.

14. Solve the initial value problem for u = u(t):

d

dt

(
ue2t

)
= e−t, u(0) = 3.

Hint: Integrate both sides.
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15. Find the general solution u = u(r) of the DE

1

r

d

dr
(ru′(r)) = −p,

where p is a positive constant. Hint: Multiply by r.

16. (Epidemiology) A population of u0 individuals all have HIV, but none

has the symptoms of AIDS. Let u(t) denote the number that does not

have AIDS at time t > 0. If r(t) is the per capita rate of individuals

showing AIDS symptoms (the conversion rate from HIV to AIDS), then

u′/u = −r(t). In the simplest case we can take r to be a linear function

of time, or r(t) = at. Find u(t) and sketch the solution when a = 0.2 and

u0 = 100. At what time is the rate of conversion maximum?

17. (Mechanics) An arrow of mass m is shot vertically upward with initial

velocity 160 ft/sec. It experiences both the deceleration of gravity and a

deceleration of magnitude mv2/800 due to air resistance. How high does

the arrow go? Hint: A convenient and common trick is to use the chain

rule,
dv

dt
=
dv

dx

dx

dt
=
dv

dx
v,

to change a problem in terms of velocity and time into a problem involving

velocity and distance.

18. In very cold weather the thickness of ice on a pond increases at a rate

inversely proportional to its thickness. If the ice initially is 0.05 inches

thick and 4 hours later it is 0.075 inches thick, how thick will it be in 10

hours?

19. Write the solution to the initial value problem

u′ = −u2e−t2 , u(0) =
1

2

in terms of the erf function.

20. Use separation of variables to solve the following problems. Write the so-

lution explicitly when possible.

a) u′ = p(t)u, where p(t) is a given continuous function.

b) u′ = −2tu, u(1) = 2. Plot the solution on 0 ≤ t ≤ 2.

c) u′ =

{
−2u, 0 < t < 1

−u2, 1 ≤ t ≤ 2
, u(0) = 5. Find a continuous solution on

the interval 0 ≤ t ≤ 2 and plot the solution.
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21. (Demography) Let N0 be the number of individuals in a cohort at time

t = 0 and N = N(t) be the number of those individuals that are still alive

at time t. If m is the constant per capita mortality rate, then N ′/N = −m,

which gives N(t) = N0e
−mt. The survivorship function is defined by S(t) =

N(t)/N0, and S(t) therefore gives the probability of an individual living to

age t. In the case of a constant per capita mortality the survivorship curve

is a decaying exponential function S(t) = e−mt.

a) What fraction of the cohort die before age t? Calculate the fraction

that die between age a and age b.

b) If the per capita death rate depends on time (or age), or m = m(t),

find a formula for the survivorship function (your answer will contain

an integral).

c) What do you think the human survivorship curve S(t) might look like?

1.6 Autonomous Differential Equations

In this section we introduce some simple qualitative methods to understand

the dynamics of the very important class of autonomous differential equations.

These have the form
u′ = f(u),

where the right side of the equation does not explicitly depend upon time t.

We introduce the methods in the context of population ecology, as well as in

some other areas in the life sciences.

Models in biology often have a different character from fundamental laws in

the physical sciences, such as Newton’s second law of motion in mechanics or

Maxwell’s equations in electrodynamics. Ecological systems are highly complex

and it is often impossible to include every possible factor in a model; the chore

of modeling often comes in knowing what effects are important, and what effects

are minor. Many models in ecology are often not based on physical law, but

rather on observation, experiment, and reasoning.

We have already introduced the simplest population law, Malthus’ law,

p′ = rp,

where p = p(t) is the population and r is the per capita growth rate. We found

that Malthus’ law predicts exponential population growth,

p(t) = Cert.

We now graduate to the next step.
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Example 1.32

(The Logistic Law) In animal populations, for fairly obvious reasons, we

do not expect exponential growth over long times. Environmental factors and

intraspecific competition for resources limit the population when it gets large.

Therefore we might expect the per capita growth rate r, which is constant

in the Malthus model, to decrease as the population increases. The simplest

assumption is the per capita growth rate decreases linearly as a function of

population, and the rate becomes zero at some maximum carrying capacity K.

See Figure 1.12. This gives the logistic model of population growth, developed

by P. Verhulst in the 1800s, by

p′

p
= r

(
1 − p

K

)
or p′ = rp

(
1 − p

K

)
. (1.19)

Clearly we may write this autonomous equation in the form

p′ = rp− r

K
p2.

The first term is a positive growth term, which is just the Malthus term. The

second term, which is quadratic in p, decreases the population growth rate and

is the competition term. Note that if there were p animals, then there would

be about p2 encounters among them. So the competition term is proportional

to the number of possible encounters, which is a reasonable model. Exercise 11

presents an alternate derivation of the logistics model based on food supply. �
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Figure 1.12 Plots of the logistic model of population growth. The left plot

shows the per capita growth rate versus population, and the right plot shows

the growth rate versus population. Both plots give important interpretations

of the model.
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For any initial condition p(0) = p0 we can find the formula for the solution

to the logistics equation (1.21). You will solve the logistics equation in Exercise

8. But, there are qualitative properties of solutions that can be exposed without

actually finding the solution. Often, all we may want are qualitative features of

a model. First, we note that there are two constant solutions to (1.21), p(t) = 0

and p(t) = K, corresponding to no animals (extinction) and to the number

of animals represented by the carrying capacity, respectively. These constant

solutions are found by setting the right side of the growth equation equal to

zero (because that forces p′ = 0, or p = constant). The constant solutions

are called steady-state, or equilibrium, solutions. If the population is between

p = 0 and p = K the right side of (1.21) is positive, giving p′ > 0; for these

population numbers, the population is increasing. If the population is larger

than the carrying capacity K, then the right side of (1.21) is negative, and the

population is decreasing. These facts can also be observed from the growth rate

plot in Figure 1.12. These observations can be represented conveniently on a

phase line plot as shown in Figure 1.13. We first plot the growth rate p′ versus

p, which in this case is a parabola opening downward (Figure 1.12). The points

of intersection on the p axis are the equilibrium solutions p = 0 and p = K.

We then indicate by a directional arrow on the p axis those values of p where

the solution p(t) is increasing (where p′ > 0 ) or decreasing (p′ < 0). Thus the

arrow points to the right when the graph of the growth rate is above the axis,

and it points to the left when the graph is below the axis. In this context we

call the p axis a phase line. We can regard the phase line as a one-dimensional,

parametric solution space with the population p = p(t) tracing out points on

that line as t increases. In the range 0 < p < K the arrow points right because

p′ > 0. So p(t) increases in this range. For p > K the arrow points left because

p′ < 0. The population p(t) decreases in this range. Sometimes, rather than

draw the phase line directly below the plot of the growth rate, we just draw

the arrows on the p axis of the growth rate versus the p plot. Finally, these

qualitative features can be easily transferred to time series plots (see Figure

1.14) showing p(t) versus t for different initial conditions.

Both the phase line and the time series plots imply that, regardless of the

initial population (if nonzero), the population approaches the carrying capacity

K. This equilibrium population p = K is called an attractor , or sometimes a

sink. The zero population is also an equilibrium population. But, near zero

we have p′ > 0, and so the population diverges away from zero. We say the

equilibrium population p = 0 is a repeller , or a source. We are considering only

positive populations, so we ignore the fact that p = 0 could be approached

on the left side. In summary, this analysis determines the complete qualitative

behavior of the logistic population model.

This qualitative method used to analyze the logistic model is applicable to
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Figure 1.13 The p axis is the phase line, on which arrows indicate an in-

creasing or decreasing population for certain ranges of p.

p
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0
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p� = 0

Figure 1.14 Time series plots of solutions to the logistics equation for various

initial conditions. For 0 < p < K the population increases and approaches K,

whereas for p > K the population decreases to K. If p(0) = K, then p(t) = K

for all times t > 0; this is the equilibrium solution.
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any autonomous equation

u′ = f(u). (1.20)

The equilibrium solutions are the constant solutions, which are roots of the

algebraic equation f(u) = 0. Thus, if u∗ is an equilibrium, then f(u∗) = 0.

These are the values where the graph of f(u) versus u intersects the u axis. We

always assume the equilibria are isolated ; that is, if u∗ is an equilibrium, then

there is an open interval (it may be very small) containing u∗ that contains

no other equilibria. Figure 1.15 shows a generic plot where the equilibria are

u∗ = a, b, c. In between the equilibria we can observe the values of u for

which the population is increasing (f(u) > 0) or decreasing (f(u) < 0). We

can then place arrows on the phase line, or just the u-axis, in between the

equilibria showing the direction of the movement (increasing or decreasing) as

time increases. If desired, the information from the phase line can be translated

into time series plots of u(t) versus t (fig. 1.16). In between the constant,

equilibrium solutions, the other solution curves increase or decrease; oscillations

are not possible. Moreover, assuming f is a well-behaved function (f ′(u) is

continuous), solution curves actually approach some equilibria, getting closer

and closer as time increases. By uniqueness, the curves never intersect the

constant equilibrium solutions.

f(u)

u

u�

0 a b c

graph of

stable unstable semi-stable

Figure 1.15 A generic plot showing f(u), which is u′ versus u. The points of

intersection, a, b, c, on the u-axis are the equilibria. The arrows on the u-axis,

or phase line, show how the state u changes with time between the equilibria.

The direction of the arrows is read from the plot of f(u). They are to the right

when f(u) > 0 and to the left when f(u) < 0. The phase line can either be

drawn as a separate line with arrows, as in Figure 1.13, or the arrows can be

drawn directly on the u-axis of the plot, as is done here.

On the phase line (u axis), if arrows on both sides of an equilibrium point to-

ward that equilibrium point, then we say the equilibrium point is an attractor .

If both of the arrows point away, the equilibrium is called a repeller . Attractors
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Figure 1.16 Time series plots corresponding to Figure 1.15 for different initial

conditions. The constant solutions are the equilibria.

are called asymptotically stable because if the system is in that constant equilib-

rium state and then it is given a small perturbation (i.e., a change or “bump”)

to a nearby state, then it just returns to that state as t → +∞. It is clear

that real systems will seek out the stable states. Repellers are unstable because

a small perturbation, or change from equilibrium, can cause the system to go

to a different equilibrium or even go off to infinity. In the logistics model for

population growth we observe (Figure 1.11) that the equilibrium u = K is an

asymptotically stable attractor, and the zero population u = 0 is unstable; all

solutions approach the carrying capacity u = K at t→ +∞. Finally, if arrows

on one side of an equilibrium point toward the equilibrium, and on the other

side they point away, then we say the equilibrium is semistable. Semistable

equilibria are not stable or asymptotically stable.

We emphasize that when we say an equilibrium u∗ is asymptotically stable,

our understanding is that this is with respect to small perturbations. To fix

the idea, consider a population of fish in a lake that is in an asymptotically

stable state u∗. A small death event, say caused by some toxic chemical that is

dumped into the lake, will cause the population to drop. Asymptotic stability

means that the system will return the original state u∗ over time. We call

this local asymptotic stability. If many fish are killed by the pollution, then the

perturbation is not small and there is no guarantee that the fish population will

return to the original state u∗. For example, a catastrophe or bonanza could

cause the population to jump beyond some other equilibrium. If the population

returns to the state u∗ for all perturbations, no matter how large, then the state

u∗ is called globally asymptotically stable. A more precise definition of local

asymptotic stability can be given as follows. An isolated equilibrium state u∗

of (1.20) is locally asymptotically stable if there is an open interval I containing

u∗ with limt→+∞ u(t) = u∗ for any solution u = u(t) of (1.20) with u(0) in I.
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That is, each solution starting in I converges to u∗.

In the next section we present an analytic criterion to determine the stability

of an equilibrium solution. But it is easy to see that if u∗ is an equilibrium

and f ′(u∗) < 0, then the pattern of arrows on the phase line is that of an

asymptotically stable equilibrium, namely, they point toward u∗. Similarly, if

f ′(u∗) > 0 then the pattern of arrows on the phase line points away from u∗,

and the equilibrium is unstable. If f ′(u∗) = 0, then all patterns are possible

and the concavity of f at u∗) comes into play.

In summary, an autonomous model can be quickly and easily analyzed qual-

itatively without ever finding the solution. All we do is plot f(u) versus u, and

then identify on the phase line the equilibria and their stability properties.

Example 1.33

(Dimensionless Formulation) Optional. When we formulate a mathematical

model we sometimes trade in the dimensioned quantities in our equations for

dimensionless ones. In doing so we obtain a dimensionless model , where all the

variables (independent and dependent) and parameters have no dimensions.

Usually, a dimensionless model is much more economical because it contains

fewer parameters than the original model. The idea is simply illustrated by

the logistic equation. Time t is the independent variable in the logistic model.

We note that the growth rate r has dimensions time−1. Then the new variable

τ = t/r−1 = rt has no dimensions, that is, it is dimensionless (time divided by

time). The dimensionless variable τ can serve as a new independent variable in

the model representing “dimensionless time”, or time measured relative to the

inverse growth rate. We say r−1 is a time scale for the problem. Every variable

in a model has a natural scale with which we can measure its relative value.

The population scale is the carrying capacity K of the region, which is the

number of animals the region can support. Then the new variable P = p/K

is a dimensionless (animals divided by animals) dependent variable and repre-

sents the fraction of the region’s capacity that is filled. If the carrying capacity

is large, the actual population p could be large, requiring us to work with and

plot big numbers. However, the dimensionless population P is represented by

smaller numbers that are easier to deal with and plot. For some models se-

lecting dimensionless dependent and independent variables can pay off in great

benefits: it can help us understand the magnitude of various terms in the equa-

tions, and it can reduce the number of parameters in a problem, thus giving

simplification. We illustrate in detail now how to reformulate the IVP for the

logistic equation,
dp

dt
= rp

(
1 − p

K

)
, p(0) = p0, (1.21)

in dimensionless form. There are two variables in the problem, the indepen-
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dent variable t, measured in time, and the dependent variable p, measured in

animals. There are three parameters in the problem: the carrying capacity K

and initial population p0, both measured in animals, and the growth rate r

measured in 1/time. We define new dimensionless variables τ = rt = t/r−1

and P = p/K. These represent a “dimensionless time” and a “dimensionless

population”; P is measured relative to the carrying capacity and t is measured

relative to the growth rate; the values K and r−1 are called scales. Now we

transform the DE (1.21) into the new dimensionless variables. First, we trans-

form the derivative:
dp

dt
=
d(KP )

d(τ/r)
= rK

dP

dτ
.

Then the logistic DE in (1.21) becomes

rK
dP

dτ
= r(KP )

(
1 − KP

K

)
,

or
dP

dτ
= P (1 − P ).

In dimensionless variables τ and P , the parameters in the DE disappeared!

Next, the initial condition becomes KP (0) = p0, or

P (0) = α,

where α = p0/K is a dimensionless parameter (animals divided by animals). In

summary, the dimensioned model (1.21), with three parameters, can be replaced

by the dimensionless model with only a single dimensionless parameter α:

dP

dτ
= P (1 − P ), P (0) = α. (1.22)

What this tells us is that although three parameters appear in the original

problem, only a single combination of those parameters is relevant. We may

as well work with the simpler, equivalent, dimensionless model (1.22), where

populations are measured relative to the carrying capacity and time is measured

relative to how fast the population is growing. For example, if the carrying

capacity is K = 300, 000, and the dimensioned p varies between 0 < p <

300, 000, it is much simpler to have dimensionless populations P with 0 < P <

1. Furthermore, in the simplified form (1.22) it is easy to see that the equilibria

are P = 0 and P = 1, the former corresponding to extinction, and the latter

corresponding to the carrying capacity p = K. �
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EXERCISES

1. For each of the following models, graph the growth rate f(u) versus u and

draw the phase line; find the equilibria and classify them according to their

stability (asymptotically stable, unstable, or semistable); draw a few time

series plots. Assume u is nonnegative in each case.

a) u′ = u2(2 − u).

b) u′ = u(4 − u)(5 − u)2.

c) u′ = (u− 1)e−2u.

d) u′ = u(u− 8)3.

2. Determine equilibria for each of the following differential equations:

a) x′ = (1 − x)
(
1 − e−2x

)
.

b) y′ = y4 (1 − ye−ay) , a > 0.

c) u′ = 3u
1+u2 − 1.

d) x′ = 1
a2+x − lnx.

3. (The Allee effect) At low population densities it may be difficult for an

animal to reproduce because of a limited number of suitable mates. A

population model that predicts this behavior is the Allee model (W. C.

Allee, 1885–1955)

p′ = rp
(p
a
− 1
)(

1 − p

K

)
, 0 < a < K.

Find the per capita growth rate and plot the per capita rate versus p.

Graph p′ versus p, determine the equilibrium populations, and draw the

phase line. Which equilibria are attractors and which are repellers? Which

are asymptotically stable? From the phase line plot, describe the long time

behavior of the system for different initial populations, and sketch generic

time series plots for different initial conditions.

4. Consider the following modification of the logistic growth law:

dN

dt
= rN

(
1 −

(
N

K

)θ
)
,

where θ is a positive parameter. What are the equilibria and their sta-

bility? Sketch a plot of the per capita growth rate versus the population

N for different values of θ. (For example, pick θ = 1/2, 1, 2.) Make some

qualitative statements about the differences in population growth.
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5. Consider the autonomous DE

du

dt
= (u2 − 36)(b− u)2,

where b is a constant: b > 10. Draw the phase line diagram, determine

the equilibria and their stability, and sketch a rough graph of the solution

curve u = u(t) satisfying u(0) = 8.

6. (Harvesting) One can modify the logistic population model to include har-

vesting (e.g., hunting) of animals. That is, assume that the animal popula-

tion grows logistically while, at the same time, animals are being removed

(by hunting, fishing, or whatever) at a constant rate of H animals per unit

time. The model is

p′ = rp
(
1 − p

K

)
−H.

a) Choosing τ = rt and u = p/K as new dimensionless variables, show

that the model can put in dimensionless form

du

dτ
= u(1 − u) − h,

where h is a dimensionless constant.

b) Using the dimensionless form of the model, determine the equilibria in

the case h > 1
4 .

c) Which equilibria are asymptotically stable?

d) Explain how the system will behave for different initial conditions. Does

the population ever become extinct?

7. (Ricker growth law) Consider the population model

p′ = rpe−ap −mp,

where r, a, and m are positive constants, m < r.

a) Determine the dimensions of the constants r, a, and m.

b) At what population is the growth rate maximum?

c) Make generic sketches of the per capita growth rate versus p and the

growth rate versus p.

d) Find the equilibria and their stability.

8. (Life history) In this exercise we introduce a simple model of growth of

an individual organism over time. For simplicity, we assume it is shaped

like a cube having sides equal to L = L(t). Organisms grow because they

assimilate nutrients and then use those nutrients in their energy budget for
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maintenance and to build structure. It is conjectured that the organism’s

growth rate in volume equals the assimilation rate minus the rate food is

used. Food is assimilated at a rate proportional to its surface area because

food must ultimately pass across the cell walls; food is used at a rate

proportional to its volume because ultimately cells are three-dimensional.

Show that the differential equation governing its size L(t) can be written

L′(t) = a− bL,

where a and b are positive parameters. What is the maximum length the

organism can reach? Use separation of variables to show that if the length

of the organism at time t = 0 is L(0) = 0 (it is very small), then the length

is given by L(t) = (a/b)(1−e−bt). Does this function seem like a reasonable

model for growth?

9. (Insect pest outbreaks) In a classical ecological study of budworm outbreaks

in Canadian fir forests, researchers proposed that the budworm population

N was governed by the law

N ′ = rN

(
1 − N

K

)
− P (N),

where the first term on the right represents logistics growth, and where

P (N) is a bird-predation rate given by

P (N) =
aN2

N2 + b2
.

a) Sketch a graph of the bird-predation rate versus N . Describe its mean-

ing.

b) What are the dimensions of all the constants and variables in the

model?

c) Select new dimensionless independent and dependent variables by

τ =
t

b/a
, n =

N

b
,

and reformulate the model in dimensionless variables and dimension-

less constants. (For this problem, a dimensionless form is extremely

tractable compared to the dimensioned model.)

d) Working with the dimensionless model, show that there is at least one

and at most three positive equilibrium populations. What can be said

about their stability?
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10. Find the general solution to the logistic equation u′ = ru(1 − u/K) using

separation of variables. Hint: use the partial fractions decomposition

1

u(K − u)
=

1/K

u
+

1/K

K − u

to calculate the integral.

11. (Logistic law) In this exercise derive the logistic model in an alternate way.

Suppose the per capita growth rate of a population x = x(t) is the birth

rate minus the death rate, or r− cix, where r is the birth rate and ci is the

coefficient of intraspecific (internal, within the population) competition.

As the population increases there is greater competition for the existing

resources, which decreases the growth rate and limits growth. Define ci by

ci =
demand for resources

total resources
=
D

H
.

The dimensions of D are resources/time per animal, and H is given in

resources. Derive the logistic law, and show that the carrying capacity is

K = rH/D, given in animals.

12. (Tumor growth) One model of tumor growth is the Gompertz equation

R′ = −aR ln(R/k),

where R = R(t) is the tumor radius, and a and k are positive constants.

Find the equilibria and analyze their stability. Can you solve this differen-

tial equation for R(t)?

13. A population model is given by P ′ = rP (P−m), where r andm are positive

constants. Why do you think this is called the explosion–extinction model?

14. (Epidemiology) In a fixed population of N individuals let I = I(t) be

the number of individuals infected by a certain disease and let S = S(t)

be the number susceptible to the disease with I(t) + S(t) = N . Assume

that the rate that individuals are becoming infected is proportional to the

number of infectives times the number of susceptibles, or I ′ = aSI, where

the positive constant a is the disease transmission coefficient. Assume no

individual gets over the disease once it is contracted. If I(0) = I0 is a small

number of individuals infected at t = 0, formulate an initial value problem

for the number infected I(t) at time t. Explain how the disease evolves.

Over a long time, how many individuals in the population contract the

disease? This type of disease, where no one recovers, is called an SI model.
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15. With the same notation as in the previous problem, suppose that infected

individuals recover from the illness at the per capita rate r and then become

susceptible again. This is an SIS model. Argue that the governing equations

are
S′ = −aSI + rI, I ′ = aSI − rI,

where I +S = N , and find a DE for the number of infectives I(t). Explain

the dynamics of this disease and determine how many individuals have the

disease after a long time.

16. (Mechanics) We modeled the velocity of an object falling in a fluid by the

equation mv′ = mg − av2. If v(0) = 0, use separation of variables and

partial fractions to find an analytic formula for v(t).

17. The dynamical equation x′ = f(x) is said to have a potential function F (x)

if F ′(x) = −f(x). Show that x∗ is an equilibrium for the equation if, and

only if, F ′(x∗) = 0. On any solution x = x(t) of the equation, show that

F (|x(t)|) is strictly decreasing in time.

1.7 Stability and Bifurcation

Differential equations arising from physical phenomena almost always contain

one or more parameters. It is of great interest to determine how equilibrium

solutions depend upon those parameters. For example, the logistics growth

equation
dp

dt
= rp

(
1 − p

K

)

has two parameters: the growth rate r and the carrying capacity K. Let us add

harvesting; that is, we remove animals at a constant rate H > 0. We can think

of a fish population where fish are caught at a given rate H . Then we have the

model
dp

dt
= rp

(
1 − p

K

)
−H. (1.23)

We now ask how equilibrium solutions and their stability depend upon the rate

of harvesting H . Because there are three parameters in the problem, we can

simplify it using dimensionless variables τ and u defined by

u =
p

K
, τ = rt.

That is, we measure population relative to the carrying capacity and time

relative to the inverse growth rate. In terms of these dimensionless variables,

(1.23) simplifies to (check this!)

du

dτ
= u(1 − u) − h,
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where h = H/rK is a single dimensionless parameter representing the ratio of

the harvesting rate to the product of the growth rate and carrying capacity.

We can now study the effects of changing h to see how harvesting influences

the steady-state fish populations in the model. In dimensionless form, we think

of h as the harvesting parameter; information about changing h will give us

information about changing H .

The equilibrium solutions of the dimensionless model are roots of the

quadratic equation

f(u) = u(1 − u) − h = 0,

which are

u∗ =
1

2
± 1

2

√
1 − 4h.

The growth rate f(u) is plotted in Figure 1.17 for different values of h. If

h < 1
4 there are two positive equilibrium populations. The graph of f(u) in

this case is concave down and the phase line shows that the smaller one is

unstable, and the larger one is asymptotically stable. As h increases these

equilibria begin to come together, and at h = 1
4 there is only a single unstable

equilibrium. For h > 1
4 the equilibrium populations cease to exist. So, when

harvesting is small, there are two equilibria, one being stable; as harvesting

increases the equilibrium disappears. We say that a bifurcation (bifurcation

means “dividing”) occurs at the value h = 1
4 . This is the value where there is a

significant change in the character of the equilibria. For h ≥ 1
4 the population

will become extinct, regardless of the initial condition because f(u) < 0 for

all u. All these facts can be conveniently represented in a bifurcation diagram.

See Figure 1.18. In a bifurcation diagram we plot the equilibrium solutions u∗

versus the parameter h. In this context, h is called the bifurcation parameter .

The plot is a parabola opening to the left. We observe that the upper branch of

the parabola corresponds to the larger equilibrium, and all solutions represented

by that branch are asymptotically stable; the lower branch, corresponding to

the smaller solution, is unstable.

Sometimes we need an analytic criterion that allows us to determine stabil-

ity of an equilibrium solution. Let

u′ = f(u) (1.24)

be a given autonomous systems and u∗ an isolated equilibrium solution, so that

f(u∗) = 0. We observe from Figure 1.13 that when the slope of the graph of

f(u) at the equilibrium point is negative, the graph falls from left to right and

both arrows on the phase line point toward the equilibrium point. Therefore, a

condition that guarantees the equilibrium point u∗ is asymptotically stable is

f ′(u∗) < 0. Similarly, if the graph of f(u) strictly increases as it passes through

the equilibrium, then f ′(u∗) > 0 and the equilibrium is unstable. If the slope of
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u

u

u�

h=0

h=1/8

h=1/4

h=1/2

phase
line

unstable stable

Figure 1.17 Plots of f(u) = u(1− u)− h for different values of h. The phase

line is plotted in the case h = 1
8 .

1

0

stable

unstable

h

u

1/4

*

Figure 1.18 Bifurcation diagram: plot of the equilibrium solution as a func-

tion of the bifurcation parameter h, u∗ = 1
2 ± 1

2

√
1 − 4h. For h > 1

4 there are

no equilibria and for h < 1
4 there are two, with the larger one being stable. A

bifurcation occurs at h = 1
4 . Notice that the parabola (equilibria) can also be

found by solving u(1 − u) − h = 0 for h, obtaining h = u(1 − u).

f(u) is zero at the equilibrium, then any pattern of arrows is possible and there

is no information about stability. If f ′(u∗) = 0, then u∗ is a critical point of

f and could be a local maximum, local minimum, or have an inflection point.

If there is a local maximum or local minimum, then u∗ is semistable (which

is not stable). If there is an inflection point, then f changes sign at u∗ and

we obtain either a repeller or an attractor, depending on how the concavity

changes, negative to positive, or positive to negative. We can usually check the

concavity by the second derivative f ′′(u), evaluated at the equilibrium.

A notation alert! When we use prime to denote the derivative, we have to

be careful to understand what the prime means. For example f ′(u) means the
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derivative of f with respect to u, whereas a prime on u means a time derivative,

because u is a function of time. We almost always know, from context, about

what derivative we are talking. If there is confusion, we write out the derivative

more specifically, such as df/du, fu(u), or du/dt.

Theorem 1.34

Let u∗ be an isolated equilibrium for the autonomous equation (1.24). If

f ′(u∗) < 0, then u∗ is asymptotically stable; if f ′(u∗) > 0, then u∗ is un-

stable. If f ′(u∗) = 0, then there is no information about stability. In this case

we analyze higher derivatives. �

An isolated equilibrium u∗ that satisfies f ′(u∗) 6= 0, is sometimes called

hyperbolic.

Example 1.35

(Logistic Equation) Consider the logistics equation u′ = f(u) = ru(1−u/K).

The equilibria are u∗ = 0 and u∗ = K. The derivative of f(u) is f ′(u) =

r − 2ru/K. Evaluating the derivative at the equilibria gives

f ′(0) = r > 0, f ′(K) = −r < 0.

Therefore u∗ = 0 is unstable and u∗ = K is asymptotically stable. �

Example 1.36

Consider the model
u′ = u(h− u2),

where h is a parameter. The equilibria are u∗ = 0 and u∗ = ±
√
h, when h > 0.

The bifurcation diagram, plotting the equilibria as functions of h, is shown in

Figure 1.19. Notice that for h > 0 there are three equilibria, and for h < 0

there is just one. We say that a bifurcation occurs at h = 0. Now, to check

stability of the different branches, we compute f ′(u):

f ′(u) = h− 3u2.

To check for stability,
f ′(0) = h.

Thus, u∗ = 0 is asymptotically stable if h < 0 and unstable if h > 0. In other

words, the equilibrium u∗ = 0 changes stability at h = 1. Next,

f ′(±
√
h) = h− 3h = −2h.
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h

u*

stable

stable

stable

unstable

Figure 1.19 Bifurcation diagram: plots of u∗ versus h. For obvious reasons,

this is called a pitchfork bifurcation.

For positive h we have both branches, u∗ = ±
√
h, asymptotically stable. As an

exercise, the reader should sketch the phase line diagram for h > 0 and h < 0

and observe at h = 0 there is a dramatic change in the diagram; as h decreases

from positive to negative, the two nonzero equilibria coalesce at u = 0. �

EXERCISES

1. A fish population in a lake is harvested at a constant rate, and it grows

logistically. The growth rate is 0.2 per month, the carrying capacity is 40

(thousand), and the harvesting rate is 1.5 (thousand per month). Write

down the model equation, find the equilibria, and classify them as stable

or unstable. Will the fish population ever become extinct? What is the

most likely long-term fish population?

2. For the following autonomous equations, find the equilibria and sketch the

phase line. Determine the type of stability of all the equilibria. Use Theorem

1.34 to confirm stability or instability.

a) u′ = 2u− 7.

b) u′ = u2(3 − u).

c) u′ = 2u(1 − u) − 1
2u.

d) u′ = (4 − u)(2 − u)3.

e) u′ = u2(5 − u)2(u− 10).

f) u′ = −(1 + u)(u2 − 4)).

g) u′ = coshu− 1.
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3. For the following models, each of which contains a parameter h, find the

equilibria in terms of h and determine their stability using Theorem 1.34.

Construct a bifurcation diagram showing how the equilibria depend upon

h (i.e., plot u∗ versus h and label the branches of the curves in the diagram

as unstable or asymptotically stable.

a) u′ = hu− u2.

b) u′ = (1 − u)(u2 − h).

c) u′ = (u−
√
h)(3 − hu).

d) u′ = −(1 + u)(u2 − h2).

4. Consider the differential equation

dx

dt
=

x

x2 + 1
.

Use the analytic criterion in Theorem 1.34 to investigate the stability of

x = 0.

5. Consider the model u′ = (λ − b)u − au3, where a and b are fixed positive

constants and λ is a parameter that may vary.

a) If λ < b show that there is a single equilibrium and that it is asymp-

totically stable.

b) If λ > b find all the equilibria and determine their stability.

c) Sketch a generic bifurcation diagram showing how the equilibria vary

with λ. Label each branch of the curves shown in the bifurcation dia-

gram as stable or unstable.

6. The biomass P of a plant grows logistically with intrinsic growth rate r

and carrying capacity K. At the same time it is consumed by herbivores

at a rate
aP

b+ P
,

per herbivore, where a and b are positive constants. The model is

P ′ = rP

(
1 − P

K

)
− aPH

b+ P
,

where H is the biomass of herbivores. Assume aH > br, and assume r, K,

a, and b are fixed. Plot, as a function of P , the growth rate (first term)

and the consumption rate (second term) for several values of H on the

same set of axes, and identify the values of P that give equilibria. What

happens to the equilibria as the herbivory H is steadily increased from
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a small value to a large value? Draw a bifurcation diagram showing this

effect. That is, plot equilibrium solutions versus the parameter H . If the

herbivory is slowly increased so that the plants become extinct, and then

it is decreased slowly back to a low level, do the plants return?

7. A deer population grows logistically and is harvested at a rate proportional

to its population size. The dynamics of population growth is modeled by

P ′ = rP

(
1 − P

K

)
− λP,

where λ is the per capita harvesting rate. Use a bifurcation diagram to

explain the effects on the equilibrium deer population when λ is slowly

increased from a small value to a large value.

8. Draw a bifurcation diagram for the model u′ = u3 − u+ h, where h is the

bifurcation parameter. Label branches of the curves as stable or unstable.

Hint: Graph h versus u and rotate the plot.

9. Consider the model u′ = u(u − eλu), where λ is a parameter. Draw the

bifurcation diagram, plotting the equilibrium solution(s) u∗ versus λ. Label

each curve on the diagram as stable or unstable. Hint: Graph λ versus u.

10. Consider the differential equation x′ = ax2 − 1, −∞ < a < +∞, where a

is a parameter. Draw the bifurcation diagram and indicate stability of the

various branches.

11. Consider the differential equation y′ = b − e−y2

, where b is a positive

parameter. Draw the bifurcation diagram and indicate the stability of the

equilibrium.

12. Sketch the bifurcation diagram for the differential equation N ′ = (h2 −
1)N + 1 + h, where h is a parameter.

13. The price per item P of a commodity is proportional to the difference

between the demand D and the supply S. The supply is proportional to

the price and the demand is inversely proportional to the price. Set up a

model for the price P and explain the reasoning behind the assumptions.

Investigate the dynamics of the system. Find P (t).

1.8 Reactors and Circuits

We end this chapter with two important applications, to mixture problems and

electrical circuits.
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1.8.1 Chemical Reactors

A continuously stirred tank reactor (also called a chemostat, or compartment)

is a basic unit of many physical, chemical, and biological processes. A contin-

uously stirred tank reactor is a well-defined geometric volume or entity where

substances enter, react, and are then discharged. A chemostat could be an or-

gan in our body, a polluted lake, an industrial chemical reactor, or even an

ecosystem. See Figure 1.20.

V

C(t)
q, C(t)q, C in

Figure 1.20 A chemostat, or continuously stirred tank reactor.

We illustrate a reactor model with a specific example. Consider an industrial

pond with constant volume V cubic meters. Suppose that polluted water con-

taining a toxic chemical of concentration Cin grams per cubic meter is dumped

into the pond at a constant volumetric flow rate of q cubic meters per day. At

the same time the continuously mixed solution in the pond is drained off at

the same flow rate q. If the pond is initially at concentration C0, what is the

concentration C(t) of the chemical in the pond at any time t?

The key idea in all chemical mixture problems is to obtain a model by

conserving mass: the rate of change of mass in the pond must equal the rate

mass flows in minus the rate mass flows out. The total mass in the pond at any

time is V C, and the mass flow rate is the volumetric flow rate times the mass

concentration; thus mass balance dictates

(V C)′ = qCin − qC.

Hence, the initial value problem for the chemical concentration is

V C′ = qCin − qC, C(0) = C0, (1.25)

where C0 is the initial concentration in the tank. This initial value problem can

be solved by the separation of variables method.

A similar reactor model holds when the volumetric flow rates in and out

are different, which gives a changing volume V (t). Letting qin and qout denote

those flow rates, respectively, we have

(V (t)C)′ = qinCin − qoutC,
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where V (t) = V0 + (qin − qout)t, and where V0 is the initial volume. Methods

developed in Section 2.1 show how to handle this equation.

Now suppose we add degradation of the chemical while it is in the pond,

assuming that it degrades to inert products at a rate proportional to the amount

present. We represent this decay rate as rC gm per cubic meter per day, where

r is constant. Then the model equation becomes

V C′ = qCin − qC − rV C.

Notice that we include a factor V in the last term to make the model dimen-

sionally correct.

Also, the chemical can be consumed or created in the reactor by a chem-

ical reaction. The law of mass action from chemistry dictates the rate of the

reaction. The exercises present some examples.

EXERCISES

1. Solve the initial value problem (1.25) and obtain a formula for the concen-

tration in the reactor at time t.

2. (Pollution) An industrial pond having volume 100 m3 is full of pure water.

Contaminated water containing a toxic chemical of concentration 0.0002

kg per m3 is then is pumped into the pond with a volumetric flow rate of

0.5 m3 per minute. The contents are well-mixed and pumped out at the

same flow rate. Write down an initial value problem for the contaminant

concentration C(t) in the pond at any time t. Determine the equilibrium

concentration and its stability. Find a formula for the concentration C(t).

3. In the preceding problem, change the flow rate out of the pond to 0.6 m3

per minute. How long will it take the pond to empty? Write down, but do

not solve, the revised initial value problem.

4. A vat of volume 1000 gallons initially contains 5 lbs of salt. For t > 0

pure water is pumped into the vat at the rate of 2 gallons per minute; the

perfectly stirred mixture is pumped out at the same flow rate. Derive a

formula for the concentration of salt in the tank at any time t. Sketch a

graph of the concentration versus time.

5. A vat of volume 1000 gallons initially contains 5 lbs of salt. For t > 0 a

salt brine of concentration 0.1 lbs per gallon is pumped into the tank at

the rate of 2 gallons per minute; the perfectly stirred mixture is pumped

out at the same flow rate. Derive a formula for the concentration of salt in

the tank at any time t. Sketch a graph of the concentration versus time.

6. Consider a chemostat of constant volume where a chemical C is pumped

into the reactor at constant concentration and constant flow rate. While
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in the reactor it reacts according to C + C → products. From the law

of mass action the rate of the reaction is r = kC2, where k is the rate

constant. If the concentration of C in the reactor is given by C(t), then

mass balance leads the governing equation (V C)′ = qCin − qC − kV C2.

Find the equilibrium state(s) and analyze their stability.

7. (Enzyme kinetics) Work Exercise 6 if the rate of an enzyme reaction is

given by Michaelis–Menten kinetics

r =
aC

b+ C
,

where a and b are positive constants.

8. (Batch reactor) A batch reactor is a reactor of volume V where there are

no in and out flow rates. Reactants are loaded instantaneously and then

allowed to react over a time T , called the residence time. Then the con-

tents are expelled instantaneously. Fermentation reactors and even sacular

stomachs of some animals can be modeled as batch reactors. If a chemical

is loaded in a batch reactor and it degrades with rate r(C) = kC, given in

mass per unit time, per unit volume, what is the residence time required

for 90 percent of the chemical to degrade?

9. (Reaction kinetics) Consider the chemical reaction A+B
k→ C, where one

molecule of A reacts with one molecule of B to produce one molecule of

C, and the rate of the reaction is k, the rate constant. By the law of mass

action in chemistry, the reaction rate is r = kab, where a and b represent

the time-dependent concentrations of the reactants A and B. Thus, the

rates of change of the reactants and product are governed by the three

equations

a′ = −kab, b′ = −kab, c′ = kab.

Initially, a(0) = a0, b(0) = b0, and c(0) = 0, with a0 > b0. Show that a−b =

constant = a0 − b0, and find a single, first-order differential equation that

involves only the concentration a = a(t). What is the limiting concentration

limt→∞ a(t)? What are the other two limiting concentrations?

10. (Digestion) Digestion in the stomach (gut) in some simple organisms can

be modeled as a chemical reactor of volume V , where food enters and is

broken down into nutrient products, which are then absorbed across the

gut lining; the food–product mixture in the stomach is perfectly stirred

and exits at the same rate as it entered. Let S0 be the concentration of a

substrate (food) consumed at rate q (volume per time). In the gut the rate

of substrate breakdown into the nutrient product, S → P, is given by kV S,

where k is the rate constant and S = S(t) is the substrate concentration.
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The nutrient product, of concentration P = P (t), is then absorbed across

the gut boundary at a rate aV P , where a is the absorption constant. At

all times the contents are thoroughly stirred and leave the gut at the flow

rate q.

a) Argue that the model equations are

V S′ = qS0 − qS − kV S, V P ′ = kV S − aV P − qP.

b) Suppose the organism eats continuously, in a steady-state mode, where

the concentrations become constant. Find the steady-steady, or equi-

librium, concentrations Se and Pe.

c) Some ecologists believe that animals regulate their consumption rate

in order to maximize the absorption rate of nutrients. Show that the

maximum nutrient concentration Pe occurs when the consumption rate

is q =
√
akV.

d) Show that the maximum absorption rate is therefore

akS0V

(
√
a+

√
k)2

.

1.8.2 Electrical Circuits

Our modern technological society is filled with electronic devices of all types.

At the base of these are electrical circuits. The simplest circuit unit is the loop

in Figure 1.21 that contains an electromotive force (emf) E(t) (a battery or

generator that supplies energy), a resistor, an inductor, and a capacitor, all

connected in series. A capacitor stores electrical energy on its two plates, a

resistor dissipates energy, usually in the form of heat, and an inductor acts as

a “choke” that resists changes in current. A basic law in electricity, Kirchhoff’s

law, tells us that the sum of the voltage drops across the circuit elements

(as measured, e.g., by a voltmeter) in a loop must equal the applied emf. In

symbols,

VL + VR + VC = E(t).

This law comes from conservation of energy in a current loop, and it is derived

in elementary physics texts. A voltage drop across an element is an energy

potential that equals the amount of work required to move a charge across that

element.

Let I = I(t) denote the current (in amperes, or charge per second) in the

circuit, and let q = q(t) denote the charge (in coulombs) on the capacitor.
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E(t)

I

R

C

L

Figure 1.21 An RCL circuit with an electromotive force E(t) supplying the

electrical energy.

These quantities are related by

q′ = I.

There are several choices of state variables to describe the response of the

circuit: charge on the capacitor q, current I, or voltage VC across the capacitor.

Let us write Kirchhoff’s law in terms of charge. By Ohm’s law the voltage drop

across the resistor is proportional to the current, or

VR = RI,

where the proportionality constant R is called the resistance (measured in

ohms). The voltage drop across a capacitor is proportional to the charge on

the capacitor, or

VC =
1

C
q,

where C is the capacitance (measured in farads). Finally, the voltage drop

across an inductor is proportional to how fast the current is changing, or

VL = LI ′,

where L is the inductance (measured in henrys). Substituting these voltage

drops into Kirchhoff’s law gives

LI ′ +RI +
1

C
q = E(t),

or, using q′ = I,

Lq′′ +Rq′ +
1

C
q = E(t).



1.8 Reactors and Circuits 71

This is the RCL circuit equation, which is a second-order DE for the charge q.

The initial conditions are

q(0) = q0, q′(0) = I(0) = I0.

These express the initial charge on the capacitor and the initial current in

the circuit. Here, E(t) may be a given constant (e.g., E(t) = 12 for a 12-volt

battery) or may be a oscillating function of time t (e.g., E(t) = A cosωt for an

alternating voltage potential of amplitude A and frequency ω).

If there is no inductor, then the resulting RC circuit is modeled by the

first-order equation

Rq′ +
1

C
q = E(t).

If E(t) is constant, this equation can be solved using separation of variables

(Exercise 2). We show how to solve second-order differential equations in Chap-

ter 3.

EXERCISES

1. Write down the equation that governs an RC circuit with a 12-volt battery,

taking R = 1 and C = 1
2 . Determine the equilibrium solution and its

stability. If q(0) = 5, find a formula for q(t). Find the current I(t). Plot the

charge and the current on the same set of axes.

2. In an arbitrary RC circuit with constant emf E, use the method of sepa-

ration of variables to derive the formula

q(t) = Ke−t/RC + EC

for the charge on the capacitor, where K is an arbitrary constant. If q(0) =

q0, what is K?

3. An RCL circuit with an applied emf given by E(t) has initial charge

q(0) = q0 and initial current I(0) = I0. What is I ′(0)? Write down the

circuit equation and the initial conditions in terms of current I(t). Hint:

Use Kirchhoff’s law in the form LI ′ +RI + q/C = E(t).

4. Write the RCL circuit equation with the voltage Vc(t) on the capacitor as

the unknown state function.

5. Formulate the governing equation of an RCL circuit in terms of the current

I(t) when the circuit has an emf given by E(t) = A cosωt. What are the

appropriate initial conditions?

6. Find the DE model for the charge in an LC circuit with no emf. Show that

the response (or, solution) of the circuit can have the form q(t) = A cosωt

for some amplitude A and frequency ω, both of which are determined in

terms of the circuit parameters L and C.
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7. Consider a standard RCL circuit with no emf, but with a voltage drop

across the resistor given by a nonlinear function of current,

VR =
1

2

(
1

3
I3 − I)

)

(This replaces Ohm’s law.) If C = L = 1, find a second-order differential

equation for the current I(t) in the circuit.



2
Linear Equations: Solutions and

Approximations

In the last chapter we studied autonomous first-order DE models and a few

elementary techniques to help understand the qualitative behavior of these

models. At this point, the reader should be able to solve the following equations.

u′ = g(t) (pure time)

u′ = f(u) (autonomous)

u′ = g(t)f(u) (separable)

In this chapter we introduce an analytic solution technique for general first-

order equations as well as some general methods of approximation, including

numerical methods.

2.1 First-Order Linear Equations

A differential equation of the form

u′ + p(t)u = q(t). (2.1)

is called a first-order linear equation. The given functions p and q are assumed

to be continuous. These equations occur frequently in applications. If q(t) = 0,
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then the equation (2.1) is called homogeneous; the homogeneous equation is

u′ + p(t)u = 0.

(Note that the homogeneous equation is separable.) Otherwise, the equation

(2.1) is called nonhomogeneous. The right-hand side, q(t), is sometimes called

the forcing term or source term. There are two very common methods to solve

linear equations of first order. The first is called variation of parameters and

the second is called the method of integrating factors. We cover the latter.

Integrating Factors

The idea is to multiply the linear equation

u′ + p(t)u = q(t)

by a function, called an integrating factor, that turns the left side of the equation

into the total derivative of a quantity, so that we can get a solution by direct

integration. Denote the antiderivative of the given coefficient function p(t) by

P (t) ≡
∫
p(t)dt.

In preparation of the calculation below, we first make the observation that, by

the chain rule,
d

dt
eP (t) = eP (t)P ′(t) = eP (t)p(t).

Now we show that eP (t) is an integrating factor for the linear differential equa-

tion. When we multiply both sides of the linear equation by eP (t), we get

u′eP (t) + p(t)ueP (t) = q(t)eP (t).

Using the observation above, the left side of the equation becomes the total

derivative of the product of the unknown function u and the integrating factor;

precisely, by the product rule,

u′eP (t) + p(t)ueP (t) =
d

dt

(
ueP (t)

)
.

Thus, the differential equation becomes

d

dt

(
ueP (t)

)
= q(t)eP (t).

Now we can directly integrate, or antidifferentiate, both sides to get to get

ueP (t) = C +

∫
q(t)eP (t)dt,
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where C is a constant of integration. Therefore, solving for u,

u(t) = Ce−P (t) + e−P (t)

∫
q(t)eP (t)dt. (2.2)

This is the general solution of the linear equation (2.1). The first term in the

solution is the general solution of the homogeneous equation, and the second

term is a particular solution of (2.1).

Example 2.1

Solve the equation

u′ +
1

t
u = 1.

Here p(t) = 1/t and q(t) = 1. Then P (t) =
∫
(1/t)dt = ln t, and the integrating

factor e
R
(1/t)dt = eln t = t. Multiplying both sides of the equation by t gives

tu′ + u = t,

which can be written

(tu)′ = t.

Integrating,

tu = C +
1

2
t2,

or

u = C
1

t
+

1

2
t.

This is the general solution. The constant C is determined by an initial condi-

tion. �

Here is a harder example involving a more difficult integration.

Example 2.2

Consider the differential equation

u′ + 2u = sin t.

We can regard this as the equation of an RC circuit with resistance R = 1,

capacitance C = 0.5, and emf equal to sin t; u = u(t) is the charge on the

capacitor. We multiply by the integrating factor

eP (t) = e
R

2dt = e2t.
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We get

u′e2t + 2ue2t = e2t sin t.

The left side is the derivative of a product (the unknown times the integrating

factor), and we have (
ue2t

)′
= e2t sin t.

Integrating both sides,

ue2t = K +

∫
e2t sin tdt,

or

u(t) = Ke−2te−2t +

∫
e2t sin tdt,

where K is an arbitrary constant. The integral on the right side can be cal-

culated using integration by parts (try this!). Or, you can use software on a

calculator or computer algebra system. In any case we obtain the solution

u(t) = Ke−2t + e−2t

(
e2t

(
2

5
sin t− 1

5
cos t

))

= Ke−2t +
2

5
sin t− 1

5
cos t.

If there is an initial condition, say, u(0) = 5 , then K = 26/5 and the solution

is

u(t) =
26

5
e−2t +

2

5
sin t− 1

5
cos t.

Notice the form of this solution; there is an important physical interpretation

here. Let’s interpret u as the charge on a capacitor in an RC circuit. The first

term in the solution formula is the transient response: uh(t) = (26/5)e−2t.

It depends on the inherent properties of the circuit elements, R and C, and

the initial charge. Note that e−2t is a solution of the homogeneous equation

u′ + 2u = 0. Here, the transient response decays over time and what remains

is the steady-state response, which is up(t) = 2
5 sin t − 1

5 cos t. The transient

solution ignores the forcing term sin t (or, the emf), whereas the steady-state

solution comes from the forcing term. After a long time, the applied emf drives

the system. This behavior is characteristic of forced linear equations coming

from circuit theory and mechanics. The solution is a sum of two terms, a

contribution from the internal system and initial data (the transient), and a

contribution from the external forcing term (the steady response). Figure 2.1

shows a plot of the solution. �
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Figure 2.1 The solution in Example 2.2 showing the decaying transient and

the long-time steady-state.

If we examine the general solution (2.2) to the first-order linear equation

(2.1), we see that the solution consists of two parts: a transient part

uh(t) = Ce−P (t)

involving the initial condition and p(t), and a steady-state part

up(t) = e−P (t)

∫
q(t)eP (t)dt

involving the forcing term q(t). This is true for all first-order linear DEs. In

mathematical jargon, uh(t) is called the homogeneous solution (in some texts,

the homogeneous solution is called the complementary solution) because it

satisfies the homogeneous equation (hence, the subscript h); up(t) is called a

particular solution because it is a solution to the nonhomogeneous equation

(hence, the subscript p).

Example 2.3

Consider the DE

u′ − 3u = e−t.



78 2. Linear Equations: Solutions and Approximations

The integrating factor is eP (t) = exp(
∫
−3dt) = e−3t. Multiplying through by

the integrating factor, the DE becomes

(u′ − 3u)e−3t = e−te−3t,

or (
ue−3t

)′
= e−4t.

Integrating both sides gives

ue−3t = C − 1

4
e−4t,

or

u(t) = Ce3t − 1

4
e−t,

which is the general solution. The homogeneous solution is

uh(t) = Ce3t,

and the reader should check that it is the general solution of the homogenous

equation u′ − 3u = 0. The particular solution is

up(t) = −1

4
e−t.

The reader should check that this is a solution to the nonhomogeneous equation

u′ − 3u = e−t. �

We can summarize these observations in a theorem, called the structure

theorem for first-order linear equations.

Theorem 2.4

Consider the first-order linear equation

u′ + p(t)u = q(t).

The general solution u(t) is the sum of the general solution to the homogeneous

equation plus any solution to the nonhomogeneous equation. That is, it is the

sum of the homogeneous solution and a particular solution:

u(t) = uh(t) + up(t),

where

uh(t) = Ce−P (t), up(t) = e−P (t)

∫
q(t)eP (t)dt. �
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Later, we observe that a similar result is true for all linear equations, re-

gardless of the order of the equation.

Now we consider some practical examples that come from the applications

in Chapter 1.

Example 2.5

(Newton’s Law of Cooling) When the environmental temperature Te is not

constant, but rather Te(t), a function of time, then Newton’s law of cooling

becomes

T ′ = −h(T − Te(t)), T (0) = T0.

This equation can be rearranged and written in the form

T ′ + hT = hTe(t),

which is in the standard form of a first-order linear equation. �

Example 2.6

(RC Circuit) If the emf in an RC circuit is a function of time, E = E(t), then

the circuit equation for the charge on the capacitor is

Rq′ +
1

C
q = E(t),

which is a first-order linear equation. �

Example 2.7

(Chemical Reactor) The general equation governing the concentration C(t)

in a chemical reactor, with variable flow rates qin and qout, is

(V (t)C)′ = qinCin − qoutC,

where V (t) = V0 + (qin − qout)t is the volume of mixture in the reactor. This

equation is linear because it can be put in the form (show this!)

C′ +

(
qout +

V ′(t)

V (t)

)
C =

1

V (t)
qinCin. �

Example 2.8

(Sales Response to Advertising) The field of economics has always been

a rich source of interesting phenomena modeled by differential equations. In
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this example we set up a simple model that allows management to assess the

effectiveness of an advertising campaign. Let S = S(t) be the monthly sales of

an item. In the absence of advertising it is observed from sales history data that

the logarithm of the monthly sales decreases linearly in time, or lnS = −at+b.

Thus S′ = −aS, and sales are modeled by exponential decay. To keep sales

up, advertising is required. If there is a lot of advertising, then sales tend to

saturate at some maximum value S = M ; this is because there are only finitely

many consumers. The rate of increase in sales due to advertising is jointly

proportional to the advertising rate A(t) and to the degree the market is not

saturated; that is,

rA(t)

(
M − S

M

)
.

The constant r measures the effectiveness of the advertising campaign. The

term (M −S)/M is a measure of the market share that has still not purchased

the product. Then, combining both natural sales decay and advertising, we

obtain the economic model

S′ = −aS + rA(t)

(
M − S

M

)
.

The first term on the right is the natural decay rate, and the second term is the

rate of sales increase due to advertising, which drives the sales. As it stands,

because the advertising rate A is not constant, there are no equilibria (constant

solutions). We can rearrange the terms and write the equation in the form

S′ = −
(
a+

rA(t)

M

)
S + rA(t). (2.3)

Now we recognize that the sales are governed by a first-order linear DE. �

Remark 2.9

In the computation of the integrating factor for first-order linear equations,

P (t) ≡
∫
p(t)dt,

if the antiderivative of p(t) cannot be calculated in closed form, then take

P (t) ≡
∫ t

a

p(s)ds,

so that the integrating factor is

e
R

t

0
p(s)ds.

The calculation proceeds the same way, but it will contain antiderivatives with

integrals having variable upper limits. �
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EXERCISES

1. Find the general solution of u′ = −(2/t)u+ t.

2. Find the general solution of u′ + u = et.

3. Find the solution of the IVP u′ + (5/t)u = 1 + t, u(1) = 1.

4. Find the general solution of u′ + 2tu = e−t2 .

5. Show that the general solution to the DE u′ + au =
√

1 + t is given by

u(t) = Ce−at +

∫ t

0

e−a(t−s)
√

1 + sds.

6. In Exercises 1 through 5 identify the homogeneous solution and the par-

ticular solution for each part.

7. Solve the following equations as indicated.

a) x′ =
(
a+ b

t

)
x, x(1) = 1.

b) R′ + R
t = 2

1+t2 , R(1) = ln 8.

c) ty′ = −y + t2 (general solution).

d) θ′ = −aθ + exp(bt) (general solution).

e) N ′ = N − (1 − 9e−t) , N(0) = N0.

f) cos θv′ + v = 3, v(π/2) = 1, where v = v(θ).

8. What is the limit as t→ 0− of the general solution R(t) to the initial value

problem

R′ =
R

t
+ te−t.

9. (Circuits) An aging battery generating 200e−5t volts is connected in series

with a 20 ohm resistor, and a 0.01 farad capacitor. Assuming q = 0 at t = 0,

find the charge and current for all t > 0. Show that the charge reaches a

maximum and find the time it is reached.

10. Solve u′′ + u′ = 3t by introducing y = u′.

11. Solve u′ = (t+ u)2 by letting y = t+ u.

12. Express the general solution of the equation u′ = 2tu + 1 in terms of the

erf function.

13. Using the integrating factor method, find the solution to the initial value

problem u′ = pu+ q, u(0) = u0, where p and q are constants. (Note that

this problem can also be solved using separation of variables.)
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14. Find a formula for the general solution to the DE u′ = pu+q(t), where p is

constant. Find the solution satisfying u(t0) = u0. Identify the homogeneous

and particular solution.

15. Initially, a tank contains 60 gal of pure water. Then brine containing 1 lb of

salt per gallon enters the tank at 2 gal/min. The perfectly mixed solution

is drained off at 3 gal/min. Determine the amount (in lbs) of salt in the

tank up until the time it empties.

16. Determine the units of the various quantities in the sales–advertising model

(2.3) (e.g., S is measured in dollars). If A is constant, what is the equilib-

rium?

17. (Technology transfer) Suppose a new innovation is introduced at time t = 0

in a community of N possible users (e.g., a new pesticide introduced to a

community of farmers). Let x(t) be the number of users who have adopted

the innovation at time t. If the rate of adoption of the innovation is jointly

proportional to the number of adoptions and the number of those who have

not adopted, write down a DE model for x(t). Describe, qualitatively, how

x(t) changes in time. Find a formula for x(t).

18. (Home heating) A house is initially at 12 degrees Celsius when its heating–

cooling system fails. The outside temperature varies according to Te =

9+10 cos2πt, where time is given in days. The heat loss coefficient is h = 3

degrees per day. Find a formula for the temperature variation in the house

and plot it along with Te on the same set of axes. What is the time lag

between the maximum inside and outside temperature?

19. Let M(t) be the total amount of money a household possesses at time t. If

they spend money at a rate proportional to how much money they have,

and I(t) is their income, or the rate they earn money, set up a model for

the total amount of money on hand. Assume M(0) = m0 and show that

M(t) = m0e
−at + e−at

∫ t

0

I(s)easds.

Use l’Hospital’s rule to find the limiting of M(t) as t→ ∞.

20. (Advertising) In the sales response to advertising model (2.3), assume

S(0) = S0 and that advertising is constant A over a fixed time period

T , and is then removed. That is,

A(t) =

{
A, 0 ≤ t ≤ T

0, t > T

Find a formula for the sales S(t). Hint: Solve the problem on two intervals

and piece together the solutions in a continuous way.
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21. (Mechanics) An object of massm = 1 is dropped from rest at a large height,

and as it falls it experiences the force of gravity mg and a time-dependent

resistive force of magnitude Fr = 2v/(t+ 1), where v is its velocity. Write

down an initial value problem that governs its velocity and find a formula

for the solution. What are the transient and steady-state responses?

22. (Species abundance) The MacArthur–Wilson model of the dynamics of

species (e.g., bird species) that inhabit an island located near a mainland

was developed in the 1960s. Let P be the constant number of species in the

source pool on the mainland, and let S = S(t) be the number of species on

the island. Assume that the rate of change of the number of species is

S′ = χ− µ,

where χ is the colonization rate and µ is the extinction rate. In the

MacArthur–Wilson model,

χ = I(1 − S

P
) and µ =

E

P
S,

where the constants I and E are the maximum colonization and extinction

rates, respectively.

a) Over a long time, what is the expected equilibrium for the number of

species inhabiting the island? Is this equilibrium stable?

b) Given S(0) = S0, find an analytic formula for S(t).

c) Suppose there are two islands, one large and one small, with the larger

island having the smaller maximum extinction rate. Both have the

same colonization rate. Show, as expected, that the smaller island will

eventually have fewer species.

23. (Mortality)Let N0 be the number of people born on a given day (a cohort),

and assume they die at the per capita rate m(t), where t is their age.

a) Find the number of individuals N(t) remaining in the cohort at age

t. The fraction of the cohort that lives to age t is S(t) = N(t)/N0

and is called the survivorship function. What is the probability that a

member of the cohort will die before age t?

b) What is the probability of dying between the ages of t = a and t = b?

c) The Weibull model of mortality is defined by

m(t) =
p+ 1

p0

(
t

t0

)
,
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where p0, t0, and p are parameters. Find S(t) for p = 0, p = 3, and

p = 10. Which one seems to best fit the human population? A fish

population?

24. A differential equation of the form

u′ = a(t)u+ g(t)un

is called a Bernoulli equation, and it arises in many important applications.

Show that the Bernoulli equation can be reduced to the linear equation

y′ = (1 − n)a(t)y + (1 − n)g(t)

by changing the dependent variable from u to y via y = u1−n. (Then,

u = y1/(1−n) gives the solution.)

25. Solve the Bernoulli equations:

a) u′ = 2
3tu+ 2t

u .

b) u′ = u(1 + uet).

c) u′ = − 1
tu+ 1

tu2 .

26. A chemical flows into a reactor at concentration Cin with volumetric flow

rate q. While in the reactor it chemically reacts according to C + C →
Products. The mixture flows out at the same rate q. The governing equation

is (see Section 1.7)

(V C)′ = qCin − qC − kV C2.

Initially, C(0) = C0. Show that this is a Bernoulli equation and solve it.

Suggestion: If you have studied nondimensionalization, simplify the model

by introducing new dimensionless variables

u =
C

Cin
, τ =

t

V/q

for concentration and time.

27. Reduce the nonlinear equation

u′ = tu+ t3u3

to a first-order linear equation.

28. Find a formula for the solution of

u′ +
e−t

t
u = t, u(1) = 0.

Use the fact that the integrating factor cannot be found in a simple closed

form. See Remark 2.9.
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29. (Exact equations). In this exercise we consider a special class of first-order

differential equations called exact equations, which occur in some applica-

tions. They have the form

f(t, u) + g(t, u)u′ = 0, (2.4)

where the left side has the form of a total derivative. That is, there is a

function h = h(t, u) for which

d

dt
h(t, u) = f(t, u) + g(t, u)u′.

Recall the total derivative is, by the chain rule,

d

dt
h(t, u) = ht(t, u) + hu(t, u)u′.

Therefore, if ht = f and hu = g, then the differential equation is ex-

act. Then the differential equations becomes d
dth(t, u) = 0, which implies

h(t, u) = C, for some arbitrary constant C. Therefore the solution of (2.4)

is given implicitly by h(t, u) = C.

a) Show that f(t, u) + g(t, u)u′ = 0 is an exact equation if, and only if,

fu = gt.

b) Use part (a) to check if the following equations are exact. If the equa-

tion is exact, find the general solution by solving ht = f and hu = g

for h. (You may want to review the method of finding potential func-

tions associated with a conservative force field from your multivariable

calculus course.)

i. u3 + 3tu2u′ = 0.

ii. t3 + u
t + (u2 + ln t)u′ = 0.

iii. u′ = − sinu−u sin t
t cos u+cos t .

30. (Parasite infections) One study on the effect of a parasitic infection on

an animal’s immune system was carried out with the intestinal nematode

parasite Heligmosoides polygyrus and a fixed number of laboratory mice.

Mice were fed parasite larva at the constant rate of λ larva per mouse, per

day. The larva migrate to the wall of the small intestine. There they die at

per capita rate µ0, and they develop into mature parasites, which migrate

to the gut lumen, at the per capita rate of µ. The mature parasites die at

the per capita rate δ. If L = L(t) is the average number of larva per mouse,
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and M = M(t) is the average number of mature parasites per mouse, then

the model becomes

L′ = λ− (µ0 + µ)L,

M ′ = µL− δM.

Initially, L(0) = M(0) = 0. First, explain the terms in the model. Then

solve the larva equation and substitute the solution into the mature parasite

equation to find M(t). Make generic plots of L and M vs. t. [For more

details regarding the experiment, the constants, and the immune response,

see J. D. Murray, 2002. Mathematical Biology I. An Introduction, 3rd ed.,

Springer, New York, pp. 351–361.]

31. Find the general solution of each of the two general forms of the logistic

equation,

u′ = r(t)u
(
1 − u

K

)
,

and

u′ = u

(
1 − u

K(t)

)
.

Answers should be in terms of indefinite integrals.

2.2 Approximation of Solutions

The fact is that most differential equations cannot be solved with simple ana-

lytic formulas. Therefore we are interested in developing methods to approxi-

mate solutions. An approximations can be a formula, or it can arise as a data

set obtained by a computer algorithm. The latter forms the basis of modern

scientific computation, and it may be the most useful topic in this book for

future scientists and engineers.

2.2.1 Picard Iteration*

We first introduce an iterative procedure, called Picard iteration (E. Picard,

1856–1941), that leads to a recursive analytic formula that, when applied over

and over, gives an approximate formula for the solution. For example, as you

learned in calculus, Newton’s method is an iteration procedure that approxi-

mates a root of the algebraic equation f(x) = 0. The reader may recall that

Newton’s method is defined by the recursive equation

xk+1 = xk − f(xk)

f ′(xk)
, k = 0, 1, 2, . . . ,
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where x0 is a given first approximation to a root. Picard’s method is adapted

from another classical method, called the fixed point method; it is used to

approximate solutions of nonlinear algebraic equations in the form x = g(x).

We first review the fixed point method for algebraic equations.

Example 2.10

(Fixed Point Iteration) Consider the problem of solving the nonlinear alge-

braic equation
x = cosx.

Graphically, it is clear that there is a unique solution because the curves y = x

and y = cosx cross at a single point. Analytically we can approximate the root

by making an initial guess x0 and then successively calculate better approxi-

mations via
xk+1 = cosxk for k = 0, 1, 2, ...

For example, if we choose x0 = 0.9, then x1 = cosx0 = cos(0.9) = 0.622,

x2 = cosx1 = cos(0.622) = 0.813, x3 = cosx2 = cos(0.813) = 0.687, x4 =

cosx3 = cos(0.687) = 0.773, x5 = cosx4 = cos(0.773) = 0.716, .... Thus we

have generated a sequence of approximations 0.9, 0.622, 0.813, 0.687, 0.773,

0.716, .... If we continue the process, the sequence converges to x∗ = 0.739,

which is the solution to x = cosx (to three decimal places). This method,

called fixed point iteration, can be applied to general algebraic equations of the

form
x = g(x).

The iterative procedure

xk+1 = g(xk), k = 0, 1, 2, ...

will converge to a root x∗ provided |g′(x∗)| < 1 and the initial guess x0 is

sufficiently close to x∗. The conditions stipulate that the graph of g is not too

steep (its absolute slope at the root must be bounded by one), and the initial

guess is close to the root. �

We pick up on this iteration idea for algebraic equations to obtain an ap-

proximation method for solving the initial value problem

(IVP)

{
u′ = f(t, u),

u(t0) = u0.

First, we turn this initial value problem into an equivalent integral equation by

integrating the DE from t0 to t and using the fundamental theorem of calculus:

u(t) = u0 +

∫ t

t0

f(s, u(s))ds. (2.5)
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Now we define a type of fixed point iteration, called Picard iteration, that is

based on this integral equation formulation. We define the iteration scheme

uk+1(t) = u0 +

∫ t

t0

f(s, uk(s))ds, k = 0, 1, 2, ..., (2.6)

where u0(t) is an initial approximation (we often take the initial approximation

to be the constant function u0(t) = u0). Proceeding in this manner, we generate

a sequence u1(t), u2(t), u3(t),... of iterates, called Picard iterates, that under

certain conditions converge to the solution of the original initial value problem,

or equivalently, to (2.5).

Example 2.11

Consider the linear initial value problem

u′ = 2t(1 + u), u(0) = 0.

Then the iteration scheme is

uk+1(t) =

∫ t

0

2s(1 + uk(s))ds, k = 0, 1, 2, ...,

Take u0 = 0; then

u1(t) =

∫ t

0

2s(1 + 0)ds = t2.

Then

u2(t) =

∫ t

0

2s(1 + u1(s))ds =

∫ t

0

2s(1 + s2)ds = t2 +
1

2
t4.

Next,

u3(t) =

∫ t

0

2s(1+u2(s))ds = uk+1(t) =

∫ t

0

2s(1+s2+
1

2
s4)ds = t2+

1

2
t4+

1

6
t6.

In this manner we generate a sequence of approximations of the solution to the

IVP. In the present case, one can verify that the analytic solution to the IVP

is

u(t) = et2 − 1.

The Taylor series expansion of this function is

u(t) = et2 − 1 = t2 +
1

2
t4 +

1

6
t6 + · · · + 1

n!
t2n + · · ·,

and it converges for all t. Therefore the successive approximations generated

by Picard iteration are the partial sums of this series, and they converge to the

exact solution. �
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The Picard procedure is especially important from a theoretical viewpoint.

The method forms the basis of an existence proof for the solution to a general

nonlinear initial value problem; the idea is to show that there is a limit to the

sequence of approximations, and that limit is the solution to the initial value

problem. This topic is discussed in advanced texts on differential equations.

Practically, however, Picard iteration is not especially useful for problems in

science and engineering. There are other methods, based upon numerical algo-

rithms and perturbation methods, that give highly accurate approximations.

We discuss these methods in the next section.

Finally, we point out that Picard iteration is guaranteed to converge if the

right side of the differential equation f(t, u) is regular enough; specifically, the

first partial derivatives of f must be continuous in an open rectangle of the

tu plane containing the initial point. However, convergence is only guaranteed

locally, in a small interval about t0.

EXERCISES

1. Consider the initial value problem

u′ = 1 + u2, u(0) = 0.

Apply Picard iteration with u0 = 0 and compute four terms. If the process

continues, to what function will the resulting series converge?

2. Apply Picard iteration to the initial value problem

u′ = t− u, u(0) = 1,

to obtain three Picard iterates, taking u0 = 1. Plot each iterate and the

exact solution on the same set of axes.

2.2.2 Numerical Methods

As we already emphasized, most differential equations cannot be solved ana-

lytically by a simple formula. In this section we develop a class of methods that

solve an initial value problem numerically, using a computer algorithm. In in-

dustry and science, differential equations are almost always solved numerically

because most real-world problems lead to models that are too complicated to

solve analytically. And, even if the problem can be solved analytically, often

the solution is in the form of a complicated integral or infinite series that has

to be resolved by a computer calculation anyway. So why not just begin with

a computational approach in the first place?
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We study numerical approximations by a method belonging to a class called

finite difference methods. Here is the basic idea. Suppose we want to solve the

following initial value problem on the interval 0 ≤ t ≤ T ;

u′ = f(t, u), u(0) = u0. (2.7)

Rather than seek a continuous solution defined at each time t, we develop a

strategy of discretizing the problem to determine an approximation at discrete

times in the interval of interest. Therefore, the plan is to replace the continuous-

time model (2.7) with an approximate discrete-time model that is amenable to

computer solution.

To this end, we divide the interval 0 ≤ t ≤ T into N segments of constant

length h, called the step size. Thus the stepsize is h = T/N . This defines a

set of equally spaced discrete times 0 = t0, t1, t2, ..., tN = T , where tn = nh,

n = 0, 1, 2, ..., N . Now, suppose we know the solution u(tn) of the initial value

problem at time tn. How could we estimate the solution at time tn+1? Let us

integrate the DE (2.7) from tn to tn+1 and use the fundamental theorem of

calculus. We get the equation

u(tn+1) − u(tn) =

∫ tn+1

tn

f(t, u)dt. (2.8)

The integral can be approximated using the left-hand rule, giving

u(tn+1) − u(tn) ≈ hf(tn, u(tn)).

If we denote by un the approximation of the solution u(tn) at t = tn, then this

last formula suggests the recursion formula

un+1 = un + hf(tn, un). (2.9)

If u(0) = u0, then (2.9) provides an algorithm for calculating approximations

u1, u2, u3, and so on, recursively, at times t1, t2, t3,... This method is called

the Euler method , named after the Swiss mathematician L. Euler (1707–1783).

The discrete approximation consisting of the values u0, u1, u2, u3, and so on,

is called a numerical solution to the initial value problem. The discrete values

approximate the graph of the exact solution, and often they are connected by

line segments to obtain a continuous curve. It seems evident that the smaller the

step size h is, the better the approximation. One can show that the cumulative

error over an interval 0 ≤ t ≤ T is bounded by the step size h; thus, the Euler

method is said to be of order h.
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Example 2.12

Consider the initial value problem

u′ = 1 + tu, u(0) = 0.25.

Here f(t, u) = 1 + tu and the Euler difference equation (2.9) with step size h is

un+1 = un + h(1 + tnun)

= un + h(1 + nhun), n = 0, 1, 2, 3, ...

We take h = 0.1. Beginning with u0 = 0.25 we have

u1 = u0 + (0.1)(1 + (0)(0.1)u0) = 0.25 + (0.1)(1) = 0.350.

Then

u2 = u1 + (0.1)(1 + (1)(0.1)u1) = 0.35 + (0.1)(1 + (1)(0.1)(0.35)) = 0.454.

Next

u3 = u2 + (0.1)(1 + (2)(0.1)u2) = 0.454 + (0.1)(1 + (2)(0.1)(0.454)) = 0.563.

Continuing in this manner we generate a sequence of numbers at all the discrete

time points. We often connect the approximations by straight line segments to

generate a continuous curve. In Figure 2.2 we compare the discrete solution to

the exact solution (obtained by the integrating factor method)

u(t) = et2/2

(
1

4
+

∫ t

0

e−s2/2ds

)

= et2/2

(
1

4
+

√
π

2
erf (t/

√
2)

)
.

Because it is tedious to do numerical calculations by hand, one can program a

calculator or write a simple set of instructions for a computer algebra system

to do the work for us. Most calculators and computer algebra systems have

built-in programs that implement the Euler algorithm automatically. Below is

a MATLAB R© m-file named euler1D to perform the calculations in Example

2.12 and plot the approximate solution on the interval [0, 1]. We take 10 steps,

so the step size is h = 1/10 = 0.1, which is not considered small, but it allows

us to view both the solution and the numerical approximation. A typical step

size in a real problem may be h = 0.001. �
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function euler1D

T=1; N=10; h=T/N;

u=0.25; uhistory=0.25;

for n=1:N;

u=u+h*(1+(n-1)*h*u);

uhistory=[uhistory, u];

end

t=0:h:T;

plot(t,uhistory)

xlabel(’time t’), ylabel(’u’)
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Figure 2.2 The numerical solution (fit with a continuous curve) and exact so-

lution in Example 2.12. Here, h = 0.1. A better approximation can be obtained

with a smaller step size.

In science and engineering we often write simple programs that implement

recursive algorithms; that way we know the skeleton of our calculations, which

is often preferred to plugging into an unknown black box containing a canned

program.

There is another insightful way to understand the Euler algorithm using the

direction field. Beginning at the initial value, we take u0 = u(0). To find u1, the

approximation at t1, we march from (t0, u0) along the direction field segment
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with slope f(t0, u0) until we reach the point (t1, u1) on the vertical line t = t1.

Then, from (t1, u1) we march along the direction field segment with slope

f(t1, u1) until we reach (t2, u2). From (t2, u2) we march along the direction

field segment with slope f(t2, u2) until we reach (t3, u3). We continue in this

manner until we reach tN = T . So how do we calculate the un? Inductively,

let us assume we are at (tn, un) and want to calculate un+1. We march along

the straight line segment with slope f(tn, un) to (tn+1, un+1). Thus, writing

the slope of this segment in two different ways

un+1 − un

tn+1 − tn
= f(tn, un).

But tn+1 − tn = h, and therefore we obtain

un+1 = un + hf(tn, un),

which is again the Euler formula. In summary, the Euler method computes

approximate values by moving in the direction of the slope field at each point.

This explains why the the numerical solution in Example 2.12 (Figure 2.2) lags

behind the increasing exact solution.

The Euler algorithm is the simplest method for numerically approximating

the solution to a differential equation. To obtain a more accurate method, we

can approximate the integral on the right side of (2.8) by the trapezoidal rule,

giving

un+1 − un =
h

2
[f(tn, un) + f(tn+1, un+1)]. (2.10)

This difference equation is not as simple as it may first appear. It does not give

the un+1 explicitly in terms of the un because the un+1 is tied up in a possibly

nonlinear term on the right side. Such a difference equation is called an implicit

equation. At each step we would have to solve a nonlinear algebraic equation

for the un+1; we can do this numerically, which would be time consuming. Does

it pay off in more accuracy? The answer is yes. The Euler algorithm makes a

cumulative error over an interval proportional to the step size h, whereas the

implicit method makes an error of order h2. Observe that h2 < h when h is

small.

A better approach, which avoids having to solve a nonlinear algebraic equa-

tion at each step, is to replace the un+1 on the right side of (2.10) by the un+1

calculated by the simple Euler method. That is, we compute a “predictor”

ũn+1 = un + hf(tn, un), (2.11)

and then use that to calculate a “corrector”

un+1 = un +
1

2
h[f(tn, un) + f(tn+1, ũn+1)]. (2.12)
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This algorithm is an example of a predictor–corrector method , and again the

cumulative error is proportional to h2, an improvement to the Euler method.

This method is called the modified Euler method (also, Heun’s method and the

second-order Runge–Kutta method).

Example 2.13

Consider the IVP

u′ = −2tu+
√
t, u(0) = 4.

This problem is a first-order linear equation and can be solved by integrating

factors (Exercise!). The exact solution is given by

u(t) = e−t2
(

4 +

∫ t

0

√
ses2

ds

)
.

Even though we have a formula for the solution, to evaluate the solution or

sketch a graph, we would have to numerically calculate an integral at each

time t. For example, we could use the trapezoid rule or Simpson’s rule. A

better strategy is to just proceed with a numerical method ab initio. We set up

the modified Euler algorithm. The recursion is given by the predictor,

ũn+1 = un + h
(
−2tnun +

√
tn
)
,

and the corrector

un+1 = un +
h

2

(
(−2tnun +

√
tn) + (−2tn+1ũn+1 +

√
tn+1)

)
.

Here, tn = nh and tn+1 = (n + 1)h. Starting with t0 = 0 and u0 = 4, we

compute u1, u2, u3, . . . recursively, in a loop, by these formulas. A sample

MATLAB R© code for the modified Euler method is given in Exercise 1. �

The Euler and modified Euler methods are two of many numerical con-

structs to solve differential equations. Because solving differential equations is

so important in science and engineering, and because real-world models are

usually quite complicated, great efforts have gone into developing accurate ef-

ficient methods. The most popular algorithm and workhorse of the subject is

the highly accurate fourth-order Runge–Kutta method, where the cumulative

error over a bounded interval is proportional to h4. The Runge–Kutta update

formula is

un+1 = un +
h

6
(k1 + k2 + k3 + k4),
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where

k1 = f(tn, un),

k2 = f(tn +
h

2
, un +

h

2
k1),

k3 = f(tn +
h

2
, un +

h

2
k2),

k4 = f(tn + h, un + hk3).

We do not derive the formulas here, but they follow by approximating the

integral in (2.8) by a highly accurate averaging method. The Runge–Kutta

method is built in on computer algebra systems and on scientific calculators.

Note that the order of the error makes a big difference in the accuracy. If

h = 0.1, then the cumulative errors over an interval for the Euler, modified

Euler, and Runge–Kutta methods are proportional to 0.1, 0.01, and 0.0001,

respectively.

2.2.3 Error Analysis

Readers who want a detailed account of the errors involved in numerical al-

gorithms should consult a text on numerical analysis or on numerical solution

of differential equations. In this section we give only a brief elaboration of the

comments made in the last section on the order of the error involved in Euler’s

method.

Consider again the initial value problem

u′ = f(t, u), u(0) = u0 (2.13)

on the interval 0 ≤ t ≤ T , with solution u(t). For our argument we assume

u has a continuous second derivative on the interval (which implies that the

second derivative is bounded). The Euler method, which gives approximations

un at the discrete points tn = nh, n = 1, 2, ..., N , is the recursive algorithm

un+1 = un + hf(tn, un). (2.14)

We want to calculate the error made in performing one step of the Euler al-

gorithm. Suppose at the point tn the approximation un is exact; that is, un =

u(tn). Then we calculate the error at the next step. Let En+1 = u(tn+1)−un+1

denote the error at the (n+ 1)st step. Evaluating the DE at t = tn, we get

u′(tn) = f(tn, u(tn)).
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Recall from calculus (Taylor’s theorem with remainder) that if u has two con-

tinuous derivatives then

u(tn+1) = u(tn + h) = u(tn) + u′(tn)h+
1

2
u′′(τn)h2

= u(tn) + hf(tn, u(tn)) +
1

2
u′′(τn)h2

= un + hf(tn, un) +
1

2
u′′(τn)h2, (2.15)

where the second derivative is evaluated at some point τn in the interval

(tn, tn+1). Subtracting (2.14) from (2.15) gives

En+1 =
1

2
u′′(τn)h2.

So, if un is exact, the Euler algorithm makes an error proportional to h2 in

computing un+1. So, at each step the Euler algorithm gives an error of order

h2. This is called the local error. Notice that the absolute error is |En+1| =
1
2 |u′′(τn)|h2 ≤ 1

2Ch
2, where C is an absolute bound for the second derivative

of u on the entire interval; that is, |u′′(t)| ≤ C for 0 ≤ t ≤ T. If u′′ is large, then

we expect, proportionately, more error; stated differently, if the concavity of a

solution is large in a region, then the approximations from the Euler algorithm

may lead to very large errors. Differential equations that have rapidly changing

solutions are called “stiff” equations, and they must be handled by algorithms

that can keep up with these changes.

If we apply the Euler method over an entire interval of length T , where

T = Nh and N the number of steps, then we expect to make a cumulative

error of N times the local error, or an error bounded by a constant times h.

This is why we say the cumulative error in Euler’s method is order h.

Example 2.14

An example confirms this calculation. Consider the initial value problem for

the growth equation:

u′ = ku, u(0) = u0,

with exact solution u(t) = u0e
kt, k > 0. The Euler method gives

un+1 = un + hkun = (1 + hk)un.

We can iterate to find the exact formula for the sequence of Euler approxima-
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tions:

u1 = (1 + hk)u0,

u2 = (1 + hk)u1 = (1 + hk)2u0,

u3 = (1 + hk)u2 = (1 + hk)3u0,

· · ·
un = (1 + hk)nu0.

One can calculate the cumulative error EN in applying the method over an

interval 0 ≤ t ≤ T with T = Nh, where N is the total number of steps. We

have

EN = u(T ) − uN = u0[e
kT − (1 + hk)N ].

The exponential term in the parentheses can be expressed in its Taylor series,

ekT = 1 + kT + 1
2 (kT )2 + · · ·, and the second term can be expanded using the

binomial theorem,

(1 + hk)N = 1 +Nhk +
N(N + 1)

2
(hk)2 + · · · + (hk)N .

Using T = Nh,

EN = u0[1 + kT +
1

2
(kT )2 + · · · − 1 −Nhk − N(N + 1)

2
(hk)2 − · · · − (hk)N ]

= −u0Tk
2

2
h+ terms containing at least h2.

So the cumulative error is the order of the step size h. �

Actually, there is more to error analysis than we indicated. We have ignored

roundoff error, and we refer the reader to texts on numerical analysis. Briefly,

roundoff error is the error we make when using a computer to actually calculate

the approximations given by the discrete algorithm that in turn approximates

the differential equation. For example, we denoted by u(tn) the exact solution

at tn. But we calculate an approximation un by a diffence formula. The error

u(tn)−un is due to discretization. However, when we implement the alogrithm

on a computer, we compute actual numerical values Un. The error un − Un is

the roundoff error. Thus, the total error is

u(tn) − Un = (u(tn) − un) + (un − Un),

which is the sum of the discretization and the roundoff error.



98 2. Linear Equations: Solutions and Approximations

EXERCISES

1. Use the Euler method and the modified Euler method to numerically solve

the initial value problem

u′ = 0.25u− t2, u(0) = 2,

on the interval 0 ≤ t ≤ 2 using a step size h = 0.25. Compare them

graphically, and compare the final values u(2) at the final t = 2 value.

Perform calculations with h = 0.1, h = 0.01, and h = 0.001, and confirm

that the cumulative error at t = 2 is roughly order h for the Euler method

and order h2 for the modified Euler method. A MATLAB R© script for the

modified Euler method is:

T=2; N=8; h=T/N; u=2; uhistory=u;

for n=1:N

v=u+h*(0.25*u-((n-1)*h)∧2);

u=u+(h/2)*(0.25*u-((n-1)*h)∧2+0.25*v-(n*h)∧2);

uhistory=[uhistory,u];

end

t=0:h:T; plot(t,uhistory)

2. Use the Euler method to solve the initial value problem u′ = u cos t, u(0) =

1 on the interval 0 ≤ t ≤ 20 with 50, 100, 200, and 400 steps. Compare

with the exact solution and comment on the accuracy of the numerical

algorithm.

3. (Ecology) A population of bacteria, given in millions of organisms, is gov-

erned by the law

u′ = 0.6u

(
1 − u

K(t)

)
, u(0) = 0.2,

where in a periodically varying environment the carrying capacity isK(t) =

10+0.9 sin t, and time is given in days. Plot the bacteria population for 40

days. Use the Euler or modified Euler method.

4. Consider the initial value problem for the decay equation,

u′ = −ru, u(0) = u0.

Here, r is a given positive decay constant. Find the exact solution to the

initial value problem and the exact solution to the sequence of difference

approximations un+1 = un − hrun defined by the Euler method. Does the

discrete solution give a good approximation to the exact solution for all

step sizes h? What, if any, are the constraints on h?
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5. (Heat flow) Suppose the temperature inside your winter home is 68 degrees

at 2:00 P.M. and your furnace then fails. If the outside temperature has an

hourly variation over each day given by 15 + 10 cos(πt/12) degrees (where

t = 0 represents 2:00 P.M.), and you notice that by 10:00 P.M. the inside

temperature is 57 degrees, what will be the temperature in your home the

next morning at 6:00 A.M.? Sketch a plot showing the temperature inside

your home and the outside air temperature.

6. Write a program on your computer algebra system (MATLAB R©, Maple,

Mathematica, R, and so on) that uses the Runge–Kutta method for solving

the initial value problem (2.7), and use the program to numerically solve

the problem
u′ = −u2 + 2t, u(0) = 1.

7. Consider the initial value problem u′ = 5u−6e−t, u(0) = 1. Find the exact

solution and plot it on the interval 0 ≤ t ≤ 3. Next use the Euler method

with h = 0.1 to obtain a numerical solution. Explain the results of this

numerical experiment.

8. Consider the IVP
u = u2, u(0) = 0.99,

which has the solution

u(t) =
99

100 − 99t
.

(Check this.) Thus, u(1) = 99. Use the Euler method to approximate u(1)

for step sizes h = 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005. Comment on its

accuracy, and then repeat the calculation using the modified Euler and the

Runge–Kutta methods. What do you conclude?

9. Numerically solve the IVP

u′ = −u− 5e−t sin 5t, u(0) = 1

on the interval 0 ≤ t ≤ 3. [Note that you can interpret this equation as the

RC circuit equation (R = 1, C = 1) with an oscillating, decaying emf; u is

the charge on the capacitor.]

10. From the definition of the derivative, we know we can approximate the first

derivative by a (forward) difference quotient

u′(t) ≈ u(t+ h) − u(t)

h
.

Use Taylor’s theorem from calculus to show that an approximation for the

second derivative is

u′′(t) ≈ u(t+ h) − 2u(t) + u(t− h)

h2
.
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(Hint: Recall that Taylor’s expansion for a function u about the point t

with increment h is

u(t+ h) = u(t) + u′(t)h+
1

2
u′′(t)h2 + · · ·.

Use this and a similar formula for u(t− h).)

11. Find the local error, in terms of h, in approximating the derivative at t by

the centered difference formula

u′(t) ≈ u(t+ h) − u(t− h)

2h
.

Use the hint in the last exercise.

12. (Chemical reactor) Consider the initial value problem

u′ = −u+ (15 − u)e−a/(u+1), u(0) = 1,

where a is a parameter. This model arises in the study of a chemically

reacting fluid passing through a continuously stirred tank reactor, where

the reaction gives off heat. The variable u is related to the temperature in

the reactor (Logan 2006, p. 49–52). Plot the solution for a = 5.2 and for a =

5.3 to show that the model is sensitive to small changes in the parameter a

(this sensitivity is called structural instability). Can you explain why this

occurs? Hint: Plot the bifurcation diagram with bifurcation parameter a.

Note that you can solve for a in terms of u.

Remark 2.15

We end this section with the observation that one can find solution formu-

las using computer algebra systems such as Maple, MATLAB R©, Mathematica,

and the like, and calculators equipped with computer algebra systems (e.g., the

TI-89 and TI Voyage 200). Computer algebra systems and calculators perform

symbolic computation. Below we present the basic syntax in Maple, Mathemat-

ica, and on a TI-89 that returns the general solution to a differential equation

and the solution to an initial value problem. MATLAB R© has a special add-on

symbolic package that has similar commands. Our interest in this text is to

use MATLAB R© for scientific computation, rather than symbolic calculation.

Additional information on computing environments is in Appendix B.

The general solution of the first-order differential equation u′ = f(t, u) can

be obtained as follows.

deSolve(u’=f(t,u),t,u) (TI-89)

dsolve(diff(u(t),t)=f(t,u(t)),u(t)); (Maple)
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DSolve[u’[t]==f[t,u[t]], u[t], t] (Mathematica)

To solve the initial value problem u′ = f(t, u), u(a) = b, the syntax is.

deSolve(u’= f(t,u) and u(a)=b, t, u) (TI-89)

dsolve(diff(u(t),t) = f(t,u(t)), u(a)=b, u(t)); (Maple)

DSolve[u’[t]==f[t,u[t]], u[a]==b, u[t], t] (Mathematica)

�



3
Second-Order Differential Equations

Second-order differential equations are one of the most widely studied classes

of differential equations in mathematics, physical science, and engineering. One

sure reason is that Newton’s second law of motion is expressed as a law that

involves acceleration of a particle, which is the second derivative of position.

Thus, general one-dimensional mechanical systems are governed naturally by

second-order equations.

There are two strategies in dealing with a second-order differential equation.

We can always turn a single, second-order differential equation into a system

of two simultaneous first-order equations and study the system. Or, we can

deal with the equation itself, as it stands. For example, consider the damped

spring–mass equation
mx′′ = −kx− cx′.

We recall that this equation models the decaying oscillations of a mass m

under the action of two forces, a restoring force −kx caused by the spring,

and a frictional force −cx′ caused by the damping mechanism. This equation

is nothing more than a statement of Newton’s second law of motion. We can

easily transform this equation into a system of two first-order equations with

two unknowns by selecting a second unknown state function y = y(t) defined by

y(t) = x′(t); thus y is the velocity. Then my′ = −kx− cy. So the second-order

equation is equivalent to

x′ = y,

y′ = − k

m
x− c

m
y.
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This is a simultaneous system of two equations in two unknowns, the posi-

tion x(t) and the velocity y(t); both equations are first-order. Why do this?

Have we gained an advantage? Is the system easier to solve than the single

equation? The answers to these questions emerge as we study both types of

equations in the sequel. Here we just make some general remarks that you may

presently find cryptic. It is probably easier to find the solution formula to the

second-order equation directly. But the first-order system embodies a geomet-

rical structure that reveals the underlying dynamics in a far superior way. And,

first-order systems arise just as naturally as second-order equations in many

other areas of application. Ultimately, it comes down to one’s perspective and

what information one wants to get from the physical system. Both viewpoints

are important.

In this chapter we develop some methods for understanding and solving a

single second-order equation. In Chapters 5, 6, and 7 we examine systems of

first-order equations.

3.1 Particle Mechanics

Some second-order differential equations can be reduced essentially to a single

first-order equation that can be handled by methods from Chapters 1 and 2.

We place the discussion in the context of particle mechanics to illustrate some

of the standard techniques. The general form of Newton’s law is

mx′′ = F (t, x, x′), (3.1)

where x = x(t) is the displacement from equilibrium. Here, the prime denotes

the time derivative, and y = x′ is the velocity (we are using y instead of v, as

in earlier discussions).

(a) (Force independent of position) If the force does not depend on the

position x, then (3.1) is

mx′′ = F (t, x′).

We can make the velocity substitution y = x′ to obtain

my′ = F (t, y),

which is a first-order differential equation that can be solved with the methods

of the preceding chapters. Once the velocity y = y(t) is found, then the position

x(t) can be recovered by antidifferentiation, or x(t) =
∫
y(t)dt+C. For example,

consider the equation

x′′ = 2tx′.
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This is the same as

y′ = 2ty.

This equation is separable and one easily finds y = C1 exp(t2). Therefore

x(t) = C1

∫ t

0

es2

ds+ C2,

and we have the solution to the problem as a function defined by an integral.

�

(b) (Force independent of time) If the force does not depend explicitly on

time t, then (3.1) becomes

x′′ = F (x, x′).

Again we introduce y = x′. Using the chain rule to compute the second deriva-

tive (acceleration),

x′′ =
dy

dt
=
dy

dx

dx

dt
= y

dy

dx
.

Then

my
dy

dx
= F (x, y),

which is a first-order differential equation for the velocity y in terms of the

position x. If we solve this equation to obtain y = y(x), then we can recover x(t)

by solving the equation x′ = y(x) by separation of variables. For an example

in this case, take

x′′ =
1

2
√
x
x′.

This is, as discussed,

y
dy

dx
=

1

2
√
x
y,

Therefore, y = 0, which is an obvious solution, or

dy

dx
=

1

2
√
x
.

Separating variables and integrating gives

y(x) =
√
x+ C1.

Then, because dx/dt = y(x),

dx√
x+ C1

= dt,

or ∫
dx√
x+ C1

= t+ C2.



106 3. Second-Order Differential Equations

The integral on the left can be found by a substitution z =
√
x + C1; then

dz = (1/2
√
x)dx, which gives

∫
dx√
x+ C1

= 2

∫
z − C1

z
dz = 2z − 2C1 ln |z|.

Therefore, the solution is given implicitly by

2(
√
x+ C1) − 2C1 ln |

√
x+ C1| = t+ C2. �

(c) (Conservative force) In the important special case where the force F

depends only on the position x we say F is a conservative force. Then, using

the same calculation as in item (b) above, Newton’s law becomes

my
dy

dx
= F (x),

which is a separable equation. We may integrate both sides with respect to x

to get

m

∫
y
dy

dx
dx =

∫
F (x)dx + E,

or
1

2
my2 =

∫
F (x)dx + E.

Note that the left side is the kinetic energy, one-half the mass times the velocity

squared. We use the symbol E for the constant of integration because it must

have dimensions of energy. We recall from calculus that the potential energy

function V (x) is defined by −dV/dx = F (x),1 or the “force is the negative

gradient of the potential.”Then
∫
F (x)dx = −V (x) and we have

1

2
my2 + V (x) = E, (3.2)

which is the energy conservation law : the kinetic plus potential energy for a

conservative system is constant. The constant E, which represents the total

energy in the system, can be computed from knowledge of the initial position

x(0) = x0 and initial velocity y(0) = y0, or E = 1
2y

2
0 + V (x0). We regard the

conservation of energy law as a reduction of Newton’s second law; the latter

is a second-order equation, whereas (3.2) is a first-order equation if we replace

the position y by dx/dt. It may be recast into

dx

dt
= ±

√
2

m

√
E − V (x). (3.3)

1 Occasionally we write dV/dx as V ′(x). The “prime” is understood as an x derivative
because that is the independent variable; note that x′ means a time derivative.
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This equation is separable, and its solution would give x = x(t). The appropri-

ate sign is taken depending upon whether the velocity is positive or negative

during a certain phase of the motion.

Usually we analyze conservative systems quantitatively in phase space (the

xy plane, or the phase plane) by plotting y versus x from Equation (3.2) for

different values of the parameter E. The result is a one-parameter family of

curves, or orbits , in the xy plane along which the motion occurs and the energy

is the same. The set of these curves forms the phase diagram for the system.

On these orbits we do not know how x and y depend upon time t unless we

solve (3.3). But we do know how velocity relates to position.

Example 3.1

(Oscillator) Consider a spring–mass system without damping. The governing

equation is
mx′′ = −kx,

where k is the spring constant. The force is −kx and the potential energy V (x)

is given by

V (x) = −
∫

−kxdx =
k

2
x2.

We have picked the constant of integration to be zero, which automatically sets

the zero level of potential energy at x = 0 (i.e., V (0) = 0). Conservation of

energy is expressed by (3.2), or

1

2
my2 +

k

2
x2 = E,

which plots as a family of concentric ellipses in the xy phase plane, one ellipse for

each value of E. See Figure 3.1. These curves, along which energy is conserved,

represent oscillations, and the mass tracks on one of these orbits in the phase

plane, continually cycling as time passes, in the clockwise direction. This is

because x′ = y, so x increases when y is positive (in the upper half-plane) and

decreases when y is negative (in the lower half-plane). Clearly, the position and

velocity cycle back and forth. At this point we could attempt to solve (3.3)

to determine how x varies in time, but in the next section we find an easier

method to solve second-order linear equations for x(t) directly.

Finally, we note that the conservation of energy curves (orbits) can be

obtained graphically in a simple way. Solving the conservation equation

1

2
my2 +

k

2
x2 = E

for y gives

y = ±
√

2

m

√
E − 1

2
kx2.
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x

y

Figure 3.1 Elliptical orbits 1
2my

2+ k
2x

2 = E for different values of the energy

E. The direction of the orbits in each quadrant is shown; they are traced out

clockwise because x′ = y > 0, or x increases in the upper half plane. Similarly,

x decreases along the orbit in the lower half-plane.

Then, a calculator can be used for the plot. Or, just to obtain the shape of

the curves, simply plot the potential energy function V (x) = 1
2kx

2 and line

y = E of constant energy on the same axes; then subtract the square root of

the difference of the two to obtain the shape of the upper branch of the elliptical

orbit. Reflect it through the x axis to get the lower branch of the ellipse. Figure

3.2 illustrates this procedure; to get more curves, take different constant energy

levels E. �

Example 3.2

There is little to do for an equation where the force depends on t and x. For

example,
x′′ = tx

is a difficult equation and cannot be simplified. (This is called Airy’s differential

equation and it is discussed in Section 3.4.2.) �

EXERCISES

1. Consider a dynamical system governed by the equation x′′ = −x + x3.

Hence, m = 1. Find the potential energy V (x) with V (0) = 0. How much

total energy E is in the system if x(0) = 2 and x′(0) = 1? Plot the orbit in

the xy phase plane of a particle having this amount of total energy. Indicate

by arrows the direction that this orbit is traced out as time increases. Hint:

Total energy can be negative.
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y = 0.5k x

y = E

2

x

x

y

y

Figure 3.2 Graphical method to plot y =
√

2/m
√
E − kx2/2. Plot y =

E and y = 1
2kx

2 (top plot), and approximately subtract the square root of

the difference, multiplied by the factor
√

2/m (lower plot). Reflect this curve

through the x axis to get the lower portion of the ellipse (not shown).

2. Consider a dynamical system governed by the equation x′′ = −x2. Hence,

m = 1. Find the potential energy V (x) with V (0) = 0. Write down the

conservation of energy statement and determine the total energy E of the

system if x(0) = 1 and x′(0) = 0? Plot the orbit in the xy phase plane

of a particle having this amount of total energy. Indicate by arrows the

direction that this orbit is traced out as time increases. Explain how the

particle evolves as time increases.

3. Formulate the second-order nonlinear equation

x′′ + x′ − x2x′ = 0

as a system of two first-order equations.

4. In Exercise 2, find an implicit formula for the solution x = x(t) of the DE

and initial conditions. Hint: From the energy equation separate variables.

5. In a conservative system show that the conservation of energy law can be

obtained by multiplying the governing equation mx′′ = F (x) by x′ and

noting that d(x′ 2)/dt = 2x′x′′.

6. In a conservative system derive the relation

t = ±
√
m

2

∫
dx√

E − V (x)
+ C,
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which gives time as an antiderivative of an expression that is a function of

position.

7. A bullet is shot from a gun with muzzle velocity 700 meters per second

horizontally at a point target 100 meters away. Neglecting air resistance,

by how much does the bullet miss its target?

8. Solve the following differential equations by reducing them to first-order

equations.

a) x′′ = − 2
tx

′.

b) x′′ = xx′.

c) x′′ = −4x.

d) x′′ = (x′)2.

e) tx′′ + x′ = 4t.

9. In a nonlinear spring–mass system the equation governing displacement

is x′′ = −2x3. Show that conservation of energy for the system can be

expressed as y2 = C − x4, where C is a constant. Plot this set of orbits in

the phase plane for different values of C. If x(0) = x0 > 0 and x′(0) = 0,

show that the period of oscillations is

T =
4

x0

∫ 1

0

dr√
1 − r4

.

Sketch a graph of the period T versus x0. Hint: In (3.3) separate variables

and integrate over one-fourth of a period.

10. Consider a conservative system whose potential energy is

V (x) = (x+ 1)2(x− 2)2

The mass is m = 2.

a) What is the force?

b) Using the graphical technique described in Example 3.1, for E = 1, 2,

3, draw the orbits, or curves of constant energy, in xy phase space.

c) As time increases, indicate the direction of motion on the orbits.

d) If the mass starts at x = 0, y = 3 at t = 0, describe how its position

x = x(t) changes over time. Estimate its maximum distance from x =

0.
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11. Newton’s law of gravity states that the equation of motion for a mass m

in the gravitational field of the earth of mass M is

mx′′ = − GMm

(x+R)2
,

where R is the radius of the earth, x is the height of the object above

the surface of the earth, and G is the universal gravitational constant.

The force on the right side is the “inverse-square law”. At the surface the

force is −mg, where g is the gravitational acceleration at sea level. Thus,

GMm/R2 = mg and we can write

x′′ = − gR2

(x+R)2
.

Initially, assume that x(0) = 0 and x′(0) = y0, where y0.

a) Find the potential energy function V (x) assuming V (0) = 0, and write

down the conservation of energy law.

b) Show that the velocity is given by

y = ±
√
y2
0 − 2gR

(
1 − x

R

)
.

c) Using the graphical techniques described in this section, sketch three

orbits in phase space for the cases y0 >
√

2gR, y0 =
√

2gR, and y0 <√
2gR. Explain these orbits and state why is

√
2gR called the “escape

velocity?”

d) Show that
√

2gR is approximately 11.1 km/sec.

3.2 Linear Equations with Constant Coefficients

We recall two models first introduced in Chapter 1. For a spring–mass system

with damping the displacement x(t) satisfies

mx′′ + cx′ + kx = 0.

The current I(t) in an RCL circuit with no emf satisfies

LI ′′ +RI ′ +
1

C
I = 0.

The similarity between these two models is called the mechanical–electrical

analogy. The spring constant k is analogous to the inverse capacitance 1/C;
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both a spring and a capacitor store energy. The damping constant c is analogous

to the resistance R; both friction in a mechanical system and a resistor in an

electrical system dissipate energy. The mass m is analogous to the inductance

L; both represent “inertia” in the system. Many of the equations we examine in

the next few sections can be regarded as either circuit equations or mechanical

problems.

We can make the algebra a little simpler upon dividing by the leading

coefficient o u′′; then both equations above have the form

u′′ + pu′ + qu = 0, (3.4)

where p and q are constants. An equation of the form (3.4) is called a second-

order linear equation with constant coefficients. Because zero is on the right

side (physically, there is no external force or emf), the equation is homogeneous.

Usually the equation is accompanied by initial data of the form

u(0) = A, u′(0) = B. (3.5)

The problem of solving (3.4) subject to (3.5) is called the initial value problem

(IVP). Here the initial conditions are given at t = 0, but they could be given

at any time t = t0. Fundamental to our discussion is the following existence–

uniqueness theorem, which is proved in advanced texts.

Theorem 3.3

The initial value problem (3.4)–(3.5) has a unique solution that exists on −∞ <

t <∞. �

The plan is this. We first point out that the DE (3.4) always has two in-

dependent solutions u1(t) and u2(t) (by independent we mean one is not a

constant multiple of the other). We prove this fact by actually exhibiting the

solutions explicitly. Secondly, if we multiply each by an arbitrary constant and

form the linear combination

u(t) = c1u1(t) + c2u1(t),

where c1 and c2 are the arbitrary constants, then we can easily check that

u(t) is also a solution to (3.4). This linear combination is called the general

solution to (3.4). We prove at the end of this section that all solutions to (3.4)

are contained in this linear combination for different choices of the constants.

Finally, to solve the initial value problem we use the initial conditions (3.5) to

uniquely determine the constants c1 and c2.

Our strategy is to try to find a solution to (3.4) of the form u = eλt, where λ

is to be determined. We suspect something like this might work because every
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term in (3.4) has to be the same type of function in order for cancellation to

occur; thus u, u′, and u′′ must be the same form, which suggests an exponential

for u. Substitution of u = eλt into (3.4) instantly leads to

λ2 + pλ+ q = 0, (3.6)

which is a quadratic equation for the unknown λ. Equation (3.6) is called the

characteristic equation. Solving, we obtain roots

λ =
1

2
(−p±

√
p2 − 4q).

These roots of the characteristic equation are called the characteristic values

(or eigenvalues) corresponding to the differential equation (3.4). We use these

terms interchangeably. There are three cases, depending upon whether the

discriminant p2 − 4q is positive, zero, or negative. The reader should memorize

these three cases and the forms of the solution.

Remark 3.4

If we choose to work with the form

au′′ + bu′ + cu = 0,

where we do not divide through by the leading coefficient a, the same method

applies. Assuming solutions of the form u = eλt, the characteristic equation is

aλ2 + bλ+ c = 0.

The eigenvalues are

λ =
1

2a

(
−b±

√
b2 − 4ac

)
. �

Case 1. If p2−4q > 0, then there are two real unequal characteristic values

λ1 and λ2. Hence, there are two independent, exponential-type solutions

u1(t) = eλ1t, u2(t) = eλ2t,

and the general solution to (3.4) is

u(t) = c1e
λ1t + c2e

λ2t. (3.7)

Example 3.5

The differential equation u′′ − u′ − 12u = 0 has characteristic equation λ2 −
λ− 12 = 0 with roots λ = −3, 4. These are real and distinct and so the general
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solution to the DE is u = c1e
−3t + c2e

4t. Over a long time the contribution

e−3t decays and the solution is dominated by the e4t term. Thus, eventually

the solution grows exponentially. �

Case 2. If p2 − 4q = 0 then there is a double root λ = −p/2. Then one

solution is u1 = eλt. A second independent solution in this case is u2 = teλt.

(Later we show why this solution occurs.) Therefore the general solution to

(3.4) in this case is

u(t) = c1e
λt + c2te

λt, λ = −p
2
. (3.8)

Example 3.6

The differential equation u′′ + 4u′ + 4u = 0 has characteristic equation λ2 +

4λ + 4 = 0, with roots λ = −2,−2. Thus the eigenvalues are real and equal,

and the general solution is u = c1e
−2t + c2te

−2t. This solution decays as time

gets large (recall that a decaying exponential dominates the linear growth term

t so that te−2t goes to zero). �

Case 3. If p2 − 4q < 0 then the roots of the characteristic equation are

complex conjugates having the form

λ = α± iβ, α = −p2, β =
1

2

√
4q = p2.

Therefore two complex solutions of (3.4) are

e(α+iβ)t, e(α−iβ)t.

To manufacture real solutions we use a fundamental result that holds for all

linear homogeneous equations.

Theorem 3.7

If u = g(t) + ih(t) is a complex solution to the differential equation (3.4), then

its real and imaginary parts, g(t) and h(t), are real solutions. �

Proof

To see why this is true, substitute the solution u = g(t) + ih(t) into the differ-

ential equation u′′ + pu′ + qu = 0 to get

(g(t) + ih(t))′′ + p(g(t) + ih(t))′ + q(g(t) + ih(t)) = 0,
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or

[g′′(t) + pg′(t) + qg(t)] + i[h′′(t) + ph′(t) + qh(t)] = 0.

The left side is complex and equal to zero. The only way this can happen is for

the real and imaginary parts to be zero,2 or

g′′(t) + pg′(t) + qg(t) = 0, h′′(t) + ph′(t) + qh(t) = 0.

But this means g = g(t) and h = h(t) are solutions to (3.4).

Let us take the first of the complex solutions given above and expand it

into its real and imaginary parts using Euler’s formula:

eiβt = cosβt+ i sinβt.

We have

e(α+iβ)t = eαteiβt = eαt(cosβt+ i sinβt) = eαt cosβt+ ieαt sinβt.

Therefore, by Theorem 3.7, u1 = eαt cosβt and u2 = eαt sinβt are two real

independent solutions to Equation (3.4). If we take the second of the complex

solutions, e(α−iβ)t, instead of e(α+iβ)t, then we get the same two real solutions.

Consequently, in the case that the characteristic values are complex λ = α±iβ,
the general solution to DE (3.4) is

u(t) = c1e
αt cosβt+ c2e

αt sinβt. (3.9)

In the case of complex eigenvalues, we recall from trigonometry that (3.9)

can be written differently as

u(t) = eαt(c1 cosβt+ c2 sinβt) = eαtA cos(βt− ϕ),

where A is the amplitude and ϕ is the phase. This latter form is called the

phase–amplitude form of the general solution. Written in this form, A and ϕ

play the role of the two arbitrary constants, instead of c1 and c2. We now show

that that all these constants are related by

A =
√
c21 + c22, ϕ = arctan

c2
c1
.

This is because the cosine of difference expands to

A cos(βt− ϕ) = A cos(βt) cosϕ+A sin(βt) sinϕ.

Comparing this expression to c1 cosβt+ c2 sinβt, gives

A cosϕ = c1, A sinϕ = c2.

2 If a + bi = 0, where a and b are real, then, necessarily, a = b = 0.
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Squaring and adding this last set of equations determines A, and dividing the

set of equations determines ϕ.

Sums of sines and cosines are difficult to plot without a calculator. But, we

can write the oscillatory part of the solution as

A cos(βt− ϕ) = A cos

[
β

(
t− ϕ

β

)]
.

It is easy to see that this part plots as a shifted cosine function of frequency β

and amplitude A. The amount of the shift, ϕ/β, is called the phase shift.

Observe that the solution in the complex case is oscillatory in nature with

eαt multiplying the amplitude A. If α < 0 then the solution will be a decaying

oscillation and if α > 0 the solution will be a growing oscillation. If α = 0, which

means that the characteristic equation has purely imaginary roots, λ = ±βi,
then the general solution is purely oscillatory:

u(t) = c1 cosβt+ c2 sinβt = A cos(βt− ϕ),

It oscillates with constant amplitude A and period 2π/β. The frequency β is

called the natural frequency of the system given in hertz (1/time).

Example 3.8

Solve the initial value problem

u′′ + 5u = 0, u(0) = 2, u′(0) = 1.

The DE has characteristic equation λ2 + 5 = 0, giving purely imaginary eigen-

values λ = ±
√

5 i. The general solution is therefore

u(t) = c1 cos
√

5t+ c2 sin
√

5t.

Applying the initial conditions, u(0) = 1 forces c1 = 2. Next,

u′(t) = −
√

5c1 sin
√

5t+
√

5c2 cos
√

5t,

giving u′(0) =
√

5c2 = 1, or c2 = 1/
√

5. The solution to the IVP is therefore

u(t) = 2 cos
√

5t+
1√
5

sin
√

5t.

To determine the phase–amplitude form of the solution, we note

A =

√
4 +

1

5
=

√
21

5
, ϕ = arctan

(
1

2
√

5

)
= arctan0.2236 = 0.2199,
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because ϕ is in the first quadrant. Thus, the phase–amplitude form is

u(t) =

√
21

5
cos(

√
5t− 0.2199).

The phase shift is 0.2199/
√

5 = 0.0984. The solution plots as the curve

cos(
√

5t) shifted to the right by 0.0984 and stretched vertically by the am-

plitude
√

21/5 = 2.049. �

There is some common terminology used in engineering to describe the

motion of a spring–mass system with damping, governed by the equation

mx′′ + cx′ + kx = 0.

The characteristic equation is

mλ2 + cλ+ k = 0,

with roots

λ =
−c±

√
c2 − 4mk

2m
.

If the roots are complex (c2 < 4mk) then the system is underdamped (repre-

senting a decaying oscillation); if the roots are real and equal (c2 = 4mk) then

the system is critically damped (decay, no oscillations, and at most one pass

through equilibrium x = 0); if the roots are real and distinct (c2 > 4mk) then

the system is overdamped (a strong decay toward x = 0). The same terminology

can be applied to an RCL circuit.

Example 3.9

The differential equation u′′+2u′+5u = 0 models a damped spring–mass system

with m = 1, c = 2, and k = 5. It has characteristic equation λ2 + 2λ+ 5 = 0.

The quadratic formula gives complex roots λ = −1± 2i. Therefore the general

solution is

u = c1e
−t cos 2t+ c2e

−t sin 2t,

representing a decaying oscillation. Here, the natural frequency of the un-

damped oscillation is 2. In phase–amplitude form we can write

u = Ae−t cos(2t− ϕ).

Let us assume that the mass is given an initial velocity of 3 from an initial

position of 1. Then the initial conditions are u(0) = 1, u′(0) = 3. We can use

these conditions directly to determine either c1 and c2 in the first form of the
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solution, or A and ϕ in the phase–amplitude form. Going the former route, we

apply the first condition to get

u(0) = c1 = 1.

To apply the other initial condition we need the derivative. We get

u′(t) = −2c1e
−t sin(2t) − c1e

−t cos(2t) + 2c2e
−t cos(2t) − c2e

−t sin(2t).

Then
u′(0) = −c1 + 2c2 = 3.

Therefore c2 = 2. The amplitude is

A =
√

11 + 22 =
√

5,

and the phase is
ϕ = arctan 2 ≈ 1.107 radians.

Therefore, in phase–amplitude form

u =
√

5e−t cos(2t− 1.107).

This solution represents a decaying oscillation. The oscillatory part has natural

frequency 2 and the period is π. See Figure 3.3. The phase has the effect of

translating the cos 2t term by 1.107/2 = 0.554, which is called the phase shift.

�

To summarize, we have observed that the differential equation (3.4) always

has two independent solutions u1(t) and u2(t), and that the linear combination

u(t) = c1u1(t) + c2u1(t)

is also a solution, called the general solution. Now, as promised, we show that

the general solution contains all possible solutions to (3.4). To see this let u1(t)

and u2(t) be special solutions that satisfy the initial conditions

u1(0) = 1, u′1(0) = 0,

and
u2(0) = 0, u′2(0) = 1,

respectively. Theorem 3.3 implies these two solutions exist. Now let v(t) be any

solution of (3.4). It will satisfy some conditions at t = 0, say, v(0) = a and

v′(0) = b. But the function

u(t) = au1(t) + bu2(t)

satisfies those same initial conditions, u(0) = a and u′(0) = b. Must u(t)

therefore equal v(t)? Yes, by the uniqueness theorem, Theorem 3.3. Therefore

v(t) = au1(t)+bu1(t), and the solution v(t) is contained in the general solution.
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Figure 3.3 Plot of the solution u =
√

5e−t cos(2t− 1.107).

Remark 3.10

Two equations occur so frequently that it is worthwhile to memorize them

along with their solutions. The pure oscillatory equation

u′′ + k2u = 0

has characteristic roots λ = ±ki, and the general solution is

u = c1 cos kt+ c2 sinkt.

On the other hand, the equation

u′′ − k2u = 0

has characteristic roots λ = ±k, and thus the general solution is

u = c1e
kt + c2e

−kt.

This latter equation can also be written in terms of the hyperbolic functions

cosh and sinh as

u = C1 coshkt+ C2 sinh kt,

where

coshkt =
ekt + e−kt

2
, sinh kt =

ekt − e−kt

2
.
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Sometimes it is easier to work with the hyperbolic form of the general solution.

�

EXERCISES

1. Find the general solution of the following equations:

a) u′′ − 4u′ + 4u = 0.

b) u′′ + u′ + 4u = 0.

c) u′′ − 5u′ + 6u = 0.

d) u′′ + 9u = 0.

e) u′′ − 2u′ = 0.

f) u′′ − 12u = 0.

2. In Exercise 1, parts (a) through (f), find and plot the solution satisfying

the initial conditions u(0) = 1, u′(0) = 0,

3. Find the solution to the initial value problem u′′ + u′ + u = 0, u(0) =

u′(0) = 1, and write it in phase-amplitude form.

4. A damped spring–mass system is modeled by the initial value problem

u′′ + 0.125u′ + u = 0, u(0) = 2, u′(0) = 0.

Find the solution and sketch its graph over the time interval 0 ≤ t ≤ 50. If

the solution is written in the form u(t) = Ae−t/16 cos(ωt − ϕ), find A, ω,

and ϕ.

5. For which values of the parameters a and b (if any) will the solutions to

u′′−2au′+bu = 0 oscillate with no decay (i.e., be periodic)? Oscillate with

decay? Decay without oscillations?

6. An RCL circuit has equation LI ′′ + I ′ + I = 0. Characterize the types

of current responses that are possible, depending upon the value of the

inductance L.

7. An oscillator with damping is governed by the equation x′′ +3ax′+bx = 0,

where a and b are positive parameters. Plot the set of points in the ab plane

(called ab parameter space) where the system is critically damped.

8. Find a DE that has general solution u(t) = c1e
4t + c2e

−6t.

9. Find a DE that has solution u(t) = e−3t + 2te−3t. What are the initial

conditions?
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10. Find a DE that has solution u(t) = sin 4t+ 3 cos 4t.

11. Find a DE that has general solution u(t) = A cosh 5t+B sinh 5t, where A

and B are arbitrary constants. Find the arbitrary constants when u(0) = 2

and u′(0) = 0.

12. Find a DE that has solution u(t) = e−2t(sin 4t + 3 cos 4t). What are the

initial conditions?

13. Describe the current response I(t) of a LC circuit with L = 5 henrys, C = 2

farads, with I(0) = 0, I ′(0) = 1.

3.3 The Nonhomogeneous Equation

In the last section we solved the homogeneous equation

u′′ + pu′ + qu = 0. (3.10)

Now we consider the nonhomogeneous equation

u′′ + pu′ + qu = g(t), (3.11)

where a known term g(t), called a source term or forcing term, is included on

the right side. In mechanics it represents an applied, time-dependent force; in a

circuit it represents an applied voltage (an emf, such as a battery or generator).

There is a general structure theorem, analogous to the theorem for first-order

linear equations, that dictates the form of the solution to the nonhomogeneous

equation.

Theorem 3.11

All solutions of the nonhomogeneous equation (3.11) are given by the sum of the

general solution to the homogeneous equation (3.10) and any particular solution

to the nonhomogeneous equation. That is, the general solution to (3.11) is

u(t) = c1u1(t) + c2u1(t) + up(t),

where u1 and u2 are independent solutions to (3.10) and up is any solution

whatsoever to (3.11). �

This result is very easy to show. If u(t) is any solution whatsoever of (3.11),

and up(t) is a particular solution, then u(t)−up(t) must satisfy the homogeneous

equation (3.10). Therefore, by the results in the last section we must have

u(t) − up(t) = c1u1(t) + c2u1(t).
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3.3.1 Undetermined Coefficients

We already know how to find the solution to the homogeneous equation, so we

need techniques to find a particular solution up to (3.11). One method that

works for many equations is simply to make a judicious guess depending upon

the form of the source term g(t). Officially, this method is called the method of

undetermined coefficients because we eventually have to find numerical coeffi-

cients in our guess. This works because all the terms on the left side of (3.11)

must add up to give g(t). So the particular solution cannot be too wild if g(t)

is not too wild; in fact, it nearly must have the same form as g(t). The method

is successful for forcing terms that are exponential functions, sines and cosines,

polynomials, and sums and products of these common functions. Here are some

basic rules without some caveats, which come later. The capital letters in the

list below denote known constants in the source term g(t), and the lowercase

letters denote coefficients to be determined in the trial form of the particular

solution when it is substituted into the differential equation.

1. If g(t) = Aeγt is an exponential, then the trial form is exponential up =

aeγt.

2. If g(t) = A sinωt or g(t) = A cosωt, then the trial form is the combination

up = a sinωt +b cosωt.

3. If g(t) = Ant
n +An−1t

n−1 + · · ·+A0 is a polynomial of degree n, then the

trial form is up = ant
n + an−1t

n−1 + · · · + a0, a polynomial of degree n.

4. If g(t) = (Ant
n + An−1t

n−1 + · · · + A1t + A0)e
γt, then the trial form is

up = (ant
n + an−1t

n−1 + · · ·a1t+ a0)e
γt.

5. If g(t) = Aeγt sinωt or g(t) = Aeγt cosωt, then the trial form is up =

aeγt sinωt+ beγt cosωt.

If the source term g(t) is a sum of two different types, we take the net guess

to be a sum of the two individual guesses. For example, if g(t) = 3t−1+7e−2t, a

polynomial plus an exponential, then a good guess would be up = at+b+ce−2t.

The following examples show how the method works.

Example 3.12

Find a particular solution to the differential equation

u′′ − u′ + 7u = 5t− 3.

The right side, g(t) = 5t− 3, is a polynomial of degree 1 so we try up = at+ b.

Substituting, −a+ 7(at+ b) = 5t− 3. Equating like terms (constant term and
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terms involving t) gives −a + 7b = −3 and 7a = 5. Therefore a = 5/7 and

b = −16/49. A particular solution to the equation is therefore

up(t) =
5

7
− 16

49
t. �

Example 3.13

Consider the equation

u′′ + 3u′ + 3u = 6e−2t.

The homogeneous equation has characteristic polynomial λ2+3λ+3 = 0, which

has roots λ = −3/2±
√

3/2. Thus the solution to the homogeneous equation is

uh(t) = c1e
−3t/2 cos

√
3

2
t+ c2e

−3t/2 sin

√
3

2
t.

To find a particular solution to the nonhomogeneous equation note that g(t) =

6e−2t. Therefore we guess up = ae−2t. Substituting this trial function into the

nonhomogeneous equation gives, after cancelling e−2t, the equation 4a− 6a+

3a = 6. Thus a = 1 and a particular solution to the nonhomogeneous equation

is up = e−2t. The general solution to the original nonhomogeneous equation is

u(t) = c1e
−3t/2 cos

√
3

2
t+ c2e

−3t/2 sin

√
3

2
t+ e−2t. �

Example 3.14

Find the form of a trial particular solution of a differential equation whose

forcing term is

g(t) = t2e−2t cos t.

Here, the forcing term is a second-degree polynomial times an exponential times

a cosine function. By the rules stated above, an trial guess for the particular

solution is

up(t) = (at2 + bt+ c)e−2t(d cos t+ f sin t).

Note that we did not need a constant in front of the exponential term because

it can be incorporated into the constants in the quadratic. �

Example 3.15

Find a particular solution to the DE

u′′ + 2u = sin 3t.
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Our basic rule above dictates we try a solution of the form up = a sin 3t+b cos3t.

Then, upon substituting,

−9a sin 3t− 9b cos 3t+ 2a sin 3t+ 2b cos 3t = sin 3t.

Equating like terms gives −9a+ 2a = 1 and b = 0 (there are no cosine terms

on the right side). Hence a = −1/7 and a particular solution is up = − 1
7 sin 3t.

For this equation, because there is no first derivative, we did not need a cosine

term in the guess. If there were a first derivative, a cosine would have been

required. �

Example 3.16

Next we modify the last example and consider

u′′ + 9u = sin 3t.

In terms of an application, u is the displacement of a mass (m = 1) on a spring

whose stiffness is k = 9; a forcing function sin 3t is being applied to the system.

The rules dictate the trial function up = a sin 3t + b cos 3t. Substituting into

the differential equations yields

−9a sin 3t− 9b cos 3t+ 9a sin 3t+ 9b cos 3t = sin 3t.

But the terms on the left cancel completely and we get 0 = sin 3t, an absurdity.

The method failed! This is because the homogeneous equation u′′ +9u = 0 has

eigenvalues λ = ±3i, which lead to independent solutions u1 = sin 3t and

u2 = cos 3t. Each of these has natural frequency equal to 3. The forcing term

g(t) = sin 3t, which also has frequency 3, is not independent of those two basic

solutions; it duplicates one of them, and in this case the method as presented

above fails. The fact that we get 0 when we substitute our trial function into

the equation is no surprise; it is a solution to the homogeneous equation. To

remedy this problem, we can modify our original guess by multiplying it by t.

That is, we attempt a particular solution of the form

up = t(a sin 3t+ b cos 3t).

Calculating the second derivative u′′p and substituting, along with up, into the

original equation leads to (show this!)

6a cos 3t− 6b sin 3t = sin 3t.

Hence a = 0 and b = −1/6. We have found a particular solution

up = −1

6
t cos 3t.
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Therefore the general solution of the original nonhomogeneous equation is the

homogeneous solution plus the particular solution,

u(t) = c1 cos 3t+ c2 sin 3t− 1

6
t cos 3t.

Now that we have the general solution, we can append initial conditions to fix

the arbitrary constants. If u(0) = 1 and u′(0) = 0, then it is easy to show that

c1 = 1 and c2 = 1/18. So, the solution to the initial value problem is

u(t) = cos 3t+
1

18
sin 3t− 1

6
t cos 3t.

This solution is plotted in Figure 3.4. Notice that the solution to the homo-

geneous equation is oscillatory and remains bounded; the particular solution

oscillates without bound because of the increasing time factor t multiplying

that term. This phenomenon is called resonance. It occurs because the forcing

function sin 3t has frequency 3, and this is the same as the natural frequency of

the unforced system. This phenomenon is discussed in more detail in the next

section. �
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Figure 3.4 Solution of u(t) = cos 3t+ 1
18 sin 3t− 1

6 t cos 3t. The increased am-

plitude of the oscillations is caused by driving the system at the same frequency

as its natural frequency.
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The technique (of multiplying our guess by t) for finding the form of the

particular solution that we used in the preceding example works in general;

this is the main caveat in the set of rules listed above.

Remark 3.17

Caveat. If a term in the initial trial guess for a particular solution up duplicates

one of the basic solutions for the homogeneous equation, then modify the guess

by multiplying by the smallest power of t that eliminates the duplication.

Example 3.18

Consider the DE
u′′ − 4u′ + u = 5te2t.

The initial guess for a particular solution is up = (at+ b)e2t. But, as you can

check, e2t and te2t are basic solutions to the homogeneous equation u′′ − 4u′ +

u = 0. Multiplying the first guess by t gives up = (at2 + bt)e2t, which still does

not eliminate the duplication because of the te2t term. So, multiply by another

t to get up = (at3 + bt2)e2t. Now no term in the guess duplicates one of the

basic homogeneous solutions and so this is the correct form of the particular

solution. If desired, we can substitute this form into the differential equation

to determine the exact values of the coefficients a and b. But, without actually

finding the coefficients, the form of the general solution is

u(t) = c1e
2t + c2te

2t + (at3 + bt2)e2t.

The constants c1 and c2 could be determined at this point by initial conditions,

if given. Sometimes knowing the form of the solution is enough. �

Example 3.19

Consider an RCL circuit where R = 2, L = C = 1, and the current is driven

by an electromotive force of 2 sin 3t. The circuit equation for the voltage V (t)

across the capacitor is
V ′′ + 2V ′ + V = 2 sin 3t.

For initial data we take

V (0) = 4, V ′(0) = 0.

We recognize this as a nonhomogeneous linear equation with constant coeffi-

cients. So the general solution will be the sum of the general solution to the

homogeneous equation
V ′′ + 2V ′ + V = 0
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plus any particular solution to the nonhomogeneous equation. The homoge-

neous equation has characteristic equation λ2 + 2λ+ 1 = 0 with a double root

λ = −1. Thus the homogeneous solution is

Vh = e−t(c1 + c2t).

Notice that this solution, regardless of the values of the constants, will decay

away in time; this part of the solution is called the transient response of the cir-

cuit. To find a particular solution we use undetermined coefficients and assume

it has the form
Vp = a sin 3t+ b cos 3t.

Substituting this into the nonhomogeneous equation gives a pair of linear equa-

tions for a and b,
−4a− 3b = 1, 7a− 9b = 0.

We find a = −0.158 and b = −0.123. Therefore the general solution is

V (t) = e−t(c1 + c2t) − 0.158 sin3t− 0.123 cos3t.

Now we apply the initial conditions. Easily V (0) = 4 implies c1 = 4.123. Next

we find V ′(t) so that we can apply the condition V ′(0) = 0. Leaving this as an

exercise, we find c2 = 4.597. Therefore, the voltage on the capacitor is

V (t) = e−t(4.123 + 4.597t)− 0.158 sin3t− 0.123 cos3t.

As we observed, the first term always decays as time increases. Therefore we

are left with only the oscillatory particular solution −0.158 sin3t−0.123 cos3t,

which takes over in time. It is called the steady-state response of the circuit

(Figure 3.5). �

By the way, the method of undetermined coefficients works for nonhomoge-

neous first-order linear equations as well, provided the equation has constant

coefficients.

Example 3.20

Consider the equation
u′ + qu = g(t).

The homogeneous solution is uh(t) = Ce−qt. Provided g(t) has the right form,

a particular solution up(t) can be found by the method of undetermined coeffi-

cients exactly as for second-order equations: make a trial guess and substitute

into the equation to determine the coefficients in the guess. The general solu-

tion to the nonhomogeneous equation is then u(t) = uh(t)+up(t). For example,

consider the equation
u′ − 3u = t− 2.
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Figure 3.5 A plot of the voltage V (t) in Example 3.19. Initially there is a

transient caused by the initial conditions. It decays away and is replaced by a

steady-state response, an oscillation, that is caused by the forcing term.

The homogeneous solution is uh = Ce3t. To find a particular solution make the

trial guess

up = at+ b.

No term duplicates the homogeneous solution. Substituting this into the equa-

tion gives a = − 1
3 and b = 5

3 . Consequently, the general solution is

u(t) = Ce3t − 1

3
t+

5

3
. �

EXERCISES

1. Each of the following functions represents g(t), the right side of a nonho-

mogeneous equation. State the form of an initial trial guess for a particular

solution up(t).

a) 3t3 − 1.

b) 12.

c) t2e3t.

d) 5 sin 7t.
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e) e2t cos t+ t2.

f) te−t sinπt.

g) (t+ 2) sinπt.

2. Find the general solution of the following nonhomogeneous equations:

a) u′′ + 7u = te3t.

b) u′′ − u′ = 6 + e2t.

c) u′ + u = t2.

d) u′′ − 3u′ − 4u = 2t2.

e) u′′ + u = 9e−t.

f) u′ + u = 4e−t.

g) u′′ − 4u = cos 2t.

h) u′′ + u′ + 2u = t sin 2t.

3. Solve the initial value problem u′′− bu′+u = sin t, u(0) = 0, u′(0) = 0,

where b is a constant with b < 1.

4. Solve the initial value problem u′′−3u′−40u = 2e−t, u(0) = 0, u′(0) =

1.

5. Find the solution of u′′ − 2u′ = 4, u(0) = 1, u′(0) = 0.

6. An undamped spring–mass system is driven by an external force cos
√

2 t.

The mass is m = 1 and the spring constant k = 2. Initially, the conditions

are u(0) = 0 and u′(0) = 1. Find the general solution and plot it for

0 ≤ t ≤ 30.

7. Find the particular solution to the equation u′′ + u′ + 2u = sin2 t? Hint:

Use a double angle formula to rewrite the right side.

8. A mass of 5 grams is attached to a spring with stiffness k = 2. The system

is driven by an external force of 10 dynes. Initially the mass is displaced

15 cm and given a velocity of 4 cm/sec. Find and plot the displacement of

the mass for all times t > 0.

9. An LC circuit contains a 10−2 farad capacitor in series with an aging

battery of 5e−2t volts and an inductor of 0.4 henrys. At t = 0 both q = 0

and I = 0. Find the charge q(t) on the capacitor and describe the response

of the circuit in terms of transients and steady states.

10. An RCL circuit contains a battery generating 110 volts. The resistance is

16 ohms, the inductance is 2 henrys, and the capacitance is 0.02 farads. If
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q(0) = 5 and I(0) = 0, find the charge q(t) response of the circuit. Identify

the transient solution and the steady-state response.

11. An RCL circuit contains a aging battery generating 10e−t/100 volts. The

resistance is 100 ohms, the inductance is 2 henrys, and the capacitance is

0.001 farads. If q(0) = q′(0) = 0, find the charge q(t) on the capacitor for

t > 0 and sketch its graph. When does the maximum charge occur?

3.3.2 Resonance

The phenomenon of resonance is a key characteristic of oscillating systems.

Resonance occurs when the frequency of a forcing term has the same frequency

as the natural oscillations in the system; resonance gives rise to large am-

plitude oscillations. Example 3.16 gives an example of this phenomenon in a

forced spring–mass setup. To give another example, consider a pendulum that

is oscillating at small amplitude at its natural frequency. What happens when

we deliberately force the pendulum (say, by giving it a tap with our finger in

the positive angular direction) at a frequency near this natural frequency? So,

every time the bob passes through θ = 0 with a positive direction, we give it a

positive tap. We will clearly increase its amplitude. This is the phenomenon of

resonance. It can occur in circuits where we force (by a generator) the system

at its natural frequency, and it can occur in mechanical systems and structures

where an external periodic force is applied at the same frequency as the system

would naturally oscillate. The results could be disastrous, such as a blown cir-

cuit or a fallen building; a building or bridge could have a natural frequency of

oscillation, and the wind could provide the forcing function. Another example

is a company of soldiers marching in cadence across a suspension bridge at the

same frequency as the natural frequency of the structure.

Example 3.21

We consider a model problem illustrating this phenomenon, an LC circuit3 that

is forced with a sinusoidal voltage source of frequency β. If L = 1 the governing

equation for the charge on the capacitor will have the form

u′′ + ω2u = sinβt, (3.12)

where ω2 = 1/C. Assume first that β 6= ω and take initial conditions

u(0) = 0, u′(0) = 1.

3 If you don’t want to think about circuits, think about a spring–mass oscillator with
mass m = 1 and stiffness k = ω2, driven by a force sin βt.
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The homogeneous equation has general solution

uh = c1 cosωt+ c2 sinωt,

which gives natural oscillations of frequency ω. A particular solution has the

form up = a sinβt. Substituting into the DE gives a = 1/(ω2 − β2). So the

general solution of (3.12) is

u = c1 cosωt+ c2 sinωt+
1

ω2 − β2
sinβt. (3.13)

At t = 0 we have u = 0 and so c1 = 0. Also u′(0) = 1 gives

c2 = −β + ω(ω2 − β2)

ω2 − β2

. Therefore the solution to the initial value problem is

u = −β + ω(ω2 − β2)

ω2 − β2
sinωt+

1

ω2 − β2
sinβt. (3.14)

This solution shows that the charge response is a sum of two oscillations of

different frequencies. If the forcing frequency β is close to the natural frequency

ω, then the amplitude is bounded, but it is obviously large because of the factor

ω2 − β2 in the denominator. Thus the system has large oscillations when β is

close to ω. �

Example 3.22

In the previous example, what happens if β = ω? Then the general solution in

(3.13) is not valid because there is division by zero, and we have to re-solve the

problem. The circuit equation is

u′′ + ω2u = sinωt, (3.15)

where the circuit is forced at the same frequency as its natural frequency. The

homogeneous solution is the same as before, but the particular solution now

has the form
up = t(a sinωt+ b cosωt),

with a factor of t multiplying the terms. Therefore the general solution of (3.15)

has the form

u(t) = c1 cosωt+ c2 sinωt+ t(a sinωt+ b cosωt).

Without actually determining the constants, we can infer the nature of the

response. Because of the t factor in the particular solution, the amplitude of

the oscillatory response u(t) will grow in time. This is the phenomenon of pure

resonance. It occurs when the frequency of the external force is the same as

the natural frequency of the system. �
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What happens if we include damping in the circuit (i.e., a resistor) and still

force it at the natural frequency?

Example 3.23

Consider

u′′ + 2σu′ + 2u = sin
√

2 t,

where 2σ is a small (0 < σ) damping coefficient, for example, resistance. The ho-

mogeneous equation u′′+2σu′+2u = 0 has solution u = e−σt(c1 cos
√

2 − σ2 t+

c2 sin
√

2 − σ2 t). Now the particular solution has the form up = a cos
√

2 t +

b sin
√

2 t, where a and b are constants (found by substituting into the DE). So,

the response of the circuit is

u = e−σt(c1 cos
√

2 − σ2 t+ c2 sin
√

2 − σ2t) + a cos
√

2 t+ b sin
√

2 t.

The transient is a decaying oscillation of frequency
√

2 − σ2, and the steady-

state response is periodic of frequency
√

2. The solution will remain bounded,

but its amplitude will be large if σ is very small. �

A typical response of a purely resonant system is shown in Figure 3.4. Be-

cause calculations like those above are algebraically tedious, we often use soft-

ware to solve the problems. For example, the following sequence of MATLAB R©

commands solved and plotted the solution to the initial value problem that is

shown in Figure 3.4. Other computer algebra systems and calculators have

similar commands.

u=dsolve(’D2u+9*u=sin(3*t)’,’u(0)=1, Du(0)=0’)

u=vectorize(u);

t=0:0.05:40; u=eval(u); plot(t,u)

EXERCISES

1. Graph the solution (3.14) for several different values of β and ω. Include

values where these two frequencies are close.

2. Find the solution in Example 3.22 if the initial conditions are u(0) = 0 =

u′(0) = 0.

3. Find the form of the general solution of the equation u′′ + 16u = cos 4t.

4. Consider a general LC circuit with input voltage V0 sinβt. If β and the

capacitance C are known, what value of the inductance L would cause

pure resonance?
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5. An undamped spring–mass system with m = 4 and and stiffness k is forced

by a sinusoidal function 412 sin5t. What value of k would cause pure res-

onance?

6. Consider a spring–mass system with small damping and driven by a cosine

force:
u′′ + 0.01u′ + 4u = cos 2t, u(0) = u′(0) = 0.

Find the solution and plot the result.

7. Consider the equation
u′′ + ω2u = cosβt.

a) Find the solution when the initial conditions are u(0) = u′(0) = 0 when

ω 6= β.

b) Use the trigonometric identity 2 sinA sinB = cos(A−B)− cos(A+B)

to write the solution as a product of sines.

c) Take ω = 55 and β = 45 and plot the solution you found in part (b)

on the time interval [0, 3.75]. The solution can be interpreted as a high

frequency response contained in a low frequency amplitude envelope.

We say the high frequency is modulated by the low frequency. This is

the phenomenon of beats. What is the high frequency and low frequency

modulation? (The plot of the solution is shown in Figure 3.6).

3.4 Variable Coefficients

Next we consider second-order linear equations with given variable coefficients

p(t) and q(t):
u′′ + p(t)u′ + q(t)u = g(t). (3.16)

Except for a few cases, these equations cannot be solved in analytic form using

familiar functions. Even the simplest equation of this form,

u′′ − tu = 0

(where p(t) = g(t) = 0 and q(t) = −t), which is called Airy’s equation, requires

the definition of a new class of functions, called Airy functions, to characterize

the solutions. Nevertheless, there is a well-developed theory for these equations,

and we list some of the main results. We require that the coefficients p(t) and

q(t), as well as the forcing term g(t), be continuous functions on the interval

I of interest. We list some basic properties of these equations; the reader may

observe that these are the same properties shared by second-order, constant

coefficient equations studied in Section 3.2.
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Figure 3.6 A plot of the solution of the “beats” phenomenon as stated in

Exercise 7, Section 3.3.2.

1. (Existence-Uniqueness) If I is an open interval and t0 belongs to I, then

the initial value problem

u′′ + p(t)u′ + q(t)u = g(t), (3.17)

u(t0) = a, u′(t0) = b, (3.18)

has a unique solution on I.

2. (Superposition of Solutions) If u1 and u2 are independent solutions of

the associated homogeneous equation

u′′ + p(t)u′ + q(t)u = 0 (3.19)

on an interval I, then u(t) = c1u1 + c2u2 is a solution on the interval I

for any constants c1 and c2. Moreover, all solutions of the homogeneous

equation are contained in the general solution.

3. (Nonhomogeneous Equation) All solutions to the nonhomogeneous

equation (3.17) can be represented as the sum of the general solution to

the homogeneous equation (3.19) and any particular solution to the non-

homogeneous equation (3.17). In symbols,

u(t) = c1u1(t) + c2u2(t) + up(t),
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which is called the general solution to (3.17).

The difficulty, of course, is to find two independent solutions u1 and u2 to

the homogeneous equation, and to find a particular solution. As we remarked,

this task is not easily accomplished for equations with variable coefficients. The

method of writing down the characteristic polynomial, as we did for constant

coefficient equations, does not work.

3.4.1 Cauchy–Euler Equation

One equation that can be solved analytically is an equation of the form

u′′ +
b

t
u′ +

c

t2
u = 0,

or

t2u′′ + btu′ + cu = 0,

which is called a Cauchy–Euler equation. In each term the exponent on t coin-

cides with the order of the derivative. Observe that we must avoid t = 0 in our

interval of solution, because p(t) = b/t and q(t) = c/t2 are not continuous at

t = 0. We try to find a solution of the form of a power function u = tm. (Think

about why this might work). Substituting gives the characteristic equation, or,

commonly, the indicial equation

m(m− 1) + bm+ c = 0,

which is a quadratic equation for m. There are three cases. If there are two

distinct real roots m1 and m2, then we obtain two independent solutions tm1

and tm1 . Therefore the general solution is

u = c1t
m1 + c2t

m2 .

If the indicial equation has two equal roots m1 = m2 = m, then tm and tm ln t

are two independent solutions; in this case the general solution is

u = c1t
m + c2t

m ln t.

When the indicial equation has complex conjugate roots m = α± iβ, we note,

using the properties of logarithms, exponentials, and Euler’s formula, that a

complex solution is

tm = tα+iβ = tαtiβ = tαeln tiβ

= tαeiβ ln t = tα[cos(β ln t) + i sin(β ln t)].
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The real and imaginary parts of this complex function are therefore real solu-

tions (Theorem 3.3). So the general solution in the complex case is

u = c1t
α cos(β ln t) + c2t

α sin(β ln t).

Figure 3.7 shows a graph of the function sin(5 ln t), which is a function of the

type that appears in this solution. Note that this function oscillates less and

less as t gets large because ln t grows very slowly. As t nears zero it oscillates

infinitely many times. Because of the scale, these oscillations are not apparent

on the plot.
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Figure 3.7 Plot of sin(5 ln t). It oscillates infinitely many times near the

origin.

Example 3.24

Consider the equation

t2u′′ + tu′ + 9u = 0.

The indicial equation is m(m− 1) +m+ 9 = 0, which has roots m = ±3i. The

general solution is therefore

u = c1 cos(3 ln t) + c2 sin(3 ln t). �
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Example 3.25

Consider the equation

u′′ =
2

t
u′.

We can write this in Cauchy–Euler form as

t2u′′ − 2tu′ = 0,

which has indicial equation m(m − 1) − 2m = 0. The roots are m = 0 and

m = 3. Therefore the general solution is

u(t) = c1 + c2t
3. �

Example 3.26

Solve the initial value problem

t2u′′ + 3tu′ + u = 0, u(1) = 0, u′(1) = 2.

The DE is a Cauchy–Euler type with characteristic equation m(m− 1)+3m+

1 = 0. This has a double root m = −1, and so the general solution is

u(t) =
c1
t

+
c2
t

ln t.

Now, u(1) = c1 = 0 and so u(t) = c2 (t ln t). Taking the derivative, u′(t) =

c2/(t
2(1 − ln t)). Then u′(1) = c2 = 2. Hence, the solution to the initial value

problem is

u(t) =
2

t
ln t. �

A. Cauchy (1789–1857) and L. Euler (1707–1783) were great mathematicians

who left an indelible mark on the history of mathematics and science. Their

names are encountered often in advanced courses in mathematics, science, and

engineering.

3.4.2 Power Series Solutions*

In general, how are we to solve variable coefficient equations? Some equations

can be transformed into the Cauchy–Euler equation, but that is only a small

class. If we enter the equation in a computer algebra system such as Maple or

Mathematica, the system will often return a general solution that is expressed

in terms of so-called special functions (such as Bessel functions, Airy functions,

Legendre polynomials, and so on). We could define these special functions by
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the differential equations that we cannot solve. This is much like defining the

natural logarithm function ln t as the solution to the initial value problem

u′ = 1/t, u(1) = 0, as in Chapter 1. For example, we could define functions

Ai(t) and Bi(t), the Airy functions, as two independent solutions of the DE

u′′ − tu = 0. Many of the properties of these special functions then could be

derived directly from the differential equation itself. But how could we get a

“formula” for those functions? One way to get a representation of solutions to

equations with variable coefficients is to use power series methods.

Assume p and q have convergent power series expansions interval I contain-

ing t0. Solutions to the second-order equation with variable coefficients,

u′′ + p(t)u′ + q(t)u = 0, (3.20)

can be approximated near t = t0 by assuming a power series solution of the

form

u(t) =

∞∑

n=0

an(t− t0)
n = a0 + a1(t− t0) + a2(t− t0)

2 + a3(t− t0)
3 + · · ·.

The idea is simply to substitute the series and its derivatives into the differential

equation, along with the power series expansions of p and q about t0; then

collect like terms, thereby determining the coefficients an. The “collecting like

terms” can be quite arduous.

We recall from calculus that a power series converges only at t = t0, for all

t, or in an interval (t0−R, t0+R), where R is the radius of convergence. Within

its radius of convergence the power series represents a function, and the power

series may be differentiated term by term to obtain derivatives of the function.

Example 3.27

Consider the DE
u′′ − (1 + t)u = 0

on an interval containing t0 = 0. We have

u(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + · · ·,

u′(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + · · ·,
u′′(t) = a2 + 6a3t+ 12a4t

2 + · · ·.

Substituting into the differential equation gives

2a2 + 6a3t+ 12a4t
2 + · · · − (1 + t)(a0 + a1t+ a2t

2 + a3t
3 + · · ·) = 0.

Collecting like terms,

(−a0 + 2a2) + (−a0 − a1 + 6a3)t+ (−a2 − a1 + 12a4)t
2 + · · · = 0.
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Therefore

−a0 + 2a2 = 0,

−a0 − a1 + 6a3 = 0,

−a2 − a1 + 12a4 = 0, . . . .

Notice that all the coefficients can be determined in terms of a0 and a1. We

have

a2 =
1

2
a0, a3 =

1

6
(a0 + a1), a4 =

1

12
(a1 + a2) =

1

12
(a1 +

1

2
a0), ....

Therefore the power series for the solution u(t) can be written

u(t) = a0 + a1t+
1

2
a0t

2 +
1

6
(a0 + a1)t

3 +
1

12
(a1 +

1

2
a0)t

4 + · · ·

= a0(1 +
1

2
t2 +

1

6
t3 +

1

24
t4 + · · ·) + a1(t+

1

6
t3 +

1

12
t4 + · · ·),

which gives the general solution as a linear combination of two independent

power series solutions

u1(t) = 1 +
1

2
t2 +

1

6
t3 +

1

24
t4 + · · ·,

u2(t) = t+
1

6
t3 +

1

12
t4 + · · ·.

The two coefficients a0 and a1 can be determined from initial conditions. For

example, if

u(0) = 1, u′(0) = 3,

then a0 = 1 and a1 = 3, which gives the power series solution

u(t) = (1 +
1

2
t2 +

1

6
t3 +

1

24
t4 + · · ·) + 3(t+

1

6
t3 +

1

12
t4 + · · ·)

= 1 + 3t+
1

2
t2 +

2

3
t3 +

7

24
t4 + · · ·.

In this example, the power series converges for all t. We have only calculated

five terms, and our truncated power series is an approximation to the actual

solution to the initial value problem in a neighborhood of t = 0. Figure 3.8

shows the polynomial approximations by taking the first term, the first two

terms, the first three, and so on. �

There are many important equations of the form (3.20) where the coef-

ficients p and q do not satisfy the regularity properties (having power series

expansions) mentioned at the beginning of this subsection. However, if p and

q are not too ill-behaved at t0, we can still seek a series solution. In particular,
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if (t − t0)p(t) and (t − t0)
2q(t) have convergent power series expansions in an

interval about t0, then we say t0 is a regular singular point for (3.20), and we

attempt a series solution of the form

u(t) = tr
∞∑

n=0

an(t− t0)
n,

where r is some number. Substitution of this form into (3.20) leads to equations

for both r and the coefficients an. This technique is called the Frobenius method .

A simple example of an equation having a regular singular point is the Cauchy–

Euler equation

u′′ +
b

t
u′ +

c

t2
u = 0.

Here p(t) = b/t and q(t) = c/t2, and tp(t) and t2q(t) are both constant and

thus have power series expansions about t = 0. Some elaboration can be found

in the exercises.



3.4 Variable Coefficients 141

3.4.3 Reduction of Order*

If one solution u1(t) of the DE

u′′ + p(t)u′ + q(t)u = 0

happens to be known, then a second, linearly independent solution u2(t) can

be found of the form u2(t) = v(t)u1(t), for some v(t) to be determined. To find

v(t) we substitute this form for u2(t) into the differential equation to obtain a

first-order equation for v(t). This method is called reduction of order , and we

illustrate it with an example.

Example 3.28

Consider the DE

u′′ − 1

t
u′ +

1

t2
u = 0.

An obvious solution is u1(t) = t. So let u2 = v(t)t. Substituting, we get

(2v′ + tv′′) − 1

t
(v + tv′) +

1

t2
vt = 0,

which simplifies to

tv′′ + v′ = 0.

Letting w = v′, we get the first-order equation

tw′ + w = 0.

By separating variables and integrating we get w = 1/t. Hence v =
∫

(1/t)dt =

ln t, and the second independent solution is u2(t) = t ln t. Consequently, the

general solution of the equation is

u(t) = c1t+ c2t ln t.

Note that this example is a Cauchy–Euler equation; but the method works on

general linear second-order equations. Finally, this example shows why the ln t

factor enters one of the basic solutions in the Cauchy–Euler equation when the

roots are real and equal. �
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3.4.4 Variation of Parameters

There is a general formula for the particular solution to the nonhomogeneous

equation

u′′ + p(t)u′ + q(t)u = g(t), (3.21)

called the variation of parameters formula.

The idea is as follows. Let u1 and u2 be independent solutions to the ho-

mogeneous equation

u′′ + p(t)u′ + q(t)u = 0.

Then

uh(t) = c1u1(t) + c2u2(t)

is the general solution of the homogeneous equation. To find a particular solu-

tion we vary (with time t) both parameters c1 and c2 and take

up(t) = c1(t)u1(t) + c2(t)u2(t). (3.22)

Now we substitute this expression into the nonhomogeneous equation to get

expressions for c1(t) and c2(t). This is a tedious task in calculus and algebra,

and we leave most of the details to the interested reader. But here is how

the argument goes. We calculate u′p and u′′p so that we can substitute into the

equation. For notational simplicity, we drop the t variable in all of the functions.

We have

u′p = c1u
′
1 + c2u

′
2 + c′1u1 + c′2u2.

There is flexibility in our answer so let us set

c′1u1 + c′2u2 = 0. (3.23)

Then

u′p = c1u
′
1 + c2u

′
2,

u′′p = c1u
′′
1 + c2u

′′
2 + c′1u

′
1 + c′2u

′
2.

Substituting these into the nonhomogeneous DE gives

c1u
′′
1 + c2u

′′
2 + c′1u

′
1 + c′2u

′
2 + p(t)[c1u

′
1 + c2u

′
2] + q(t)[c1u1 + c2u2] = g(t).

Now we observe that u1 and u2 satisfy the homogeneous equation, and this

simplifies the last equation to

c′1u
′
1 + c′2u

′
2 = g(t). (3.24)
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Equations (3.23) and (3.24) form a system of two linear algebraic equations

in the two unknowns c′1 and c′2. If we solve these equations and integrate we

finally obtain (readers should fill in the details)

c1(t) = −
∫
u2(t)g(t)

W (t)
dt, c2(t) =

∫
u1(t)g(t)

W (t)
dt, (3.25)

where
W (t) = u1(t)u

′
2(t) − u′1(t)u2(t). (3.26)

This expression W (t) is called the Wronskian. Combining the previous expres-

sions gives the variation of parameters formula for the particular solution of

(3.21):

up(t) = −u1(t)

∫
u2(t)g(t)

W (t)
dt+ u2(t)

∫
u1(t)g(t)

W (t)
dt.

The general solution of (3.21) is the homogeneous solution uh(t) plus this par-

ticular solution. If the antiderivatives in (3.25) cannot be computed explicitly,

then the integrals should be written with a variable limit of integration.

Example 3.29

Find a particular solution to the DE

u′′ + 9u = 3 sec 3t.

Here the homogeneous equation u′′ + 9u = 0 has two independent solutions

u1 = cos 3t and u2 = sin 3t. The Wronskian is

W (t) = 3 cos2 t+ 3 sin2 3t = 3.

Therefore

c1(t) = −
∫

sin 3t · 3 sec 3t

3
dt, c2(t) =

∫
cos 3t · 3 sec 3t

3
dt.

Simplifying,

c1(t) = −
∫

tan 3tdt =
1

3
ln(cos 3t), c2(t) =

∫
1dt = t.

We do not need constants of integration because we seek only the particular

solution. Therefore the particular solution is

up(t) =
1

3
ln(cos 3t) + t sin 3t.

The general solution is

u(t) = c1 cos 3t+ c2 sin 3t+
1

3
ln(cos 3t) + t sin 3t.

The constants may be determined by initial data, if given. �
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When the second-order equation has constant coefficients and the forcing

term is a polynomial, exponential, sine, or cosine, then the method of undeter-

mined coefficients works more easily than the variation of parameters formula.

For other cases we use the formula or Laplace transform methods, which are

the subject of Chapter 4. Of course, the easiest method of all is to use a com-

puter algebra system. When you have paid your dues by using analytic methods

on several problems, then you have your license and you may use a computer

algebra system. The variation of parameters formula is important because it

is often used in the theoretical analysis of problems in advanced differential

equations.

EXERCISES

1. Solve the following initial value problems:

a) t2u′′ + 3tu′ − 8u = 0, u(1) = 0, u′(1) = 2.

b) t2u′′ + tu′ = 0, u(1) = 0, u′(1) = 2.

c) t2u′′ − tu′ + 2u = 0, u(1) = 0, u′(1) = 1.

2. For what value(s) of β is u = tβ a solution to the equation (1 − t2)u′′ −
2tu′ + 2u = 0?

3. This exercise presents a transformation method for solving a Cauchy–Euler

equation. Show that the transformation x = ln t to a new independent

variable x transforms the Cauchy–Euler equation at2u′′ + btu′ + cu = 0

into an linear equation with constant coefficients. Use this method to solve

Exercise 1a.

4. Use the power series method to obtain two independent power series so-

lutions to u′′ + u = 0 about t0 = 0 and verify that the series are the

expansions of cos t and sin t about t = 0.

5. Use the power series method to find the first three terms of two independent

power series solutions to Airy’s equation u′′ − tu = 0, centered at t0 = 0.

6. Find the first three terms of two independent power series solutions to the

equation (1 + t2)u′′ + u = 0 near t0 = 0.

7. Solve the first-order nonlinear initial value problem u′ = 1 + u2, u(0) = 1,

using a power series method. Compare the accuracy of the partial sums to

the exact solution. Hint: You will have to square out a power series.

8. Consider the equation u′′ − 2tu′ + 2nu = 0, which is Hermite’s differential

equation, an important equation in quantum theory. Show that if n is a

nonnegative integer, then there is a polynomial solution Hn(t) of degree n,
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which is called a Hermite polynomial of degree n. Find H0(t), ..., H5(t) up

to a constant multiple.

9. Consider the equation u′′−2au′+a2u = 0, which has solution u = eat. Use

reduction of order to find a second independent solution. (This shows the

origin of the teat solution in a second-order linear equation with constant

coefficients, in the real, equal eigenvalue case.)

10. One solution of

u′′ − t+ 2

t
u′ +

t+ 2

t2
u = 0

is u1(t) = t. Find a second independent solution.

11. One solution of

t2u′′ + tu′ + (t2 − 1

4
)u = 0

is u1(t) = cos /
√
t. Find a second independent solution.

12. Let y(t) be one solution of the equation u′′ + p(t)u′ + q(t)u = 0. Show that

the reduction of order method with u(t) = v(t)y(t) leads to the first-order

linear equation
yz′ + (2y′ + py)z = 0, z = v′.

Show that

z(t) =
Ce−

R
p(t)dt

y(t)2
,

and then find a second linear independent solution of the equation in the

form of an integral.

13. Use ideas from the last exercise to find a second-order linear equation that

has independent solutions et and cos t.

14. Let u1 and u2 be independent solutions of the linear equation u′′ +p(t)u′+

q(t)u = 0 on an interval I and let W (t) be the Wronskian of u1 and u2.

Show that
W ′(t) = −p(t)W (t),

and then prove that W (t) = 0 for all t ∈ I, or W (t) is never zero on I.

15. Find the general solution of u′′ + tu′ + u = 0 given that u = e−t2/2 is one

solution.

16. Use the transformation u = exp
(∫
y(t)dt

)
to convert the second-order

equation u′′+p(t)u′+q(t)u = 0 to a Riccati equation y′+y2+p(t)y+q(t) =

0. Conversely, show that the Riccati equation can be reduced to the second-

order equation in u using the transformation y = u′/u. Solve the first-order

nonautonomous equation

y′ = −y2 +
3

t
y.
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17. Use the variation of parameters formula to find a particular solution to the

following equations.

a) u′′ + 1
tu

′ = a, where a is a constant. Note that 1 and ln t are two

independent solutions of the homogeneous equation.

b) u′′ + u = tan t.

c) u′′ − u = tet.

d) u′′ − u = 1
t .

e) t2u′′ − 2u = t3.

18. (Frobenius method) Consider the differential equation (Bessel’s equation of

order k)

u′′ +
1

t
u′ +

(
1 − k2

t2

)
u = 0,

where k is a real number.

a) Show that t0 = 0 is a regular singular point for the equation.

b) Assuming a solution of the form u(t) = tr
∑∞

n=0 ant
n, show that r =

±k.
c) In the case that k = 1

3 , find the first three terms of two independent

series solutions to the DE.

d) Show that if k = 0 then the Frobenius method leads to only one series

solution, and find the first three terms. (The entire series, which con-

verges for all t, is denoted by J0(t) and is called a Bessel function of

the first kind of order zero. Finding a second independent solution is

beyond the scope of our treatment.)

3.5 Steady–State Heat Conduction*

Let us consider the following problem in steady-state heat conduction. A cylin-

drical, uniform, metallic bar of length L and cross-sectional area A is insulated

on its lateral side. We assume the left face at x = 0 is maintained at T0 degrees

and that the right face at x = L is held at TL degrees. What is the tempera-

ture distribution u = u(x) in the bar after it comes to equilibrium? Here u(x)

represents the temperature of the entire cross-section of the bar at position x,

where 0 < x < L. We are assuming that heat flows only in the axial direction

along the bar, and we are assuming that any transients caused by initial tem-

peratures in the bar have decayed away. In other words, we have waited long
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enough for the temperature to reach a steady state. One might conjecture that

the temperature distribution is a linear function of x along the bar; that is,

u(x) = T0 +((TL−T0)/L)x. This is indeed the case, which we show below. But

also we want to consider a more complicated problem where the bar has both

a variable conductivity and an internal heat source along its length. An inter-

nal heat source, for example, could be resistive heating produced by a current

running through the medium.

The physical law that provides the basic model is conservation of energy.

If [x, x + dx] is any small section of the bar, then the rate that heat flows in

at x, minus the rate that heat flows out at x + dx, plus the rate that heat is

generated by sources, must equal zero, because the system is in a steady state.

See Figure 3.9.

laterally insulated

Aφ(x) Aφ(x + dx)A

x
Lx + dxx0

Figure 3.9 Cylindrical bar, laterally insulated, through which heat is flowing

in the x-direction. The temperature is uniform in a fixed cross-section.

If we denote by φ(x) the rate that heat flows to the right at any section x

(measured in calories/(area · time), and we let f(x) denote the rate that heat

is internally produced at x, measured in calories/(volume · time), then

Aφ(x) −Aφ(x + dx) + f(x)Adx = 0.

Cancelling A, dividing by dx, and rearranging gives

φ(x+ dx) − φ(x)

dx
= f(x).

Taking the limit as dx→ 0 yields

φ′(x) = f(x). (3.27)

This is an expression of energy conservation in terms of flux. But what about

temperature? Empirically, the flux φ(x) at a section x is found to be pro-

portional to the negative temperature gradient −u′(x) (which measures the
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steepness of the temperature distribution, or profile, at that point), or

φ(x) = −K(x)u′(x). (3.28)

This is Fourier’s heat conduction law . The given proportionality factor K(x)

is called the thermal conductivity, in units of energy/(length · degrees · time),

which is a measure of how well the bar conducts heat at location x. For a

uniform bar K is constant. The minus sign in (3.28) means that heat flows

from higher temperatures to lower temperatures. Fourier’s law seems intuitively

correct and it conforms with the second law of thermodynamics; the larger the

temperature gradient, the faster heat flows from high to low temperatures.

Combining (3.27) and (3.28) leads to the equation

−(K(x)u′(x))′ = f(x), 0 < x < L, (3.29)

which is the steady-state heat conduction equation. When the boundary condi-

tions

u(0) = T0, u(L) = T1, (3.30)

are appended to (3.29), we obtain a boundary value problem for the temperature

u(x). Boundary conditions are conditions imposed on the unknown state u given

at different values of the independent variable x, unlike initial conditions that

are imposed at a single value. For boundary value problems we usually use x

as the independent variable because boundary conditions usually refer to the

boundary of a spatial domain.

Note that we could expand the heat conduction equation to

−K(x)u′′(x) −K ′(x)u′(x) = f(x), (3.31)

but there is little advantage in doing so.

Example 3.30

If there are no sources (f(x) = 0) and if the thermal conductivity K(x) = K

is constant, then the boundary value problem reduces to

u′′ = 0, 0 < x < L,

u(0) = T0, u(L) = T1.

Thus the bar is homogeneous and can be characterized by a constant conduc-

tivity. The general solution of u′′ = 0 is u(x) = c1x+c2; applying the boundary

conditions determines the constants c1 and c2 and gives the linear temperature

distribution u(x) = T0 + (TL − T0)/L)x, as we previously conjectured. �
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In nonuniform systems the thermal conductivityK depends upon location x

in the system. And, K may depend upon the temperature u as well. Moreover,

the heat source term f could depend on location and temperature. In these

cases the steady-state heat conduction equation (3.29) takes the more general

form

−(K(x, u)u′)′ = f(x, u),

which is a nonlinear second-order equation for the steady temperature distri-

bution u = u(x).

Boundary conditions at the ends of the bar may also specify the flux rather

than the temperature. For example, in a homogeneous system, if heat is injected

at x = 0 at a rate of N calories per area per time, then the left boundary

condition takes the form φ(0) = N, or

−Ku′(0) = N.

Thus, a flux condition at an endpoint imposes a condition on the derivative of

the temperature at that endpoint. In the case that the end at x = L, say, is

insulated, so that no heat passes through that end, then the boundary condition

is

u′(L) = 0,

which is called an insulated boundary condition. As the reader can see, there are

myriad interesting boundary value problems associated with heat flow. Similar

equations arise in diffusion processes in biology and chemistry, for example, in

the diffusion of toxic substances where the unknown is the chemical concentra-

tion.

Boundary value problems are much different from initial value problems in

that they may have no solution, or they may have infinitely many solutions.

Consider the following.

Example 3.31

When K = 1 and the heat source term is f(u) = 9u and both ends of a bar of

length L = 2 are held at u = 0 degrees, the boundary value problem becomes

−u′′ = 9u, 0 < x < 2.

u(0) = 0, u(2) = 0.

The general solution to the DE is u(x) = c1 sin 3x + c2 cos 3x, where c1 and

c2 are arbitrary constants. Applying the boundary condition at x = 0 gives

u(0) = c1 sin(3 · 0) + c2 cos(3 · 0) = c2 = 0. So the solution must have the

form u(x) = c1 sin 3x. Next apply the boundary condition at x = 2. Then

u(2) = c1 sin(6) = 0, to obtain c1 = 0. We have shown that the only solution



150 3. Second-Order Differential Equations

is u(x) = 0. There is no nontrivial steady state. But if we make the bar length

π, then we obtain the boundary value problem

−u′′ = 9u, 0 < x < π.

u(0) = u(π) = 0.

The reader should check that this boundary value problem has infinitely many

solutions u(x) = c1 sin 3x, where c1 is any number. If we change the right

boundary condition, one can check that the boundary value problem

−u′′ = 9u, 0 < x < π.

u(0) = 0, u(π) = 1,

has no solution at all. �

Example 3.32

Find all real values of λ for which the boundary value problem

−u′′ = λu, 0 < x < π. (3.32)

u(0) = 0, u′(π) = 0, (3.33)

has a nontrivial solution. These values are called the eigenvalues, and the cor-

responding nontrivial solutions are called the eigenfunctions . Interpreted in the

heat flow context, the left boundary is held at zero degrees and the right end is

insulated. The heat source is f(u) = λu. We are trying to find which linear heat

sources lead to nontrivial steady states. To solve this problem we consider dif-

ferent cases because the form of the solution will be different for λ = 0, λ < 0,

λ > 0. If λ = 0 then the general solution of u′′ = 0 is u(x) = ax + b. Then

u′(x) = a. The boundary condition u(0) = 0 implies b = 0 and the boundary

condition u′(π) = 0 implies a = 0. Therefore, when λ = 0, we get only a trivial

solution. Next consider the case λ < 0 so that the general solution has the form

u(t) = a sinh
√
−λx+ b cosh

√
−λx.

The condition u(0) = 0 forces b = 0. Then u′(t) = a
√
−λ cosh

√
−λx. The right

boundary condition becomes u′(π) = a
√
−λ cosh(

√
−λ · 0) = 0, giving a = 0.

Recall that cosh 0 = 1. Again there is only the trivial solution. Finally assume

λ > 0. Then the general solution takes the form

u(t) = a sin
√
λx+ b cos

√
λx.

The boundary condition u(0) = 0 forces b = 0. Then u(t) = a sin
√
λx and

u′(x) = a
√
λ cos

√
λx. Applying the right boundary condition gives

u′(π) = a
√
λ cos

√
λπ = 0.
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Now we do not have to choose a = 0 (which would again give the trivial

solution) because we can satisfy this last condition with

cos
√
λπ = 0.

The cosine function is zero at the values π/2± nπ, n = 0, 1, 2, 3, . . . . Therefore

√
λπ = π/2 + nπ, n = 0, 1, 2, 3, ...

Solving for λ yields

λ =

(
2n+ 1

2

)2

, n = 0, 1, 2, 3, ....

Consequently, the values of λ for which the original boundary value problem

has a nontrivial solution are 1
4 ,

9
4 ,

25
4 , .... These are the eigenvalues. The corre-

sponding solutions are

u(x) = a sin

(
2n+ 1

2

)
x, n = 0, 1, 2, 3, . . . .

These are the eigenfunctions. Notice that the eigenfunctions are unique only

up to a constant multiple. In terms of heat flow, the eigenfunctions repre-

sent possible steady-state temperature profiles in the bar. The eigenvalues are

those values λ for which the boundary value problem will have steady-state

profiles. �

Boundary value problems are of great interest in applied mathematics, sci-

ence, and engineering. They arise in many contexts other than heat flow, includ-

ing wave motion, quantum mechanics, and the solution of partial differential

equations.

Remark 3.33

The numerical methods introduced in Chapter 2 (Euler, modified Euler, etc.)

do not directly apply to BVPs. Consider a second-order DE. In an initial value

problem both supplementary conditions are initial conditions given at the same

time, say t = 0. The numerical methods compute approximations at subsequent

values of t by marching, recursively, forward in time. For boundary conditions,

only one condition is given at the left endpoint, t = 0, and there is not enough

information to march forward in time. Therefore, alternate methods have to be

developed for BVPs. We do not discuss these in this text.
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EXERCISES

1. A homogeneous bar of length 40 cm has its left and right ends held at

30◦C and 10◦C, respectively. If the temperature in the bar is in steady

state, what is the temperature in the cross-section 12 cm from the left

end? If the thermal conductivity is K, what is the rate that heat is leaving

the bar at its right face?

2. The thermal conductivity of a bar of length L = 20 and cross-sectional

area A = 2 is K(x) = 1, and an internal heat source is given by f(x) =

0.5x(L − x). If both ends of the bar are maintained at zero degrees, what

is the steady-state temperature distribution in the bar? Sketch a graph of

u(x). What is the rate that heat is leaving the bar at x = 20?

3. For a metal bar of length L with no heat source and thermal conductivity

K(x), show that the steady temperature in the bar has the form

u(x) = c1

∫ x

0

dy

K(y)
+ c2,

where c1 and c2 are constants. What is the temperature distribution if both

ends of the bar are held at zero degrees? Find an analytic formula and plot

the temperature distribution in the case that K(x) = 1 + x. If the left end

is held at zero degrees and the right end is insulated, find the temperature

distribution and plot it.

4. Determine the values of λ for which the boundary value problem

−u′′ = λu, 0 < x < 1,

u(0) = u(1) = 0,

has a nontrivial solution.

5. Consider the nonlinear heat flow problem

(uu′)′ = 0, 0 < x < π,

u(0) = 0, u′(π) = 1,

where the thermal conductivity depends on temperature and is given by

K(u) = u. Find the steady-state temperature distribution.

6. Show that if there is a solution u = u(x) to the boundary value problem

(3.29)–(3.30), then the following condition must hold.

−K(L)u′(L) +K(0)u′(0) =

∫ L

0

f(x)dx.

Interpret this condition physically.
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7. Consider the boundary value problem

u′′ + ω2u = 0, u(0) = a, u(L) = b.

When does a unique solution exist?

8. Find all values of λ for which the boundary value problem

−u′′ − 2u′ = λu, 0 < x < 1,

u(0) = 0, u(1) = 0,

has a nontrivial solution.

9. Show that the eigenvalues of the boundary value problem

−u′′ = λu, 0 < x < 1,

u′(0) = 0, u(1) + u′(1) = 0,

are given by the numbers λn = p2
n, n = 1, 2, 3, ..., where the pn are roots

of the equation tan p = 1/p. Plot graphs of tan p and 1/p and indicate

graphically the locations of the values pn. Numerically calculate the first

four eigenvalues.

10. Find the values of λ (eigenvalues) for which the boundary value problem

−x2u′′ − xu′ = λu, 1 < x < eπ,

u(1) = 0, u(eπ) = 0,

has a nontrivial solution.

3.6 Higher-Order Equations

So far we have dealt with first- and second-order equations. Higher-order equa-

tions occur in some applications. For example, in solid mechanics the vertical

deflection y = y(x) of a beam from its equilibrium satisfies a fourth-order equa-

tion. However, the applications of higher-order equations are not as extensive

as those for their first- and second-order counterparts.

Here, we outline the basic results for a homogeneous, nth-order linear DE

with constant coefficients:

u(n) + pn−1u
(n−1) + · · · + p1u

′ + p0u = 0. (3.34)

The pi, i = 0, 1, ..., n−1, are specified constants. The general solution of (3.34)

has the form
u(t) = c1u1(t) + c2u2(t) + · · · + cnun(t),
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where u1(t), u2(t), ..., un(t) are independent solutions, and where c1, c2, ..., cn
are arbitrary constants. In different words, the general solution is a linear com-

bination of n different basic solutions. To find these basic solutions we try

the same strategy that worked for a second-order equation, namely assume a

solution of the form of an exponential function

u(t) = eλt,

where λ is to be determined. Substituting into the equation gives

λn + pn−1λ
n−1 + · · · + p1λ+ p0 = 0, (3.35)

which is an nth-degree polynomial equation for λ. Equation (3.35) is the char-

acteristic equation. From algebra we know that there are n roots λ1, λ2, ..., λn.

Here we are counting multiple roots and complex roots (the latter will always

occur in complex conjugate pairs a± bi). A root λ = a has multiplicity K if

(λ− a)K appears in the factorization of the characteristic polynomial.

If the characteristic roots are all real and distinct, we obtain n different

basic solutions u1(t) = eλ1t, u2(t) = eλ2t, ..., un(t) = eλnt. In this case the

general solution of (3.34) is a linear combination of these,

u(t) = c1e
λ1t + c2e

λ2t + · · · + cne
λnt. (3.36)

If the roots of (3.35) are not real and distinct then we proceed as might be

expected from our study of second-order equations. A complex conjugate pair,

λ = a±ib gives rise to two real solutions eat cos bt and eat sin bt. A double root λ

(multiplicity 2) leads to two solutions eλt and teλt. A triple root λ (multiplicity

3) leads to three independent solutions eλt, teλt, t2eλt, and so on. In this way

we can build up from the factorization of the characteristic polynomial a set

of n independent, basic solutions of (3.34). The hardest part of the problem is

to find the characteristic roots; computer algebra systems are often useful for

this task.

As may be expected from our study of second-order equations, an nth-order

nonhomogeneous equation of the form

u(n) + pn−1u
(n−1) + · · · + p1u

′ + p0u = g(t), (3.37)

has a general solution that is the sum of the general solution (3.36) of the homo-

geneous equation and a particular solution to the equation (3.37). This result

is true even if the coefficients pi are functions of t. For the constant coefficient

case, the particular solution can be found using the method of undetermined

coefficients in the same way as for second-order equations.
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Example 3.34

If the characteristic equation for a sixth-order equation has roots λ = −2 ±
3i, 4, 4, 4,−1, the general solution will be

u(t) = c1e
−2t cos 3t+ c2e

−2t sin 3t+ c3e
4t + c4te

4t + c5t
2e4t + c6e

−t. �

Example 3.35

Find a differential equation whose basic solutions are e3t, te3t, and e−t. The

characteristic roots are λ = 3, 3, and −1. So, 3 is a root of multiplicity two.

Therefore the characteristic equation must be

(λ − 3)2(λ+ 1) = 0.

Expanding, we get

λ3 − 5λ2 + 3λ+ 9 = 0.

Therefore the differential equation is

u′′′ − 5u′′ + 3u′ + 9u = 0. �

Initial conditions for an nth-order equation (3.34) at t = 0 take the form

u(0) = α1, u′(0) = α2, ..., u
(n−1)(0) = αn−1,

where the αi are given constants. Thus, for an nth-order initial value problem

we specify the value of the function and all of its derivatives up to the (n−1)st-

order, at the initial time. These initial conditions determine the n arbitrary

constants in the general solution and select a unique solution to the initial

value problem.

Example 3.36

Consider the nonhomogeneous

u′′′ − 2u′′ − 3u′ = 5e4t.

The characteristic equation for the homogeneous equation is

λ3 − 2λ2 − 3λ = 0,

or

λ(λ− 3)(λ+ 1) = 0.
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The characteristic roots are λ = 0,−1, 3, and therefore the homogeneous equa-

tion has solution

uh(t) = c1 + c2e
−t + c3e

3t.

The particular solution will have the form up(t) = ae4t. Substituting into the

original nonhomogeneous equation gives a = 1/4.Therefore the general solution

to the equation is

u(t) = c1 + c2e
−t + c3e

3t +
1

4
e4t.

The three constants can now be determined from initial conditions. For exam-

ple, for a third-order equation the initial conditions at time t = 0 have the

form

u(0) = α, u′(0) = β, u′′(0) = γ,

for some given constants α, β, γ. Of course, initial conditions can be prescribed

at any other time t0. �

EXERCISES

1. Find the general solution of the following differential equations.

a) u′′′ + u′ = 0.

b) u′′′′ + u′ = 1.

c) u′′′′ + u′′ = 0.

d) u′′′ − u′ − 8u = 0.

e) u′′′ + u′′ = 2et + 3t2.

2. Solve the initial value problem u′′′−u′′−4u′−4u = 0, u(0) = 2, u′(0) = −1,

u′′(0) = 5.

3. Write down a linear, fifth-order differential equation whose general solution

is

u = c1 + c2t+ c3e
−4t + e5t(c4 cos 2t+ c5 sin 5t).

4. Show that the third-order equation u′′′ + 2u′′ − 5u′ − u = 0 can be written

as an equivalent system of three first-order equations in the variables u, v,

and w, where v = u′ and w = u′′.

5. What is the general solution of a fourth-order differential equation if the

four characteristic roots are λ = 3 ± i, 3 ± i? What is the differential

equation?
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3.7 Summary and Review

One way to think about learning and solving differential equations is in terms

of pattern recognition. Although this is a very “compartmentalized” way of

thinking, it does help our learning process. When faced with a differential

equation, what do we do? The first step is to recognize what type it is. It is like

a pianist recognizing a certain set of notes in a complicated musical piece and

then playing those notes easily because of long hours of practice. In differential

equations we must practice to recognize an equation and learn the solution

technique that works for that equation. At this point in your study, what kinds

of equations should you surely be able to recognize and solve?

The simplest is the pure time equation

u′ = g(t).

Here u is the antiderivative of g(t), and we sometimes have to write the solution

as an integral when we cannot find a simple form for the antiderivative. The

next simplest equation is the separable equation

u′ = g(t)f(u),

where the right side is a product of functions of the dependent and independent

variables. These are easy: just separate variables and integrate. Autonomous

equations have the form

u′ = f(u),

where the right side depends only on u. These equations are separable, should

we want to attempt a solution. But often, for autonomous equations, we ap-

ply qualitative methods to understand the behavior of solutions. This includes

graphing f(u) versus u, finding the equilibrium solutions, and then drawing

arrows on the phase line to determine stability of the equilibrium solutions and

whether u is increasing or decreasing. Nearly always these qualitative methods

are superior to having an actual solution formula. First-order autonomous equa-

tions cannot have oscillatory solutions. Finally, the first-order linear equation

is

u′ = p(t)u+ g(t).

Here we can use integrating factors. Sometimes an equation can be solved by

multiple methods; for example, u′ = 2u−7 is separable, linear, and autonomous.

There are other first-order nonlinear equations that can be solved, and some

of these were introduced in the exercises. The Bernoulli equation

u′ = p(t)u+ g(t)un



158 3. Second-Order Differential Equations

can be transformed into a linear equation for the variable y = u1−n, and the

homogeneous equation

u′ = f
(u
t

)

can be transformed into a separable equation for the variable y = u/t. Solutions

to special and unusual equations can sometimes be found in mathematical

handbooks or on computer algebra systems.

There are only two second-order linear equations that can be solved simply.

These are the equation with constant coefficients

au′′ + bu′ + cu = 0,

where we have solutions of the form u = eλt, with λ satisfying the characteristic

equation aλ2 + bλ+ c = 0, and the Cauchy–Euler equation

at2u′′ + btu′ + cu = 0,

where we have solutions of the form u = tm, where m satisfies the charac-

teristic equation am(m − 1) + bm + c = 0. For these two problems we must

distinguish when the roots of the characteristic equation are real and unequal,

real and equal, or complex. When the right side of either of these equations

is nonzero, then the equation is nonhomogeneous. Then we can find particular

solutions using the variation of parameters method, which works for all linear

equations, or use undetermined coefficients, which works only for constant co-

efficient equations with special right sides. Nonhomogeneous linear equations

with constant coefficients can also be handled by Laplace transforms, which

are discussed in the next chapter. All these methods extend to higher-order

equations.

Generally, we cannot easily solve homogeneous second-order linear equa-

tions with variable coefficients, or equations having the form

u′′ + p(t)u′ + q(t)u = 0.

Many of these equations have solutions that can be written as power series.

These power series solutions define special functions in mathematics, such as

Bessel functions, Hermite polynomials, and so forth. In any case, you cannot

solve these variable coefficient equations using the characteristic polynomial,

and nonhomogeneous equations are not amenable to the methods of undeter-

mined coefficients. If you are fortunate enough to find one solution, you can

determine a second by reduction of order. If you are lucky enough to find two

independent solutions to the homogeneous equation, the method of variation

of parameters gives a particular solution.

The basic structure theorem holds for all linear nonhomogeneous equations:

the general solution is the sum of the general solution to the homogeneous

equation and a particular solution. This result is fundamental.
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Second-order equations coming from Newton’s second law have the form

x′′ = F (t, x, x′). These can be reduced to first-order equations when t or x is

missing from the force F , or when F = F (x), which is the conservative case.

The exercises give you review and practice in identifying and solving differ-

ential equations.

EXERCISES

1. Identify each of the differential equations and find the general solution.

Some of the solutions may contain an integral.

a) 2u′′ + 5u′ − 3u = 0.

b) u′ −Ru = 0, where R is a parameter.

c) u′ = cos t− u cos t.

d) u′ − 6u = et.

e) u′′ = − 2
t2u.

f) u′′ + 6u′ + 9u = 5 sin t.

g) u′ = −8t+ 6.

h) u′′ + u = t2 − 2t+ 2

i) u′ + u− tu3 = 0.

j) 2u′′ + u′ + 3u = 0.

k) x′′ = (x′)3.

l) tu′ + u = t2u2.

m) u′′ = −3u2.

n) tu′ = u− t
2 cos2

(
2u
t

)
.

o) u′′′ + 5u′′ − 6u′ = 9e3t.

p) (6tu− u3) + (4u+ 3t2 − 3tu2)u′ = 0.

2. Solve the initial value problem u′ = u2 cos t, u(0) = 2, and find the interval

of existence.

3. Solve the initial value problem u′ = 2
tu+ t, u(1) = 2, and find the interval

of existence.

4. Use the power series method to find the first three terms of two independent

solutions to u′′ + tu′ + tu = 0 valid near t = 0.
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5. For all cases, find the equilibrium solutions for u′ = (u− a)(u2 − a), where

a is a real parameter, and determine their stability. Summarize the infor-

mation on a bifurcation diagram.

6. A spherical water droplet loses volume by evaporation at a rate propor-

tional to its surface area. Find its radius r = r(t) in terms of the propor-

tionality constant and its initial radius r0.

7. A population is governed by the law

p′ = rp

(
K − p

K + ap

)

where r, K, and a are positive constants. Find the equilibria and their

stability. Describe, in words, the dynamics of the population.

8. Use the variation of parameters method to find a particular solution to

u′′ − u′ − 2u = cosh t.

9. If e−t2 is one solution to the differential equation u′′+4tu′+2(2t2+1)u = 0,

find the solution satisfying the conditions u(0) = 3, u′(0) = 1.

10. Solve u′ = 4tu− 2u
t lnu by making the substitution y = lnu.

11. Adapt your knowledge about solution methods for Cauchy–Euler equations

to solve the third-order initial value problem:

t3u′′′ − t2u′′ + 2tu′ − 2u = 0

with u(1) = 3, u′(1) = 2, u′′(1) = 1.
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Laplace Transforms

The Laplace method for solving linear differential equations with constant co-

efficients is based upon transforming the differential equation into an algebraic

equation. It is especially applicable to models containing a nonhomogeneous

forcing term f(t) (such as the electrical generator in a circuit) that is either

discontinuous or is applied only at a single instant of time (an impulse). There-

fore, the method applies to initial value problems of the form

au′′ + bu′ + cu = f(t), u(0) = u0, u
′(0) = u1,

or to similar equations of first or higher order. Hence, the method can be re-

garded as another tool, in addition to variation of parameters and undetermined

coefficients, for solving nonhomogeneous linear equations. It is often a key topic

in engineering where the stability properties of linear systems are addressed.

The material in this chapter is not needed for the remaining chapters, so it

may be read at any time.

4.1 Definition and Basic Properties

A successful strategy for many problems is to transform them into simpler ones

that can be solved more easily. For example, some problems in rectangular co-

ordinates are better understood and handled in polar coordinates, so we make

the usual coordinate transformation x = r cos θ and y = r sin θ. After solving

the problem in polar coordinates, we can return to rectangular coordinates by
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the inverse transformation r =
√
x2 + y2, θ = arctan(y/x). A similar technique

holds true for many differential equations using integral transform methods. In

this chapter we introduce the Laplace transformation which has the effect of

turning a differential equation with state function u(t) into an algebra problem

for an associated transformed function U(s); we can easily solve the algebra

problem for U(s) and then return to u(t) via an inverse transformation. The

technique is applicable to both homogeneous and nonhomogeneous linear dif-

ferential equations with constant coefficients, and it is a standard method for

engineers and applied mathematicians. It is particularly useful for differential

equations that contain piecewise continuous forcing functions or functions that

act as an impulse. The transform goes back to the late 1700s and is named for

the great French mathematician and scientist Pierre de Laplace, although the

basic integral goes back earlier to L. Euler. The English engineer O. Heaviside

developed much of the operational calculus for transform methods in the early

1900s.

Definition 4.1

Let u = u(t) be a given function defined on 0 ≤ t <∞. The Laplace transform

of u(t) is the function U(s) defined by

U(s) =

∫ ∞

0

u(t)e−stdt, (4.1)

provided the improper integral exists. �

The integrand is a function of t and s, and we integrate on t, leaving a

function of s. Often we represent the Laplace transform in function notation,

L[u(t)](s) = U(s) or just L[u] = U(s).

L represents a function-like operation, called an operator or transform, whose

domain and range are sets of functions; L takes a function u(t) and transforms

it into a new function U(s) (see figure 4.1). In the context of Laplace trans-

formations, t and u are called the time domain variables, and s and U are

called the transform domain variables. Here we are taking s to be real, but in

advanced methods the variable s is complex. In summary, the Laplace trans-

form maps functions u(t) to functions U(s) and is somewhat like mappings we

consider in calculus, such as y = f(x) = x2, which maps numbers x to numbers

y.

We can compute the Laplace transform of many common functions directly

from the definition (4.1).
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U(s)

u(t)

  Laplace
Transform

u

t

s

U

Figure 4.1 The Laplace transform L as a machine that transforms functions

u(t) to functions U(s).

Example 4.2

Let u(t) = eat. Then

U(s) =

∫ ∞

0

eate−stdt =

∫ ∞

0

e(a−s)tdt =
1

a− s
e(a−s)t|t=∞

t=0 =
1

s− a
, s > a.

In different notation, L[eat] = 1/(s − a). Observe that this transform exists

only for s > a (otherwise the improper integral does not converge). Sometimes

we indicate the values of s for which the transformed function U(s) is defined.

�

Example 4.3

Let u(t) = 1. Then

U(s) =

∫ ∞

0

1 · e−stdt =
1

−se
−st|t=∞

t=0 =
1

s
, s > 0.

In different notation, L[1] = 1/s. Observe that this transform exists only for

s > 0; otherwise the improper integral does not converge. �

Example 4.4

Let u(t) = t. Then, using integration by parts,

U(s) =

∫ ∞

0

te−stdt =

[
t
e−st

−s

]t=∞

t=0

− 1

s

∫ ∞

0

1 · e−stdt =
1

s2
, s > 0. �
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Example 4.5

The unit switching function ha(t) is defined by ha(t) = 0 if t < a and ha(t) = 1

if t ≥ a. The switch is off if t < a, and it is on when t ≥ a. Therefore the function

ha(t) is a unit step function where the step from 0 to 1 occurs at t = a. The

switching function is also called the Heaviside function. The Laplace transform

of ha(t) is

L[ha(t)] =

∫ ∞

0

ha(t)e−stdt

=

∫ a

0

ha(t)e−stdt+

∫ ∞

a

ha(t)e−stdt

=

∫ a

0

0 · e−stdt+

∫ ∞

a

1 · e−stdt

= −1

s
e−st|t=∞

t=a =
1

s
e−as, s > 0. �

Example 4.6

The Heaviside function is useful for expressing multi-lined functions in a single

formula. For example, let

f(t) =





1
2 , 0 ≤ t < 2

t− 1, 2 ≤ t ≤ 3

5 − t2, 3 < t ≤ 6

0, t > 6

(The reader should plot this function). This can be written in one line as

f(t) =
1

2
h0(t) + (t− 1 − 1

2
)h2(t) + (5 − t2 − (t− 1))h3(t) − (5 − t2)h6(t).

The first term switches on the function 1
2 at t = 0; the second term switches

off 1
2 and switches on t− 1 at time t = 2; the third term switches off t− 1 and

switches on 5 − t2 at t = 3; finally, the last term switches off 5 − t2 at t = 6.

Later we show how to find Laplace transforms of such functions. �

As you may have already concluded, calculating Laplace transforms may

be tedious business. Fortunately, generations of mathematicians, scientists, and

engineers have computed the Laplace transforms of many, many functions, and

the results have been catalogued in tables and in software systems. Some of

the tables are extensive, but here we require only a short table, which is given

at the end of the chapter. The table lists a function u(t) in the first column,

and its transform U(s), or Lu, in the second. The various functions in the
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first column are discussed in the sequel. Computer algebra systems also have

commands that calculate the Laplace transform (see Appendix B).

Given u(t), the Laplace transform U(s) is computed from the definition

given in formula (4.1). We can also think of the opposite problem: given U(s),

find a function u(t) whose Laplace transform is U(s). This is the inverse prob-

lem. Unfortunately, there is no elementary formula that we can write down that

computes u(t) in terms of U(s) (there is a formula, but it involves a contour in-

tegration in the complex plane). In elementary treatments we are satisfied with

using tables. For example, if U(s) = 1/(s− a), then the table gives u(t) = eat

as the function that has U(s) as its transform. When we think of it this way,

we say u(t) = eat is the “inverse transform” of U(s) = 1/(s− a), and we write

e2t = L−1

[
1

s− 2

]
.

Similarly,

L−1

[
1

s

]
= 1.

In general we use the notation

U = L(u), u = L−1 [U ] .

We think of L as an operation (transform) and L−1 as the inverse operation

(inverse transform). The functions u(t) and U(s) form a transform pair, and

they are listed together in two columns of a table. Computer algebra systems

also supply inverse transforms (See Appendix B).

One question that should be addressed concerns the existence of the trans-

form. That is, which functions have Laplace transforms? Clearly if a function

grows too quickly as t gets large, then the improper integral will not exist

and there will be no transform. There are two conditions that guarantee ex-

istence, and these are reasonable conditions for most problems in science and

engineering. First, we require that u(t) not grow too fast; a way of stating this

mathematically is to require that there exist constants M > 0 and α for which

|u(t)| ≤Meαt

is valid for all t > t0, where t0 is some value of time. That is, beyond the

value t0 the function is bounded above and below by an exponential function.

Such functions are said to be of exponential order . Second, we require that

u(t) be piecewise continuous on 0 ≤ t < ∞. In other words, on any finite

subinterval of 0 ≤ t < ∞ we assume that u(t) has at most a finite number of

simple discontinuities, and at any point of discontinuity u has finite left and

right limits, except possibly at t = +∞. One can prove that if u is piecewise
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continuous on 0 ≤ t <∞ and of exponential order, then the Laplace transform

U(s) exists for all s > α.

What makes the Laplace transform so useful for differential equations is that

it turns derivative operations in the time domain into multiplication operations

in the transform domain. The following theorem gives the crucial operational

formulas stating how the derivatives transform. The derivation of the basic

results use the general form of the integration by parts formula:

∫ b

a

u(t)v′(t)dt = u(t)v(t)|ba −
∫ b

a

u′(t)v(t)dt.

We are taught to use integration by parts as a technique for finding integrals,

but it is an essential theoretical tool used in differential equations; think of it

as a way of removing the derivative on one factor in an integral and putting it

on the other factor, while generating a boundary term.

Theorem 4.7

Let u(t) be a function and U(s) its transform. Then

L[u′] = sU(s) − u(0), (4.2)

L[u′′] = s2U(s) − su(0) − u′(0). � (4.3)

Proof. These facts are easily proved using the integration by parts formula given

above. We have

L[u′] =

∫ ∞

0

u′(t)e−stdt =
[
u(t)e−st

]t=∞
t=0

−
∫ ∞

0

−su(t)e−stdt

= −u(0) + sU(s), s > 0.

The second operational formula (4.3) can be derived using two successive inte-

grations by parts, and we leave that calculation to the reader. Here is a shorter

way using (4.2). Write

L[u′′] = L[(u′)′]

= sL[u′] − u′(0)

= s (sU(s) − u(0)) − u′(0). �

Example 4.8

The derivative formula (4.2) is useful to find transforms without resorting to
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the integral definition (4.1). Let’s find L[t2]. We have

L[t] = L
[(

1

2
t2
)′
]

= sL
[
1

2
t2
]
− 0.

Therefore, because we know L[t],

1

s2
= L[t] =

s

2
L[t2],

which gives

L[t2] =
2

s3
. �

Example 4.9

Here is an example using the second derivative formula (4.3). We find L[cosh t]

by writing

L[cosh t] = L[(cosh t)′′] = s2L[cosh t] − s cosh 0 − sinh 0

= s2L[cosh t] − s.

Solving for L[cosh t] gives us the transform

L[cosh t] =
s

s2 − 1
. �

These derivative formulas (4.2)–(4.3) allow us to transform a differential

equation with unknown u(t) into an algebraic problem with unknown U(s).

We solve for U(s) and then find u(t) using the inverse transform u = L−1 [U ] .

We elaborate on this method in the sequel.

Before tackling the solution of differential equations, we present additional

important and useful properties of Laplace transforms. The shift property and

switching property are useful in calculating transforms without resorting to the

definition.

(a) (Linearity) The Laplace transform is a linear operation; that is, the

Laplace transform of a sum of two functions is the sum of the Laplace

transforms of each, and the Laplace transform of a constant times a func-

tion is the constant times the transform of the function. We can express

these rules in symbols by a single formula:

L[c1u+ c2v] = c1L[u] + c2L[v]. (4.4)

Here, u and v are functions and c1 and c2 are any constants. Similarly, the

inverse Laplace transform is a linear operation:

L−1[c1u+ c2v] = c1L−1[u] + c2L−1[v]. (4.5)
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(b) (Shift Property) The Laplace transform of a function times an exponen-

tial, u(t)eat, shifts the transform of U(s) of u(t); that is,

L[u(t)eat] = U(s− a). (4.6)

Therefore, we find the transform U(s) of u(t) and then shift the result to

get U(s− a)

(c) (Switching Property) The Laplace transform of a function that switches

on at t = a is given by

L[ha(t)u(t− a)] = U(s)e−as. (4.7)

This result is usually used as an inverse formula:

L−1[U(s)e−as] = ha(t)u(t− a).

Proofs of these relations follow directly from the definition of the Laplace

transform, and they are requested in the exercises.

Example 4.10

Find the Laplace transform of the function

te−2t.

We know that the transform of u(t) = t is U(s) = 1/s2. By the shift property

(4.6),

L[te−2t] = U(s− (−2)) =
1

(s+ 2)2
. �

Example 4.11

Find the inverse transform of the function

U(s) =
s

s2 − 1
e−3s.

We know

L−1

[
s

s2 − 1

]
= cosh t.

By the switching property (4.7),

L−1

[
s

s2 − 1
e−3s

]
= h3(t) cosh(t− 3). �
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EXERCISES

1. Use the definition of the Laplace transform to compute the transform of

the square pulse function u(t) = 1, 1 ≤ t ≤ 2; u(t) = 0, otherwise. Graph

u(t) and U(s).

2. Use the definition of the Laplace transform to find the transform of u(t) =

sin at. Hint: It requires two integrations by parts.

3. Use the definition of the Laplace transform to find the transform of u(t) =

e−3th2(t).

4. Use the second derivative property (4.3) to find the Laplace transform of

u(t) = sinat, noting that u′′(t) = −a2u(t).

5. Noting that (sin at)′ = a cos at, use the last exercise and Theorem 1 to find

the transform of cosat.

6. Sketch the graphs of sin t, sin(t− π/2), and hπ/2(t) sin(t− π/2). Find the

Laplace transform of each.

7. Find the Laplace transform of t2e−3t.

8. Find L [sinh kt] and L [coshkt] using the fact that L
[
ekt
]

= 1/(s− k).

9. Use the shift property and Exercise 3 to find the Laplace transform of

eat sinωt.

10. Find L
[
e−3t + 4 sinkt

]
using the table. Find L

[
e−3t sin 2t

]
using the shift

property (4.6).

11. Using the switching property (4.7), find the Laplace transform of the func-

tion

u(t) =

{
0 t < 2

e−t, t > 2.

12. Show that

L [u(at)] =
1

a
U
( s
a

)
, a > 0.

13. From the definition (4.1) of the Laplace transform, find L
[
1/

√
t
]

using the

integral substitution st = r2 and then noting
∫∞
0

exp(−r2)dr =
√
π/2.

14. Does the function u(t) = et2 have a Laplace transform? What about u(t) =

1/t? Explain why or why not.

15. Derive the operational formulas (4.6) and (4.7) directly from the definition.

Hint: Change variables in the integral.
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16. Plot the square-wave function

f(t) =

∞∑

n=0

(−1)nhn(t)

on the interval t > 0 and find its transform F (s). Hint: Use the geometric

series 1 + x+ x2 + · · · = 1/(1 − x).

17. Show that

L
[∫ t

0

u(r)dr

]
=
U(s)

s
.

Hint: Take the transform of the time derivative of the integral.

18. Derive the formulas

L [tu(t)] = −U ′(s), L−1[U ′(s)] = −tu(t).

Hint: Calculate the derivative of U(s).

19. Use the last exercise to find the inverse transform of arctan(a/s).

20. Show that
L [tnu(t)] = (−1)nU (n)(s), n = 1, 2, 3, . . . .

21. Show that

L
[
u(t)

t

]
=

∫ ∞

s

U(r)dr,

and use the result to find

L
[
sinh t

t

]
.

22. Show that
L [f(t)ha(t)] = e−asL[f(t+ a)],

and use this formula to compute L[t2h1(t)].

23. The gamma function is a special function defined by by

Γ(x) =

∫ ∞

0

e−ttx−1dt, x > −1.

It is important in probability, statistics, and many other areas of mathe-

matics, science, and engineering.

a) Show that Γ(n+1) = nΓ(n) and Γ(n+1) = n! for nonnegative integers

n. (Hint: Integrate by parts.)

b) Show that Γ(1
2 ) =

√
π.

c) Show that

L [ta] =
Γ(a+ 1)

sa+1
, s > 0.
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ODE in u(t) Algebraic equation
     in  U(s)

solve

U(s)u(t)

L

L
-1

Figure 4.2 A DE for an unknown function u(t) is transformed to an algebraic

equation for its transform U(s). The algebraic problem is solved for U(s) in

the transform domain, and the solution is returned to the original time domain

via the inverse transform.

4.2 Initial Value Problems

The following examples illustrate how Laplace transforms are used to solve ini-

tial value problems for linear differential equations with constant coefficients.

The method works on equations of all orders and on systems of several equa-

tions in several unknowns. We assume u(t) is the unknown state function. The

idea is to take the transform of each term in the equation, using the linearity

property. Then, using Theorem 4.5, reduce all of the derivative terms to alge-

braic expressions and solve for the transformed state function U(s). Finally,

invert U(s) to recover the solution u(t). Figure 4.2 illustrates this three-step

method. The last step in this procedure is the most difficult, and in this section

we get some practice in finding inverse transforms.

Example 4.12

Consider the second-order initial value problem

u′′ + ω2u = 0, u(0) = 0, u′(0) = 1.

Taking transforms of both sides and using the linearity property gives

L[u′′] + ω2L[u] = L[0].

Then Theorem 4.5 gives

s2U(s) − su(0) − u′(0) + ω2U(s) = 0,

which is an algebraic equation for the transformed state U(s). Using the initial

conditions, we get
s2U(s) − 1 + ω2U(s) = 0.
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Solving for the transform function U(s) gives

U(s) =
1

ω2 + s2
=

1

ω

ω

ω2 + s2
,

which is the solution in the transform domain. Therefore, from the table, the

inverse transform is

u(t) =
1

ω
sinωt,

which is the solution to the original initial value problem. �

Example 4.13

Solve the first-order nonhomogeneous equation

u′ + 2u = e−t, u(0) = 0.

Taking Laplace transforms of each term

L[u′] + L[2u] = L[e−t],

or

sU(s) − u(0) + 2U(s) =
1

s+ 1
.

Solving for the transformed function U(s) gives

U(s) =
1

(s+ 1)(s+ 2)
.

Now we can look up the inverse transform in the table. We find

u(t) = L−1

[
1

(s+ 1)(s+ 2)

]
= e−t − e−2t.

Here, of course, we could have used integrating factors, and it would have been

easier and shorter. We are giving this example as an illustration. The real

advantage in using Laplace transforms comes when the nonhomogeneous term

is a piecewise function or an impulse function. �

Example 4.14

(Partial Fractions, I) Sometimes the table may not include an exact entry

for the inverse transform that we seek, and so we may have to algebraically

manipulate or simplify our expression so that it can be reduced to a table

entry. A common technique is to expand complex fractions into their “partial

fraction” decomposition. In the last example we had

U(s) =
1

(s+ 1)(s+ 2)
.
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We can decompose U(s) as

1

(s+ 1)(s+ 2)
=

a

(s+ 1)
+

b

(s+ 2)
,

for some constants a and b to be determined. Combining terms on the right

side gives

1

(s+ 1)(s+ 2)
=
a(s+ 2) + b(s+ 1)

(s+ 1)(s+ 2)

=
(a+ b)s+ 2a+ b

(s+ 1)(s+ 2)
.

Comparing numerators on the left and right force a + b = 0 and 2a + b = 1.

Hence a = −b = 1 and we have

U(s) =
1

(s+ 1)(s+ 2)
=

1

(s+ 1)
+

−1

(s+ 2)
.

We have reduced the complex fraction to the sum of two simple, easily identi-

fiable, fractions that are found in the table. Using the linearity property of the

inverse transform,

L−1[U(s)] = L−1

[
1

(s+ 1)

]
− L−1

[
1

(s+ 2)

]

= e−t − e−2t. �

Example 4.15

(Partial Fractions, II) A common expression in the transform domain is a

fraction of the form

U(s) =
1

s2 + bs+ c
.

If the denominator has two distinct real roots, then it factors and we can

proceed as in the previous example. If the denominator has complex roots,

then the following “complete the square” technique may be used. For example,

consider

U(s) =
1

s2 + 3s+ 6
.

Then, completing the square in the denominator,

U(s) =
1

s2 + 3s+
(

3
2

)2 −
(

3
2

)2
+ 6

=
1

(
s+ 3

2

)2
+
(√

15
2

)2 .
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This entry is in the table, up to a factor of
√

15/2. Therefore we multiply and

divide by this factor and locate the inverse transform in the table as

u(t) =
2√
15
e−3t/2 sin

√
15

2
t. �

Example 4.16

For illustration, we show two more examples of the form of partial fraction

expansions:

s2

(s+ 5)(s+ 1)3
=

a

s+ 5
+

b

s+ 1
+

c

(s+ 1)2
+

d

(s+ 1)2
,

and
s2

(s2 + 9)2
=
as+ b

s2 + 9
+

cs+ d

(s2 + 9)2
. �

Example 4.17

In this example we calculate the response of an RC circuit when the emf is a

discontinuous function. These types of problems occur frequently in engineer-

ing, especially electrical engineering, where discontinuous inputs to circuits are

commonplace. Therefore, consider an RC circuit containing a 1 volt battery,

and with zero initial charge on the capacitor. Take R = 1 and C = 1
3 . Assume

the switch is turned on from 1 ≤ t ≤ 2, and is otherwise switched off, giving a

square pulse. The governing equation for the charge on the capacitor is

q′ + 3q = h1(t) − h2(t), q(0) = 0.

We apply the basic technique with the notation Q = L[q]. Taking the Laplace

transform gives

sQ(s) − q(0) + 3Q(s) =
1

s
(e−s − e−2s).

Solving for Q(s) yields

Q(s) =
1

s(s+ 3)
(e−s − e−2s)

=
1

s(s+ 3)
e−s − 1

s(s+ 3)
e−2s.
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t

u

1 2 3

0.3

0.2

0.1

Figure 4.3 The switch is open up to time t = 1, so the charge response is

zero. When the switch is closed at t = 1 the charge increases until t = 2, when

the switch is again opened. The charge then decays to zero.

Now we have to invert, which is always the hardest part. Each term on the right

has the form U(s)e−as, and therefore we can apply the switching property (4.7).

From the table, or by partial fractions, we have

L−1

[
1

s(s+ 3)

]
=

1

3
(1 − e−3t).

Therefore, by the shift property,

L−1

[
1

s(s+ 3)
e−s

]
=

1

3
(1 − e−3(t−1))h1(t).

Similarly,

L−1

[
1

s(s+ 3)
e−2s

]
=

1

3
(1 − e−3(t−2))h2(t).

Putting these two results together gives

q(t) =
1

3
(1 − e−3(t−1))h1(t) −

1

3
(1 − e−3(t−2))h2(t).

We can use software, or even a calculator, to plot the charge response. See

Figure 4.3 �

Because there are extensive tables and computer algebra systems containing

large numbers of inverse transforms, the partial fractions technique for inversion

is not used as often as in the past.
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EXERCISES

1. Find A, B, and C for which

1

s2(s− 1)
=
As+B

s2
+

C

s− 1
.

Then find the inverse Laplace transform of

1

s2(s− 1)
.

2. Find the Laplace transform of the following functions.

a) e−6tt4.

b) t sin t.

c) te−5t cos 2t.

d) 1
(s−3

3
.

3. Find the inverse transform of the following functions.

a) U(s) = s
s2+7s−8 .

b) U(s) = 3−2s
s2+2s+10 .

c) 2
(s−5)4 .

d) 7
s e

−4s.

e) 1
s(s−2)e

−s.

f) 7s+1
s2+4 .

g) 3
2s2+7 .

h) 4s−9.

i) 5s
(s−3)2+4 .

4. Solve the following initial value problems using Laplace transforms.

a) u′ + 5u = h2(t), u(0) = 1.

b) u′ + u = sin 2t, u(0) = 0.

c) u′′ − u′ − 6u = 0, u(0) = 2, u′(0) = −1

d) u′′ − 2u′ + 2u = 0, u(0) = 0, u′(0) = 1.

e) u′′ − 2u′ + 2u = e−t, u(0) = 0, u′(0) = 1.
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f) u′′ − u′ = 0, u(0) = 1, u′(0) = 0.

g) u′′ + 0.4u′ + 2u = 1 − h5(t), u(0) = 0, u′(0) = 0.

h) u′′ + 9u = sin 3t, u(0) = 0, u′(0) = 0.

i) u′′ − 2u = 1, u(0) = 1, u′(0) = 0.

j) u′ = 2u+ h1(t), u(0) = 0.

5. Use Laplace transforms to solve the two simultaneous differential equations

x′ = x− 2y − t

y′ = 3x+ y,

with x(0) = y(0) = 0. Hint: Use what you know about solving single

equations, letting L[x] = X(s) and L[y] = Y (s).

6. Use Laplace transforms to solve the two simultaneous differential equations

x′ = 2x− y

y′ = x,

with x(0) = a, y(0) = 0.

7. Show that
L[tnu(t)] = (−1)nU (n)(s)

for n = 1, 2, 3, . . ..

4.3 The Convolution Property

The additivity property of Laplace transforms was stated earlier: the Laplace

transform of a sum is the sum of the transforms. But what can we say about the

Laplace transform of a product of two functions? It is not multiplicative, that is,

the product of the two Laplace transforms. Stated more precisely, if u = u(t)

and v = v(t) with L[u] = U(s) and L[v] = V (s), then L[uv] 6= U(s)V (s).

If this is not true, then what is true? We ask it this way. What function has

transform U(s)V (s)? Or, differently, what is the inverse transform of U(s)V (s).

The answer may surprise you because it is nothing one would easily guess. The

function whose transform is U(s)V (s) is the convolution of the two functions

u(t) and v(t). It is defined as follows. If u and v are two functions defined on

[0,∞), the convolution of u and v, denoted by u ∗ v, is the function defined by

(u ∗ v)(t) =

∫ t

0

u(τ)v(t − τ)dτ.
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Sometimes it is convenient to write the convolution as u(t) ∗ v(t). The convo-

lution property of Laplace transforms states that

L[u ∗ v] = U(s)V (s).

It can be stated in terms of the inverse transform as well:

L−1[U(s)V (s)] = u ∗ v.
This property is very useful because when solving a DE we often end up with

a product of transforms; we may use this last expression to invert the product.

The convolution property is straightforward to verify using the multivariable

calculus technique of interchanging the order of integration. The reader should

check the following steps.

L
(∫ t

0

u(τ)v(t− τ)dτ

)
=

∫ ∞

0

(∫ t

0

u(τ)v(t − τ)dτ

)
e−stdt

=

∫ ∞

0

(∫ t

0

u(τ)v(t − τ)e−stdτ

)
dt

=

∫ ∞

0

(∫ ∞

τ

u(τ)v(t − τ)e−stdt

)
dτ

=

∫ ∞

0

(∫ ∞

τ

v(t− τ)e−stdt

)
u(τ)dτ

=

∫ ∞

0

(∫ ∞

0

v(r)e−s(r+τ)dr

)
u(τ)dτ

=

∫ ∞

0

(∫ ∞

0

v(r)e−srdr

)
e−sτu(τ)dτ

=

(∫ ∞

0

e−sτu(τ)dτ

)(∫ ∞

0

v(r)e−srdr

)
. �

This last expression is U(s)V (s). �

Example 4.18

Find the convolution of 1 and t2. We have

1 ∗ t2 =

∫ t

0

1 · (t− τ)2dτ =

∫ t

0

(t2 − 2tτ + τ2)dτ

= t2 · t− 2t(
t2

2
) +

t3

3
=
t3

3
.

Notice also that the convolution of t2 and 1 is

t2 ∗ 1 =

∫ t

0

τ2 · 1dτ =
t3

3
. �
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In the exercises you are asked to show that u ∗ v = v ∗u, so the order of the

two functions under convolution does not matter.

Example 4.19

Find the inverse of U(s) = 3/(s(s2 + 9)). We can do this by partial fractions,

but here we use convolution. We have

L−1

[
3

s(s2 + 9)

]
= L−1

[
1

s

3

(s2 + 9)

]

= 1 ∗ sin 3t =

∫ t

0

sin 3τdτ

=
1

3
(1 − cos 3t) . �

Example 4.20

Solve the nonhomogeneous DE

u′′ + k2u = f(t),

where f is any given input function, and where u(0) and u′(0) are specified

initial conditions. Taking the Laplace transform,

s2U(s) − su(0) − u′(0) + k2U(s) = F (s).

Then

U(s) = u(0)
s

s2 + k2
+ u′(0)

1

s2 + k2
+

F (s)

s2 + k2
.

Now we can invert each term, using the table to calculate the inverse of the first

two terms, and using convolution on the last term, to get the solution formula

u(s) = u(0) coskt+
u′(0)

k
sin kt+

1

k

∫ t

0

f(τ) sin k(t− τ)dr. �

Use of the convolution is a convenient way to find the solution to a differential

equation with arbitrary source term.

EXERCISES

1. Compute the convolution of sin t and cos t.

2. Compute the convolution of t and t2.

3. Compute the convolution of t and et.
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4. Give a specific example to show that, in general, L[uv] 6= U(s)V (s).

5. Use the convolution property to find the general solution of the first-order

differential equation u′ − au = f(t) using Laplace transforms. Next solve

the equation using integrating factors, and compare.

6. Use a change of variables in the convolution integral to show that the order

of the functions used in the definition of the convolution does not matter.

That is,

(u ∗ v)(t) = (v ∗ u)(t).

7. Solve the initial value problem

u′′ − ω2u = f(t), u(0) = u′(0) = 0.

8. Use Exercise 5 to find the solution to

u′′ − 4u = 1 − h1(t), u(0) = u′(0) = 0.

9. Write an integral expression for the inverse transform of U(s) = 1
se

−3sF (s),

where L [f ] = F.

10. Find a formula for the solution to the initial value problem

u′′ − u′ = f(t), u(0) = u′(0) = 0.

11. Use convolution to calculate

L−1

[
1

s2(s2 + 1)

]

.

12. An integral equation is an equation where the unknown function u(t) ap-

pears under an integral sign (see also the exercises in Section 1.2). Consider

the integral equation

u(t) = f(t) +

∫ t

0

k(t− τ)u(τ)dτ,

where f and k are given functions. Using convolution, find a formula for

U(s) in terms of the transforms F and K of f and k, respectively.

13. Using the idea in the preceding exercise, solve the following integral equa-

tions.

a) u(t) = t−
∫ t

0
(t− τ)u(τ)dτ.

b) u(t) = 1 + 1
2

∫ t

0 u(τ)dτ.
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c) u(t) =
∫ t

0
u(τ)dτ.

14. Solve the integral equation for u(t):

f(t) =
1√
π

∫ t

0

u(τ)√
t− τ

dτ.

Hint: Use the gamma function introduced in Section 4.1.

4.4 Piecewise Continuous Sources

The problems we are solving have the general form

u′′ + bu′ + cu = f(t), t > 0

u(0) = u1, u
′(0) = u2.

If f is a continuous function, then we can use variation of parameters to find

the particular solution; if f has the special form of a polynomial, exponential,

sine, or cosine, or sums and products of these forms, we can use the method of

undetermined coefficients (judicious guessing) to find the particular solution.

If, however, f is a piecewise continuous source with different forms on different

intervals, then we would have to find the general solution on each interval and

determine the arbitrary constants to match up the solutions at the endpoints

of the intervals. This is an algebraically difficult and tedious task. However,

using Laplace transforms, the task is not so tedious. In this section we present

additional examples on how to deal with discontinuous forcing functions.

Example 4.21

As we noted earlier, the Heaviside function is used to write piecewise, or multi-

lined, functions in a single line. For example,

f(t) =






t, 0 < t < 1

2, 1 ≤ t ≤ 3

0, t > 3

= t+ (2 − t)h1(t) − 2h3(t).

The first term switches on the function t at t = 0; the second term switches

on the function 2 and switches off the function t at t = 1; and the last term

switches off the function 2 at t = 3. By linearity, the Laplace transform of f(t)

is given by

F (s) = L[t] + 2L[h1(t)] − L[th1(t)] − 2L[h3(t)].
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The second and fourth terms are straightforward from Example 4.3, and L[t] =

1/s2. The third term can be calculated using L [f(t)ha(t)] = e−asL[f(t + a)].

(See the table.) With f(t) = t we have

L [th1(t)] = e−sL[t+ 1] =
1

s2
e−s +

1

s
e−s.

Putting all these results together gives

F (s) =
1

s2
+

2

s
e−s −

(
1

s2
e−s +

1

s
e−s

)
− 2

s
e−3s. �

Example 4.22

Solve the initial value problem

u′′ + 9u = e−0.5th4(t), u(0) = u′(0) = 0,

where the forcing term is an exponential decaying term that switches on at

time t = 4. The Laplace transform of the forcing term is

L[e−0.5th4(t)] = e−4sL[e−0.5(t+4)] = e−2 1

s+ 0.5
e−4s.

Then, taking the transform of the the equation,

s2U(s) + 9U(s) = e−2 1

s+ 0.5
e−4s.

Whence

U(s) = e−2 1

(s+ 0.5)(s2 + 9)
e−4s.

Now we need the shift theorem. But first we find the inverse transform of

1/((s+ 0.5)(s2 +9)). Here we leave it as an exercise (partial fractions) to show

L−1

[
1

(s+ 0.5)(s2 + 9)

]
=

3e−0.5t − 3 cos 3t+ 0.5 sin 3t

27.75
.

Therefore, by the shift property,

u(t) = e−2L−1

[
e−4s

(s+ 0.5)(s2 + 9)

]

= h4(t)
3e−0.5(t−4) − 3 cos 3(t− 4) + 0.5 sin 3(t− 4)

27.75e2
,

which is the solution. Notice that the solution does not switch on until t = 4.

At that time the forcing term turns on, producing a transient; eventually its

effects decay away and an oscillating steady state takes over. �
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EXERCISES

1. Sketch the function f(t) = 2h3(t) − 2h4(t) and find its Laplace transform.

2. Find the Laplace transform of f(t) = t2h3(t).

3. Invert F (s) = (s− 2)−4.

4. Sketch the following function, write it as a single expression, and then find

its transform.

f(t) =





3, 0 ≤ t < 2

2, 2 ≤ t < π

6, π ≤ t ≤ 7

0, t > 7.

5. Find the inverse transform of

U(s) =
1 − e−4s

s2
.

6. Solve the initial value problem

u′′ + 4u =

{
cos 2t, 0 ≤ t ≤ 2π,

0, t > 2π,

where u(0) = u′(0) = 0. Sketch the solution.

7. Consider the initial value problem u′ = u + f(t), u(0) = 1, where f(t) is

given by

f(t) =

{
0, 0 < t ≤ 1

−2, t > 1.

Solve this problem in two ways: (a) by solving the problem on two intervals

and pasting together the solutions in a continuous way, and (b) by Laplace

transforms.

8. An LC circuit with L = C = 1 is “ramped-up” with an applied voltage

e(t) =

{
t, 0 ≤ t ≤ 9

9, t > 9.

Initially there is no charge on the capacitor and no current. Find and sketch

a graph of the voltage response on the capacitor.

9. Solve u′ = −u+ h1(t) − h2(t), u(0) = 1.

10. Solve the initial value problem

u′′ + π2u =

{
π2, 0 < t < 1,

0, t > 1,

where u(0) = 1 and u′(0) = 0.
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11. Let f(t) be a periodic function with period p. That is, f(t+ p) = f(t) for

all t > 0. Show that the Laplace transform of f is given by

F (s) =
1

1 − e−ps

∫ p

0

f(r)e−rsdr.

Hint: Break up the interval (−∞,+∞) into subintervals (np, (n + 1)p),

calculate the transform on each subinterval, and finally use the geometric

series 1 + x+ x2 + · · · = 1/(1 − x).

12. Show that the Laplace transform of the periodic, square-wave function that

takes the value 1 on intervals [0, a), [2a, 3a), [4a, 5a),..., and the value −1

on the intervals [a, 2a), [3a, 4a), [5a, 6a),..., is (1/s) tanh (as/2) .

13. Write a single-line formula for the function that is 2 between 2n and 2n+1,

and 1 between 2n− 1 and 2n, where n = 0, 1, 2, 3, 4, ....

4.5 Impulsive Sources

Many physical and biological processes have source terms that act at a single

instant of time. For example, we can idealize an injection of medicine (a “shot”)

into the blood stream as occurring at a single instant; a mechanical system,

for example, a damped spring–mass system in a shock absorber on a car, can

be given an impulsive force by hitting a bump in the road; the switch in an

electrical circuit can be closed only for an instant, which leads to an impulsive,

applied voltage.

To fix the idea, let us consider a particle of mass m moving along a line

for t > 0 and subject to a damping force equal to the velocity v and another

applied force of magnitude f(t). Initially, assume the particle has no velocity.

By Newton’s second law of motion,

mv′ + v = f(t), v(0) = 0. (4.8)

This is a linear first-order equation, and if the force f(t) is a continuous func-

tion, or piecewise continuous function, the problem can be solved by the meth-

ods presented in Chapter 2 (integrating factors) or by transform methods. We

use the latter as illustration. Taking Laplace transforms and solving for V (s),

the Laplace transform of v(t), gives

V (s) =
1

m

1

s+ 1/m
F (s),
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where F (s) is the transform of the applied force, or source term, f(t). Using

the convolution property we have the solution

v(t) =
1

m

∫ t

0

e−(t−τ)/mf(τ)dτ. (4.9)

Presently, we want to consider a special type of applied force f(t), one given

by an impulse that acts only for a single instant (i.e., think of the mass hit by

a swift blow of a hammer). To fix the idea, we start the clock at t = 0 and

suppose the particle just remains with no motion until an impulse of 1 force unit

is applied at the single instant of time t = a. How does the mass respond? We

denote this unit impulsive force by f(t) = δa(t), which is called a unit impulse

at t = a. The question is how to define it. With some intuitive reasoning, it

appears that we should take δa(t) = 1 if t = a, and δa(t) = 0, otherwise. But

this cannot be correct. To illustrate, we can substitute into (4.9) and write

v(t) =
1

m

∫ t

0

e−(t−τ)/mδa(τ)dτ. (4.10)

If δa(t) = 0 at all values of t, except t = a, the integral must be zero because

the integrand is zero except at a single point. Hence, the velocity is v(t) = 0,

which is incorrect! Something is wrong with this intuitive definition of δa(t).

The problem is that we have yet to come to terms with the idea of an

impulse. Let p = mv be the momentum. In general, Newton’s law states that

the time rate of change of momentum is the force. That is,

p′(t) = f(t).

In elementary physics, an impulse is defined as the change of momentum ∆p

that occurs when a force acts over a small instant of time f∆t. Thus, the

impulse is ∆p = f∆t. If the impulse is centered at t = a, and a force acts

continuously over the small time interval (a−ε/2, a+ε/2), then we can imagine

that the momentum changes from 0 to 1 along the graph shown in Figure 4.4,

(a). The resulting force, which is the derivative of momentum, has the shape

shown in (b). However, we always have

∆p =

∫ a+ε/2

a−ε/2

f(t)dt = 1.

Notice that as ε gets smaller and smaller, we still have the last relation holding

true. Mathematically, we idealize this situation and think of the momentum

changing abruptly, as shown in Figure 4.4, panel(c). The derivative, or applied

force, is shown, ideally, in 4.4, panel(d). The force just acts as a point source

at t = a. But the change in momentum is still 1.
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a a + e/2a - e/2 t

1

a t

1

f

a a + e/2a - e/2 t

1

f

a t

1

p=mv

(a) (b)

(c) (d)

p=mv

Figure 4.4 (a) The momentum changing from 0 to 1 over a time interval (a−
ε/2, a+ε/2), and (b) the resulting force, (c) the idealized change in momentum

occurring at a point t = a, and (d) the resulting impulsive force.

In summary, having the source act at a single instant of time is a mathe-

matical idealization. Rather, such a short impulse must occur over a very small

interval (a− ε/2, a+ ε/2), where ε is a small positive number. We do not know

the actual form of the applied force over this interval, but we know its average

value over the interval must be 1. Therefore, let us take an idealized applied

unit force

fa,ε(t) =

{
1
ε , a− ε/2 < t < a+ ε/2

0, otherwise,

=
1

ε
(ha−ε/2(t) − ha+ε/2(t)).

These idealized forces are rectangular inputs that get taller and narrower

(of height 1/ε and width ε) as ε gets small. But their average value over the

small interval a− ε/2 < t < a+ ε/2 is always 1; that is,

∫ a+ε/2

a−ε/2

fa,ε(t)dt = 1.

This property should hold for all ε, regardless of how small. It seems reasonable

therefore to define the unit impulse δa(t) at t = a in a limiting sense, having
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a a + e/2a - e/2

1/e

1/e

t

Figure 4.5 The idealized (rectangular) impulsive force fa,ε(t) of height 1ε

and width ε. As ε→ 0, the function gets narrower and higher, but always has

area 1.

the property ∫ a+ε/2

a−ε/2

δa(t)dt = 1, for all ε > 0.

Engineers and scientists used this condition, along with δa(t) = 0, t 6= a, for

decades to define a unit, point source at time t = a, called the delta function,

and they developed a calculus that was successful in obtaining solutions to

equations having point sources. But, actually, the unit impulsive force is not

a function at all, and it was shown in the mid-twentieth century that the unit

impulse belongs to a class of so-called generalized functions whose actions are

not defined pointwise, but rather by how they act when integrated against

other functions. Mathematically, the unit impulse δa(t) is defined by the sifting

property ∫ ∞

0

δa(t)φ(t)dt = φ(a).

That is, when integrated against any nice function φ(t), the delta function picks

out the value of φ(t) at t = a. We check that this works in our problem. If we

use this sifting property back in (4.10), then for t > a we have

v(t) =
1

m

∫ t

0

e−(t−τ)/mδa(τ)dτ =
1

m
e−(t−a)/m, t > a,

which is the correct solution. Note that v(t) = 0 up until t = a, because there

is no source. Furthermore, v(a) = 1/m. Therefore the velocity is zero up to

time a, at which it jumps to the value 1/m, and then decays away.

To deal with differential equations involving impulses we can use Laplace

transforms in a formal way. Using the sifting property, with φ(t) = e−st, we

obtain

L[δa(t)] =

∫ ∞

0

δa(t)e−stdt = e−as,
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which is a formula for the Laplace transform of the unit impulse function. This

gives, of course, the inverse formula

L−1[e−as] = δa(t).

If the impulse is given at t = a = 0, then

L[δ0(t)] =

∫ ∞

0

δ0(t)e
−stdt = 1.

This gives the inverse formula

L−1[1] = δ0(t).

The previous discussion is highly intuitive and lacks a careful mathematical

base. However, the ideas can be made precise and rigorous. We refer to advanced

texts for a thorough treatment of generalized functions. Another common no-

tation for the unit impulse δa(t) is δ(t − a). If an impulse has magnitude f0,

instead of 1, then we denote it by f0δa(t). For example, an impulse given to a

mass of magnitude 12 at time t = a is 12δa(t). Finally, Exercise 9 shows how to

find the Laplace transform of the unit impulse function using the definition of

the transform, the idea being to take the limit of the transforms of the idealized

rectangular impulse functions fa,ε(t) as ε→ 0.

Example 4.23

Solve the initial value problem

u′′ + u′ = δ2(t), u(0) = u′(0) = 0,

with a unit impulse applied at time t = 2. Taking the transform,

s2U(s) + sU(s) = e−2s.

Thus

U(s) =
e−2s

s(s+ 1)
.

Using the table it is simple to find

L−1

[
1

s(s+ 1)

]
= 1 − e−t.

Therefore, by the shift property, the solution is

u(t) = L−1

[
e−2s

s(s+ 1)

]
= (1 − e−(t−2))h2(t).

The initial conditions are zero, and so the solution is zero up until time t = 2,

when the impulse occurs. At that time the solution increases with limit 1 as

t→ ∞. See Figure 4.6. �
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2 4 6

1

t

u

8

Figure 4.6 Solution in Example 4.23.

EXERCISES

1. Compute
∫∞
0
e−2(t−3)2δ4(t)dt.

2. Solve the initial value problem

u′ + 3u = δ1(t) + h4(t),

u(0) = 1.

Sketch the solution.

3. Solve the initial value problem

u′′ − u = δ5(t),

u(0) = u′(0) = 0.

Sketch the solution.

4. Solve the initial value problem

u′′ + u = δ2(t),

u(0) = u′(0) = 0.

Sketch the solution.

5. Invert the transform F (s) = e−2s/s+ e−3s.

6. Solve the initial value problem

u′′ + 4u = δ2(t) − δ5(t),

u(0) = u′(0) = 0.
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7. Solve the initial value problem

u′′ + u = +δ2π(t),

u(0) = 0, u′(0) = 1.

8. Consider a spring–mass setup with m = k = 1, where k is the spring

constant. Initially the system is at rest, at equilibrium. At each of the times

t = 0, π, 2π, 3π, ..., nπ, ... a unit impulse is given to the mass. Determine

the resulting displacement u(t) of the mass.

9. This exercise takes you through another calculation of the Laplace trans-

form of the unit impulse function. The idea is to compute the transform

of the idealized impulse fa,ε(t) (see Figure 4.5), and then take the limit as

ε→ 0.

a) Using the fact that sinh z = 1
2 (ez − e−z), show that

L[fa,ε(t)] = L[
1

ε
(ha−ε/2(t) − ha+ε/2(t))] =

1

s
e−as 2 sinh εs

2

ε
.

b) Use l’Hospital’s rule to compute the limit

lim
ε→0

2 sinh εs
2

ε
= s,

c) Combining parts (a) and (b), show

L[δa(t)] = e−as.



4.6 Table of Laplace Transforms 191

4.6 Table of Laplace Transforms

Table 4.1 Short Table of Laplace Transforms

u(t) U(s)

eat 1
s−a

tn n!
sn+1 , n = 0, 1, 2, 3, ...

ta Γ(a+1)
sa+1

sin kt k
s2+k2

cos kt s
s2+k2

sinh kt k
s2−k2

coshkt s
s2−k2

eat sinkt k
(s−a)2+k2

eat cos kt s−a
(s−a)2+k2

1
a−b (e

at − ebt) 1
(s−a)(s−b)

tneat n!
(s−a)n+1

u′(t) sU(s) − u(0)

u′′(t) s2U(s) − su(0) − u′(0)

u(n)(t) snU(s) − sn−1u(0) − · · · − u(n−1)(0)

u(at) 1
aU( s

a )

ha(t)u(t− a) U(s)e−as

u(t)eat U(s− a)

δa(t) e−as

δ0(t) 1∫ t

0
u(τ)v(t − τ)dτ U(s)V (s)∫ t

0 u(τ)dτ 1
sU(s)

tf(t) −F ′(s)

tnf(t) (−1)nF (n)(s)

t sin bt 2bs
(s2+b2)2

t cos bt s2−b2

(s2+b2)2∑∞
0 f(t− na)hna(t) F (s) 1

1−eas



5
Systems of Differential Equations

Up until now we have focused upon a single differential equation with one un-

known state function. Yet, most physical systems require several state variables

to characterize them. Therefore, we are naturally led to study several differ-

ential equations for several unknowns. Typically, we expect that if there are n

unknown states, then there will be n differential equations, and each DE will

contain many of the unknown state functions. Thus the equations are coupled

together in the same way as simultaneous systems of algebraic equations. If

there are n simultaneous differential equations in n unknowns, we call the set

of equations an n-dimensional system.

In this chapter we give an elementary overview of both linear and nonlinear

systems. We present some basic applications and a few essential techniques

for understanding these systems without going into a detailed analysis using

matrix algebra. In Chapters 6 and 7 we take up more advanced techniques

for linear equations and nonlinear equations using matrix methods. The goal

in this chapter is to study simple geometrical and analytic methods for two-

dimensional systems and understand their behavior and solution structure in

the phase plane.

J.D. Logan, A First Course in Differential Equations, Undergraduate Texts in Mathematics, 
DOI 10.1007/978-1-4419-7592-8_5, © Springer Science+Business Media, LLC 2011 
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5.1 Linear Systems

A two-dimensional, linear, homogeneous system of differential equations has

the form

x′ = ax+ by, (5.1)

y′ = cx+ dy, (5.2)

where a, b, c, and d are constants, and where x and y are the unknown states.

A solution consists of a pair of functions

x = x(t), y = y(t),

that, when substituted into the equations, reduce the equations to identities;

for linear equations, solutions exist for all time −∞ < t <∞. We can visualize

a solution geometrically in two ways. First, we can plot x = x(t) and y = y(t)

versus t on the same set of axes, as shown in Figure 5.1. These types of plots

x

yx, y

t

x(t)

y(t)

(x(t),y(t))

0

t = 0

Time series

Phase plane

(x�(t),y�(t))

Figure 5.1 Plots showing the two representations of a solution to a system

for t ≥ 0. The plot to the left shows the time series plots x = x(t), y = y(t),

and the plot to the right shows the corresponding orbit in the xy-phase plane.

y decreases monotonically to 0, whereas x increases up to a maximum and then

decreases to 0. The tangent vector to the orbit at (x(t), y(t)) is (x′(t), y′(t)).

are called time series plots and they tell us how the states x and y vary in time.

Or, second, we can think of x = x(t), y = y(t) as parametric equations of a

curve in an xy plane, with time t as the parameter along the curve. See Figure

5.1. In this latter context, the parametric solution representation is called an

orbit , and the xy plane is called the phase plane. Orbits are traced out in time,

and we usually denote their direction in increasing time by placing arrows on
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the curves. Other words used to describe a solution curve in the phase plane,

in addition to orbit, are solution curve, path, and trajectory. These words are

often used interchangeably. In multivariable calculus the reader may have used

the position vector x(t) = x(t)i + y(t)j to represent an orbit, where i and j

are the unit vectors, but here we use the notation (x(t), y(t)), representing the

vector as an ordered pair. We also write it as a column vector,

x(t) =

(
x(t)

y(t)

)
.

The latter is the notation of choice when we use matrix methods. Finally, we

sometimes represent the orbit as an expression in x and y. This relation could

be found, for example, by eliminating the time parameter t in the parametric

equations. But, with this representation, we lose the information about how

the orbit is traced out in time; but we may be able to get the shape of the

curve.

We also recall from calculus that (x′(t), y′(t)) is the tangent vector to the

curve at a value of t along the curve. See Figure 5.1. It points in the direction

of increasing time. Other notations for the tangent vector are

x′(t) =

(
x′(t)

y′(t)

)
,

or x′(t) = x′(t)i + y′(t)j. We rarely use the latter.

For two-dimensional systems, we adopt the phase plane representation of a

graphical solution rather than the time series plots. In a phase plane setting,

we can use geometrical methods to advantage and find out the basic structure

of all the orbits; often this is all we want.

Example 5.1

For an illustration of these concepts, consider the system

x′ = y, (5.3)

y′ = −x, (5.4)

with −∞ < t < ∞ and initial conditions x(0) = 2, y(0) = 0. We can reduce

this system to the second-order DE x′′ + x = 0 (take the derivative of the

first equation and substitute the second), which has the general solution x(t) =

C1 cos t+C2 sin t. Applying the initial conditions, while noting x′(0) = y(0) = 0,

we get C1 = 2, C2 = 0. So the solution is x(t) = 2 cos t. Thus y(t) = x′(t) =

−2 sin t. Hence,

x(t) = 2 cos t, y(t) = −2 sin t
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is a solution to the system (5.3)–(5.4) satisfying the initial conditions, which is

easily verified by substitution. The time series plots are the graphs of x = 2 cos t

and y = −2 sin t versus t. Both are oscillations of amplitude 2 and period 2π.

We can also regard this solution as parametric equations that map out a curve,

or orbit, in the xy plane. We can find the shape of this orbit by eliminating

the parameter t along the curve. To do this, we divide the two equations by 2,

square both, and add, to get

x2 + y2 = 4,

which we recognize as a circle of radius 2 in the xy plane. Therefore, the para-

metric equations for the solution correspond to a circle. With the form of the

circular orbit in terms of x and y, we lost information about time. However, we

found the shape of the orbit, and we know the direction it is traced out. Specif-

ically, because x′ = y, in the upper half plane (y > 0) we must have x′ > 0,

which means x is increasing; because x′ < 0 in the lower half plane (y < 0),

we must have x decreasing there. So the circle is traced out clockwise as time

increases. As t → +∞, the circle cycles over and over. As time decreases, the

circle is traced out counterclockwise over and over. The differential equations

themselves always tell us the direction of increasing time on the orbit. Here, the

vector attached to the point (x, y) is (y,−x). For example, the vector attached

to the point (
√

3,−1) is (−1,−
√

3). This vector is the tangent vector to the

circular orbit x(t) = 2 cos t, y(t) = −2 sin t at t = π/6, which occurs at the

point (
√

3,−1) on the circle. �

The linear system (5.1)–(5.2) has infinitely many orbits, each defined for all

times −∞ < t < ∞. These orbits are described with two arbitrary constants,

and the collection of all these solutions is called the general solution. When we

impose initial conditions, which specify the state (x(t0), y(t0)) at some fixed

time t0, usually time zero:

x(t0) = x0, y(t0) = y0,

then a single orbit out of the many is selected out. That is, the initial value

problem, consisting of the system (5.1)–(5.2) and the initial conditions, has a

unique solution on −∞ < t < ∞; the initial conditions determine the two

arbitrary constants appearing in the general solution.

From a general viewpoint, equations (5.1)–(5.2) contain geometrical infor-

mation about the direction in which the solution curves are traced out (in time)

in the phase plane, in much the same way as the slope field of a single differ-

ential equation gives information about the slopes of solution curves (Chapter

1). At any point (x, y) in the xy plane, the right sides of (5.1)–(5.2) define a

vector
(x′, y′) = (ax+ b, cx+ d),
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which is the tangent vector to the solution curve, or orbit, that goes through the

point (x, y). For example, we can plot, or have software plot for us, this vector

at a lattice of points in the plane to obtain a vector field (a field of vectors),

or direction field, that indicates the “flow”, or direction, of the solution curves.

The orbits fit in so that their tangent vectors coincide with the vector field. A

diagram showing several key orbits is called a phase diagram, or phase portrait,

of the system (5.1)–(5.2). The phase portrait may, or may not, include the

vector field. Calculators (e.g., a TI-89) and computer algebra systems (see the

appendices) easily plot the direction field for a given system, as well as its

orbits.

Example 5.2

A second-order differential equation can always be reformulated as a system of

two first-order equations. For example, the damped, spring–mass equation

mx′′ = −kx− cx′

can be rewritten as

x′ = y,

y′ = − k

m
x− c

m
y,

where x is position or displacement of the mass from equilibrium and y is

its velocity. This system has the form of a two-dimensional linear system. In

this manner, mechanical problems, and RCL circuit problems as well, can be

studied as linear systems. With specific physical parameters k = m = 1 and

c = 0.5, we obtain the linear system

x′ = y,

y′ = −x− 0.5y.

We can always solve the linear system by solving the associated second-order

equation; here, the equation for x = x(t) is

x′′ + 0.5x′ + x = 0.

Using the methods in Chapter 3, the characteristic equation is

λ2 +
1

2
λ+ 1 = 0,

which has roots

λ = −1

4
±
√

15

16
.
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Therefore, the differential equation has general solution

x(t) = e−t/4

(
C1 cos

√
15

16
t+ C2 sin

√
15

16
t

)
.

This time series response in x(t) represents a decaying oscillation. We can find

the velocity y(t) via y(t) = x′(t). We have the rather complicated formula

y(t) = C1e
−t/4

(
−
√

15

16
sin

√
15

16
t− 1

4
cos

√
15

16
t

)

+ C2e
−t/4

(√
15

16
cos

√
15

16
t− 1

4
sin

√
15

16
t

)
,

which is a decaying oscillation as well. Using a calculator or computer algebra

system we can plot the parametric equations x = x(t), y = y(t) for given values

of C1 and C2; the orbits are shown in Figure 5.2. They spiral into the origin

in a clockwise direction. The vector field, which is indicated, is tangent to the

orbits. When all the orbits spiral into the origin as t→ ∞, we say the solution

curves have a spiral structure; the origin is a spiral point, or sometimes a focus.

A descriptive way to think about this is to imagine water flowing down a drain.

The drain is a vortex and the orbits are streamlines, or particle paths; the vector

field is the velocity of the water at each point. �

Remark 5.3

Every second-order linear differential equation can be transformed to a system

of two first-order linear equations. For example, take

x′′ + px′ + qx = 0.

Letting y = x′, we get y′ + py + qx = 0. Therefore,

x′ = y, y′ = −qx− py,

which is a linear system. Conversely, every linear system can be formulated as

an equivalent second-order linear equation. How this is carried out in general

is discussed in the sequel. �

Sometimes one can find equations of the orbits in terms of x and y ei-

ther from the parametric representation, by eliminating the parameter as in

Example 5.1, or solving a differential equation in x and y. The next example

illustrates the latter technique.
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Figure 5.2 Phase plane diagram and vector field for the damped spring–

mass system x′ = y, y′ = −x− 0.5y, showing several orbits that spiral into the

origin as t → ∞. These spirals correspond to time series plots of x and y vs

t that oscillate and decay. The origin is called a focus. MATLAB R© produced

the plot. The vector field at each point (x, y) is (y,−x − 0.5y). Note that the

orbits approach the origin, but never actually reach it.

Example 5.4

Consider the system

x′ = 2y,

y′ = x.

Here we can find the orbits simply by dividing the two equations to get1

y′

x′
=
dy/dt

dx/dt
=
dy

dx
=

x

2y
.

1 Along an orbit x = x(t), y = y(t) we also have y as a function of x, or y = y(x).
Then the chain rule requires

dy

dt
=

dy

dx

dx

dt
or

dy/dt

dx/dt
=

dy

dx
.
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Therefore,
dy

dx
=

x

2y
,

which is a differential equation (in x and y) that defines the orbits. We can

solve this very easily by separating variables to get

1

2
x2 − y2 = C,

where C is an arbitrary constant. We recognize these curves as a family of

hyperbolas, as shown in Figure 5.3. In this representation of the orbits we have

determined their shapes, but we have lost information about how they are

traced out in time. If C > 0 we obtain the left and right pair of hyperbolas,

and if C < 0 we get the upper and lower pair. If C = 0 we get y2 = (1/4)x2,

or the two straight lines y = ±(1/
√

2)x.

This type of orbital behavior, where orbits approach the origin and then veer

away, is called a saddle structure, and the origin itself is called a saddle point.

The special straight line orbits are called separatrices; because they separate

the types of orbits. This behavior always occurs in saddle structure. Orbits in

linear systems with saddle points are always asymptotic to the separatrices as

t→ −∞ and as t→ −∞. �

x

y

Figure 5.3 Hyperbolic orbits for the system x′ = 2y, y′ = x, giving a sad-

dle structure. The direction of the orbits in each quadrant is shown. The two

straight line orbits in the first and third quadrants emanating out of the origin,

and the two entering the origin in the second and fourth quadrants, are called

separatrices. These linear orbits do not pass through the origin, but either ap-

proach it or emanate from it. Because x′ = 2y, we have x′ > 0 when y > 0;

so orbits are traced out in the positive x direction in the upper half-plane.

Similarly, x′ < 0, or x is decreasing, in the lower half-plane y < 0.
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When the vector field vanishes at the origin, and at no other point (i.e.,

(x′, y′) = (0, 0) only when x = y = 0), as in Examples 1–3, there are only four

possible types of orbital structure. Two are given in Examples 3 and 4 (a focus

and a saddle). The other two, which we introduce next, are called centers and

nodes.

Generally, any point in the plane where the vector field is zero (x′ = 0, y′ =

0) is called an equilibrium; if a small circle can be drawn about an equilibrium in

which there are no other equilibria, then that point is an isolated equilibrium.

For a linear system we can find all the equilibria by solving the system of

simultaneous equations

ax+ by = 0, cx+ dy = 0.

Clearly x = y = 0 (the origin) is always an equilibrium. But, if ad−bc = 0, these

two equations are not independent, and one is a multiple of the other. Then,

the system has infinitely many nonisolated equilibria all lying on a straight line

in the plane through the origin. For example, the system

x′ = x− y, y′ = −2x+ 2y

has equilibria at every point on the line y = x.

Example 5.5

Consider the system

x′ = −2y,

y′ = x.

Notice that (0, 0) is an isolated equilibrium. As before, we can find the orbits

simply by dividing the two equations to eliminate t. We get

dy

dx
=

x

−2y
.

Separating variables and integrating gives

1

2
x2 + y2 = C,

where C is an arbitrary constant. We recognize these curves as a family of

ellipses, one for each value of C, as shown in Figure 5.4. This type of orbital

behavior near the origin, where orbits form closed curves around the origin, is

called a center structure, and the origin itself is called a center. If we plotted

the time series, these would correspond to pure oscillations. These are peri-

odic solutions or periodic orbits, which are also called cycles. Again, in the xy

representation of orbits we lose the dependence on time t. �
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x

y

Figure 5.4 Concentric elliptical orbits for the system x′ = −2y, y′ = x, giving

a center structure. The direction of the orbits in each quadrant is shown; they

are traced out clockwise because x′ < 0 (x is decreasing) when y > 0, and

x′ > 0 (x is increasing) when y < 0.

Example 5.6

Consider the decoupled system

x′ = −x,
y′ = −2y.

Again, (0, 0) is an isolated equilibrium. We could proceed as in the previous ex-

amples (dividing the equations and integrating), but here we illustrate another

technique. Because the equations are decoupled, we can solve them directly to

get

x(t) = C1e
−t, y(t) = C2e

−2t.

These are decaying functions, and all orbits approach the origin. We can find

the shapes of the orbits by eliminating the time parameter t; square the first

equation and then divide the two equations to get

y =
C2

C2
1

x2 = Cx2.

We recognize these curves as parabolas. If C > 0 we obtain concave-up parabo-

las, and if C < 0 we get concave-down parabolas. When C = 0 we get y = 0, or

the the positive and negative x axes. These are straight-line orbits. The positive

and negative y axes are also orbits found by selecting C1 = 0; note that, when

x = 0, the system reduces to y′ = −2y, giving y(t) = C2e
−2t; so y approaches

the origin along the y axis. See Figure 5.5. The direction field is (−x,−2y);
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therefore, in the first quadrant curves approach the origin (x′ < 0, y′ < 0), and

similarly for the other three quadrants. All orbits approach the origin directly

without any oscillation, and the origin is said to have a nodal structure; the

origin itself is called a node. �

x

y

Figure 5.5 Orbits for the system x′ = −x, y′ = −2y, giving a nodal structure.

The direction of the orbits in each quadrant is shown. The axes represent

straight-line orbits.

Remark 5.7

An important observation is that orbits can never pass through an equilibrium

point. Orbits may approach an equilibrium only as t→ ±∞. For example, the

equilibrium solution x(t) = 0, y(t) = 0 is a constant solution, plotting as a

single point (0, 0) in the phase plane. If another orbit crossed the equilibrium,

then the time series for that orbit would cross the constant time series x(t) = 0,

y(t) = 0 at some fixed finite time, and uniqueness of the initial value problem

would be violated. �

In the following example we show how to analyze a two-dimensional sys-

tem geometrically. You can compare it to the analysis of a single autonomous

equation x′ = f(x) encountered in Chapter 1. There, by sketching the phase

line, we were able to completely understand the behavior of the solution. The

direction arrows on the phase line are comparable to the direction field in two

dimensions.
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Example 5.8

(Compartmental Models) Many linear systems arise from compartmental

models. These are models where there are several compartments with flow rates

specified between them. For example, coupled chemical reactors, disease models

(susceptibles and infectives), physiological models (blood and organs), and so

forth, are all compartmental models. As an example, let us consider a farm crop

and the surrounding soil. If a herbicide is sprayed on the soil at time t = 0,

then that herbicide will transfer into the plants, and vice versa. There is a

constant exchange of chemicals between these two compartments. We visualize

these processes by sketching a compartmental diagram. See Figure 5.6. Let x

crops

x y

soil

cy

bx

ay

Figure 5.6 A compartmental diagram showing the exchange rates of the

herbicide between crops and the soil. The −cy term represents the degradation,

or decay, rate in the soil.

be the amount (in units of amount of pesticide) in the crop, and y the amount

in the soil. Furthermore, let ay be the rate (say, amount per week) that the

pesticide is taken up by the plants, and bx the rate that it is transferred back

to the soil. If cy is the rate that the pesticide in the soil degrades, then we can

write

dx

dt
= rate of gain from the soil − rate of loss from the plants

= ay − bx,

and

dy

dt
= rate of gain from the plants − rate of loss from the soil

− rate of degradation

= bx− ay − cy.
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Therefore, we have the two-dimensional system

dx

dt
= −bx+ ay,

dy

dx
= bx− (a+ c)y.

Dividing these equations leads to a difficult differential equation or x and y,

which we want to avoid. For this system we introduce an extremely important

graphical method for obtaining plots of the orbits in the phase plane. This

technique requires a simple determination of the vector field in regions of the

plane, which points in the direction of the orbits. Setting both sides equal

to zero, we easily see that the only equilibrium is x = y = 0. Next we plot

the set of points (called the x nullcline) where x′ = 0; the vector field is

vertical on that line so orbits must cross vertically. Then we plot the set of

points (called the y nullcline) where y′ = 0; the vector field is horizontal along

that line, so orbits must cross horizontally. The x and y nullclines for this

system are the straight lines y = b/ax and y = ((b/(a + c))x, respectively,

and are shown in Figure 5.7. On each side of a nullcline we can calculate the

sign of the derivative and therefore obtain the direction field. For example,

x′ = ay − bx > 0 whenever y > (b/a)x, and x′ = ay − bx < 0 whenever

y < (b/a)x. Similarly, y′ = bx − (a + c)y > 0 whenever y < (b/(a + c))x, and

y′ = bx − (a + c)y < 0 whenever y < (b/(a + c))x. Putting this information

together in a single plot (Figure 5.7 (lower panel)) gives the direction field in

each region bounded by the two nullclines. Figure 5.7 (left panel) shows the

behavior of the orbits, determined by the vector field. It seems clear that the

origin has the structure of a node. A corresponding time series plot (for the

lower orbit in the left panel) confirms that the pesticide concentrations in both

the plants and the soil eventually decay to zero. Notice that we have analyzed

this problem geometrically using the direction field without solving it at all.

Frequently this is all we want; the general geometrical, or qualitative, behavior

of solutions. �

Summary. For a linear system

x′ = ax+ by,

y′ = cx+ dy,

the origin is the only equilibrium if, and only if, ad− bc 6= 0. In this case only

four basic orbital structures are possible: a focus, saddle, center, and node. As

an aid to drawing the orbits in the phase plane, we plot the set of points where

x′ = ax+ by = 0, the set of points called the x nullcline where the vector field

is vertical. Similarly, the set of points where y′ = cx + dy = 0, the y nullcline,
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x

y

x

y

x

y

x� = 0x� > 0

x� < 0

y� = 0

y� > 0

y� < 0

Figure 5.7 The x nullcline (x′ = 0) and the regions where x′ > 0 and x′ < 0

(upper left). The y nullcline (y′ = 0) and the regions where y′ > 0 and y′ < 0

(upper right). The direction field in regions bounded by the nullclines (bottom).

x

y

x (t)

y (t)

t

Figure 5.8 The orbits, as determined by the direction field (left), and a time

series plot corresponding to the lower orbit (right).

is the set of points where the vector field is horizontal. Orbits must cross these

nullclines vertically and horizontally, respectively. Then, the direction of the

vector field can be determined in each region bounded by the nullclines. This

determines the direction of all the orbits and, in many cases, this determines

the qualitative behavior of the orbits.

In addition, we use some terminology for isolated equilibria similar to that

for a single autonomous equation studied in Chapter 1. If all the orbits approach

the equilibrium as t → +∞, we say the equilibrium is asymptotically stable.

This can occur in both nodal and spiral structures. In center structures where

the solutions are closed curves encircling the origin, or cycles, an orbit close to

the origin remains close, but it does not approach the origin; in this case we say

a center is neutrally stable. In saddle structures, orbits close to the origin do not
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remain close but stray far away as time increases; a saddle point is unstable.

Nodes and spirals can be unstable as well, depending on the direction of the

vector. Later, in Chapter 6, we present a detailed description of linear systems

and their stability, both in terms of matrix algebra. �

Example 5.9

(Glucose–Insulin Interaction) When a person consumes food, especially

carbohydrates, the pancreas responds by producing insulin, the key hormone

that unlocks cell receptors on the cell walls to inject the glucose into the cell.

If x denotes the excess amount of glucose in the blood above some equilibrium

amount, and y denotes the excess amount of insulin, then a simple model of

the dynamics of the interaction is

x′ = −gx− ry,

y′ = sx− dy,

where g is the natural decay rate of glucose (e.g., in excretion), r is the rate that

insulin decreases the glucose, s is the rate that insulin production is stimulated

by the presence of glucose, and d is the natural decay rate of insulin. The

constants are positive. (Note that x or y may be negative if the amounts are

below equilibrium values.) Representative experimental values are

g = 2.9, r = 4.3, s = 0.21, d = 0.78. (5.5)

The origin is the only equilibrium because (−g)(−d) − s(−r) > 0. The x null-

cline, y = −(g/r)x, where the direction field is vertical, has negative slope, and

the y nullcline, y = (s/d)x, where the direction field is horizontal, has positive

slope. See Figure 5.9. On each side of the nullclines the direction field is easily

determined and shown in the figure. For example, x′ > 0 if y < −(g/r)x, or

underneath the x nullcline. From these simple ideas we can get a rough idea

of the shapes of the orbits. There appears to be a counterclockwise rotation,

which could mean a spiral or center; or, the orbits could just veer into the

origin. We have to work harder to determine which is true. In the next chapter

we develop the tools to answer this question quickly and easily. But for the

present we can make some progress with one of our current tools. First, it is

not easy to divide the two equations and solve to get the orbits in terms of x

and y. Therefore, let’s eliminate a variable and find the equivalent second-order

equation. Differentiating the first equation and then substituting y′ from the

second gives

x′′ = −gx′ − r(sx− dy).
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But from the first, y = −(x′ + gx)/r. Substituting this into the last equation

gives, after simplification,

x′′ + (g + d)x′ + (rs+ dg)x = 0,

which is a second-order linear equation of the type solved in Chapter 3. The

characteristic polynomial is

λ2 + (g + d)λ+ (rs + dg) = 0,

and the roots are

λ =
1

2

(
−(g + d) ±

√
(g + d)2 − 4(rs+ dg)

)
.

Different cases can occur for different values of the parameters. One instant

observation is that these roots can never be purely imaginary because g +

d 6= 0. Therefore, there can be no purely oscillatory solutions. In the phase

plane this means no periodic orbits or cycles; the origin cannot be a center. If

(g + d)2 < 4(rs+ dg), the roots are complex with negative real parts; thus, we

obtain decaying oscillations. In the phase plane these represent stable spirals

approaching the origin. If (g + d)2 > 4(rs + dg), then the roots are real and

both are negative. Solutions decay to zero without oscillation, and this gives a

stable node in the phase plane. An individual with type II diabetes does not

y = (s/d)x

y = (g/r)x

x

y

a

Figure 5.9 Glucose–insulin dynamics. The nullclines and direction field are

shown. A typical orbit beginning at (x, y) = (a, 0) is shown for the case of a

node, which occurs when (g + d)2 > 4(rs+ dg). The system also admits stable

spirals when (g + d)2 < 4(rs+ dg).

respond well to insulin (insulin resistant), and we expect a very slow decay to
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equilibrium. This would occur if g+d is very small; the rate of glucose decay is

small, and the response to insulin is slow. An individual with very low glucose,

or who is hypoglycemic, may have a strong overshoot with x negative. The

reader is asked in an exercise to determine which of these cases occurs for the

realistic parameters given in (5.5). �

EXERCISES

1. By direct substitution, verify that x(t) = cos 2t, y(y) = −2 sin 2t is a

solution to the system
x′ = y, y′ = −4x.

Sketch time series plots of the solution for −∞ < t < ∞, and find the

x, y equation for the corresponding orbit in the phase plane. Indicate the

direction of the orbit as time increases. By hand, plot several vectors in the

vector field to show the direction of the orbit.

2. Verify that

x(t) =

(
2et

−3et

)

is a solution to the linear system

x′ = 4x+ 2y, y′ = −3x− y.

Plot this solution in the xy plane for t ∈ (−∞,∞). In terms of x and y,

find the equation of the orbit.

3. Consider the linear system

x′ = −x+ y, y′ = 4x− 4y,

with initial conditions x(0) = 10, y(0) = 0. Note that the equilibria are

not isolated, and sketch the locus of points defining the equilibria. Find

formulas for the solution x(t), y(t), and plot their time series. Hint: Divide

the two equations.

4. In the damped spring–mass system in Example 5.2 take m = 1, k = 6,

and c = 7, with initial conditions x(0) = 4 and y(0) = 0. Set up the linear

system and find formulas for the position x(t) and velocity y(t) by the

method of elimination. Plot the time series for the solution and the orbit

in the xy phase plane. In words, describe the behavior of the solution.

5. Let q and I be the charge and the current in an RCL circuit with no

electromotive force. Write down a linear system of first-order equations

that govern the two variables q and I. Take L = 1, R = 0, and C = 1
4 . If

q(0) = 8 and I(0) = 0, find q(t) and I(t). Show a time series plot of the

solution and the corresponding orbit, along with its direction, in the qI

phase plane.
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5.2 General Solution and Geometric Behavior

For two linear equations in two unknowns, x = x(t) and y = y(t), we have

introduced three methods where we can directly determine the solution of the

system. To review, consider

x′ = ax+ by, (5.6)

y′ = cx+ dy. (5.7)

(1) (Division) We can divide the two equations to obtain

dy

dx
=
cx+ dy

ax+ by
,

and then we can try to solve this differential equation to find solution curves

in terms of x and y, with loss of dependence on t. But it is not always easy to

solve this equation or integrate afterwards to get the t dependence. If we could

solve this equation easily for y = y(x), we could substitute into (5.6) to get a

single DE equation for x = x(t). After solving, that result can be put back into

(5.6) to obtain y = y(t).

(2) (Method of Elimination) We can eliminate one of the variables in

the system, say, y, and thus obtain a second-order, linear DE with constant

coefficients, for x = x(t). For example,

x′′ = ax′ + by′ = ax′ + b(cx+ dy) = ax′ + bcx− dx′ − adx,

or

x′′ − (a+ d)x′ + (ad− cb)x = 0. (5.8)

We can solve this equation for x = x(t) and then use (5.6) to find y = y(t):

y(t) =
1

b
(x′ − ax).

This method of elimination gives x = x(t) and y = y(t) in terms of two arbitrary

constants, which is the general solution. We use this elementary method in this

section to solve two-dimensional problems; it always works. However, it is not

a method that easily extends to higher-dimensional systems.

(3) (Laplace Transforms) The third method, which was introduced in

the exercises in Chapter 4, is the use of Laplace transforms. If X(s) is the

transform of x, and Y (s) is the transform of y(t), then taking the transform of

each equation in (5.6)–(5.7) gives

sX(s) − x(0) = aX(s) + bY (s), (5.9)

sY (s) − y(0) = cX(s) + dY (s). (5.10)
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We can solve this algebraic system for X(s) and Y (s) and then return to the

time domain using the inverse transform. This method handles problems with

piecewise continuous sources, or point sources, particularly well.

Eventually, we want to present a method that easily generalizes to higher-

order systems and shows the transparency of the structure of linear systems.

This is done in a general way in Chapter 6, using the language of matrix algebra.

Here we take an elementary approach and motivate the general theory for two-

dimensional systems using the method of elimination. First, we formally record

the result above regarding the method of elimination.

Theorem 5.10

The first-order system (5.6)–(5.7) is equivalent to the second-order differential

equation

x′′ − (a+ d)x + (ad− bc)x = 0, (5.11)

and

y(t) =
1

b
(x′ − ax). � (5.12)

We know from Chapter 3 how to solve (5.11). We write down the charac-

teristic equation

λ2 − (a+ d)λ+ ad− cb = 0, (5.13)

and find its roots, or eigenvalues. They are

λ1 =
1

2

(
a+ d+

√
(a+ d)2 − 4(ad− bc)

)
, (5.14)

λ2 =
1

2

(
a+ d−

√
(a+ d)2 − 4(ad− bc)

)
. (5.15)

Depending on the eigenvalues, we know the general form of the solution x =

x(t), and therefore y = y(t). Thus, we know the parametric form of the general

solution to (5.6)–(5.7). This gives the classification we want. We assume ad−
bc 6= 0, which implies that the origin is the only equilibrium. (This is equivalent

to zero not being an eigenvalue; do you see why?)

The cases areas follows.

Real Unequal Eigenvalues. From the results in Chapter 3, the general

solution to (5.11) is

x(t) = c1e
λ1t + c2e

λ2t.

Therefore, from (5.12), after simplification,

y(t) = c1
λ1 − a

b
eλ1t + c2

λ2 − a

b
eλ2t.
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If both eigenvalues are negative, all solutions (x(t), y(t)) decay and there-

fore the orbits approach the origin. This is the case of an asymptotically

stable node at the origin. If both are positive, then the origin is an unstable

node. Finally, if they are of opposite sign, then the origin is an unstable

saddle point.

Real Equal Eigenvalues. Let λ1 = λ2 = λ. Then, from the results in

Chapter 3, the general solution to (5.11) is

x(t) = c1e
λt + c2te

λt.

Therefore, from (5.12), after simplification,

y(t) = c1
λ− a

b
eλt + c2

(λ − a)t+ 1

b
eλt.

If λ < 0 we again have an asymptotically stable node, and if λ > 0 we have

an unstable node.

Purely Imaginary Eigenvalues. Let λ = ±βi. From Chapter 3 the general

solution to (5.11) is

x(t) = c1 cosβt+ c2 sinβt.

Then,

y(t) = c1
−β sinβt− a cosβt

b
+ c2

β cosβt− a sinβt

b
.

Both x(t) and y(t) are periodic functions with period 2π/β. Therefore, the

orbits in the phase plane are cycles around the origin that repeat themselves

every 2π/β units of time. This is the center structure and the origin is

a neutrally stable center. Examining (5.14)–(5.15), imaginary eigenvalues

occur when

a+ d = 0, ad− bc > 0.

Then

β =
1

2

√
ad− bc.

Complex Eigenvalues. Let λ = α± βi. The general solution (5.11) is

x(t) = c1e
αt cosβt+ c2e

αt sinβt.

We leave it to the reader to compute y(t) from (5.12). It is clear that

both x(t) and y(t) are decaying or expanding oscillations, giving spiral

structures. If α < 0, then the orbits spiral into the origin and the origin is

asymptotically stable; if α > 0, then the orbits spiral outward, making the

origin unstable. Notice that the stable case occurs when α = a+d < 0 and

(a+ d)2 < 4(ad− bc), making β = 1
2

√
(4(ad− bc) − (a+ d)2.
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Example 5.11

Consider the system

x′ = −2x+ 2y,

y′ = 2x− 5y.

Eliminating the variable y gives, as described above,

x′′ + 7x′ + 6x = 0.

The characteristic equation is

λ2 + 7λ+ 6 = (λ + 1)(λ+ 6) = 0.

Hence,

λ = −1, λ = −6.

The general solution is

x(t) = c1e
−t + c2e

−6t.

Then, using (5.12),

y(t) =
3

2
c1e

−t − 2c2e
−6t.

This pair of equations is the general solution of the system, where c1 and c2
are arbitrary constants. The origin is an asymptotically node. �

Notation. Matrix notation provides a convenient way to express all of the

information very concisely. The coefficients a, b, c, and d in the system (5.6)–

(5.7) can be arranged in a matrix of numbers, called the coefficient matrix,

A =

(
a b

c d

)
.

Associated with the coefficient matrix A are two special numbers. One is the

sum of the diagonal elements a + d, called the trace of the matrix, and the

difference ad− cb, which is the determinant of the matrix. The latter may have

been encountered in elementary algebra when solving simultaneous equations.

Specifically, we define

trA = a+ d, detA = ad− cb.

In terms of these quantities, the characteristic equation (5.13) is easily written

and remembered as

λ2 − (trA)λ + detA = 0, (5.16)
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The eigenvalues are

λ1 =
1

2

(
trA+

√
(trA)2 − 4 detA

)
, λ1 =

1

2

(
trA−

√
(trA)2 − 4 detA

)
.

In terms of trA and detA we have completely characterized conditions for

asymptotic stability.

Theorem 5.12

If A denotes the coefficient matrix for the linear system (5.6)–(5.7), and detA 6=
0, then the origin is asymptotically stable if, and only if,

trA < 0 and detA > 0. �

Example 5.13

For the system

x′ = −2x+ 2y,

y′ = 2x− 5y,

the coefficient matrix is

A =

(
−2 2

2 −5

)
.

The trace is −2 − 5 = −7 and the determinant is (−2)(−5) − (2)(4) = 6. By

Theorem 5.12 the origin is asymptotically stable. By (5.16), the characteristic

equation is

λ2 + 7λ+ 6 = (λ + 1)(λ+ 6) = 0.

The two eigenvalues are λ1 = −1 and λ2 = −6. Both are real and negative and

the origin is an asymptotically stable node. �

Example 5.14

Consider the system

x′ = 2x− 2y,

y′ = 3x+ y.

The matrix of coefficients is

A =

(
2 −2

3 1

)
.
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The trace is 2+1 = 3 and the determinant is (2)(1)−(3)(−2) = 8. By Theorem

5.12 the origin is unstable. By (5.16), the characteristic equation is

λ2 − 3λ+ 8 = 0.

The eigenvalues are

λ1 =
1

2

(
3 ±

√
−22

)
=

3

2
± 1

2

√
22 i.

These are complex with positive real part, and therefore the origin is an un-

stable spiral point. �

In terms of the trace and determinant, we can characterize the type of

critical point as well as the stability.

Theorem 5.15

If A denotes the coefficient matrix for the linear system (5.6)–(5.7), and detA 6=
0, then:

1. If detA < 0, then (0, 0) is a saddle point.

2. If trA = 0 and detA > 0, then (0, 0) is a center.

3. If 0 < detA ≤ 1
4 (trA)2 and trA 6= 0, then (0, 0) is a node.

4. If detA > 1
4 (trA)2 and trA 6= 0, then (0, 0) is a spiral point. �

Figure 5.10 summarizes the results of the last two theorems in a plot of

detA versus trA. So, you can compute these two quantities and locate the

point on the plot to easily determine the type of structure.

The basic types of structures are reviewed in Figure 5.11:

Example 5.16

(Center) Consider the system

x′ = −9y,

y′ = x.

Here the trace is 0 and the determinant is 9, so (0, 0) is a center. The charac-

teristic equation
λ2 + 9 = 0,

with eigenvalues λ = ±3i. Therefore, the solution formula for x = x(t) is

x(t) = c1 cos 3t+ c2 sin 3t.
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saddle points
   (unstable)

det A

tr A

(tr A)  - 4 det A = 0
2

unstable
  nodes

stable
nodes

stable
spirals

unstable
 spirals

centers

Figure 5.10 A plot of the regions of the trace–determinant plane where the

various orbital structures occur. Along the horizontal axis where detA = 0,

one of the eigenvalues is zero, giving an exceptional case.

center node

spiral
saddle

Figure 5.11 Generic plots of the four basic orbital structures for two-

dimensional linear systems.
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Then

y(t) = −1

9
x′(t) =

1

3
c1 sin 3t+

1

3
c2 cos 3t. �

5.3 Linear Orbits

In Section 5.1 our goal was to give a geometric approach to understanding the

qualitative behavior of the phase plane. We found that straight line solutions,

or linear orbits, played an important role, especially in the case of nodes and

saddles. We focus now on those linear orbits, for they are the key to determining

the fine structure of orbital behavior.

Example 5.17

(Nodal Structure) In Example 5.11 we considered the system

x′ = −2x+ 2y,

y′ = 2x− 5y.

and showed that the general solution is

x(t) = c1e
−t + c2e

−6t,

y(t) =
3

2
c1e

−t − 2c2e
−6t,

where c1 and c2 are arbitrary constants. The eigenvalues are −1 and −6, so the

origin is an asymptotically stable node. Let’s ask about phase diagram. How

do the orbits enter the origin as → +∞? For very large t, the e−6t term decays

much faster than the e−t term. Therefore,

x(t) ≈c1e−t, as t→ +∞,

y(t) ≈3

2
c1e

−t, as t→ +∞.

The equations

x(t) = c1e
−t,

y(t) =
3

2
c1e

−t,

represent two (c1 > 0 and c1 < 0) linear orbits coming into the origin. Dividing

the two equations gives
y(t)

x(t)
=

3
2c1e

−t

c1e−t
=

2

3
,
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or

y(t) =
2

3
x(t).

The linear orbits have slope 2
3 . Our argument shows that all orbits approach

the origin tangent to the line y = 2
3x.

Where do the orbits come from? We have to ask what happens as t →
−∞. Now, the term e−6t dominates the term e−t as t gets large negatively.

Consequently,

x(t) ≈ c2e
−6, as t→ −∞,

y(t) ≈ −2c2e
−6t, as t→ −∞.

The equations

x(t) = c2e
−6, as t→ −∞,

y(t) = −2c2e
−6t, as t→ −∞.

represent two (c2 > 0 and c2 < 0) linear orbits coming into the origin corre-

sponding to the eigenvalue λ = −6. Taking the ratio, we get

y(t)

x(t)
= −2,

which is along the line y = −2x. For large negative t, all the orbits are parallel

to the line y = −2x. Therefore, all orbits are parallel to a line with slope −2

far away from the origin. Figure 5.12 shows the phase diagram. Observe that

the general solution is a linear combination of the two special linear orbits

corresponding to the the two eigenvalues. �

Example 5.18

(Saddle Structure) The other case where linear orbits occur is for a saddle

point structure. Earlier we called these linear orbits separatrices. The same

argument can be made as for a node. To fix the idea, suppose the eigenvalues

of a system are λ = −2, 5 and the solution is

x(t) =c1e
−2t + c2e

5t,

y(t) =3c1e
−2t − 2c2e

5t,

where c1 and c2 are arbitrary constants. Setting c2 = 0 we get

x(t) = c1e
−2t,

y(t) = 3c1e
−2t,
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x

y

y = -2x

y = (2/3) x

l = -1

l = -6

Figure 5.12 The straight-line solutions and the behavior of orbits as t→ +∞
and as t → −∞. The orbits enter the origin tangent to one linear orbit; they

come from a direction parallel to the other linear orbit. We have labeled the

linear orbits by their eigenvalues.

which represent two linear orbits of slope 3 entering the origin; they correspond

to the negative eigenvalue. Setting c1 = 0 we get

x(t) = c2e
5t,

y(t) = −2c2e
5t,

which represent two linear orbits of slope -2 exiting the origin and approaching

infinity; they correspond to the positive eigenvalue. These pairs of linear orbits

are the separatrices. All the orbits must approach the linear orbits correspond-

ing to the positive eigenvalue as t→ +∞ because

x(t) ≈ c2e
5t,

y(t) ≈ −2c2e
5t,

for large t. Similarly, they must approach the linear orbits corresponding to the

negative eigenvalue as t → −∞. This reasoning leads to the phase diagram in

Figure 5.13.

Remark 5.19

In the case of spirals, we can plot the nullclines and a few vectors in the vector

field to determine some of the fine structure of the phase diagram.
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x

y

y = -2x

y = 3 x
l = -2

l = 5

Figure 5.13 The straight-line solutions and the behavior of orbits as t→ +∞
and as t→ −∞.

EXERCISES

1. Consider the linear system

x′ = x− 3y, y′ = −4x+ y.

a) Find and plot the set of points (x, y) in the xy plane where x′ = 0. On

the same axes, do the same for y′ = 0.

b) In each of the four regions of the plane between the lines found in part

(a), find the sign (+ or −) of x′ and y′. Use this information to draw

an arrow in those four regions indicating the direction of the vector

field.

c) From your solution to part (b), can you decide what type of structure

the orbits have for this system? If so, draw a few typical orbits.

2. Consider the system

x′ = 3x+ y, y′ = −6x− 2y.

a) Show that (0, 0) is not an isolated equilibrium. In particular, find the

set of all points (equilibria) in the plane for which x′ = 0 and y′ = 0.

b) Find the equation (in terms of x and y) that holds on the orbits.

c) Sketch the orbits in the plane and indicate by arrows their directions

in time. Hint: Check the signs of x′ and y′.
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3. Consider the system
x′ = 2x, y′ = 4x.

Answer the same questions posed in the previous exercise.

4. In Example 5.8, if we add a pesticide to the soil at a constant rate r, then

the equations become

dx

dt
= ay − bx,

dy

dx
= r + bx− (a+ c)y.

(Note that this system is not in the form of the standard linear system;

it has a source term r; nevertheless, the methods we have introduced still

apply.) Find the equilibrium solution. Draw the nullclines and the direc-

tion field in various regions to show that the nonzero equilibrium has the

structure of a node.

5. Find a two-dimensional linear system that has eigenvalues λ = −4 and

λ = 5. (There are many answers to this question.)

6. If the general solution of a linear system is

x(t) = c1e
−t + c2e

−4t,

y(t) = 2c1e
−t − c2e

−4t,

find the system.

7. Determine the general solution and the orbital structure for the system

x′ = y, y′ = −4x− 4y.

Plot the orbits in the phase plane.

8. If the general solution of a linear system is

x(t) = c1e
−2t + c2e

4t,

y(t) = −3c1e
−2t + c2e

4t,

sketch the straight-line orbits and indicate their directions as time in-

creases. What is the orbital structure for this system? Draw several orbits.

9. Consider the system

x′ = 2x− y, y′ = −4x+ 2y.

Find the general solution by the method of elimination.

10. For which values of a does the linear system

x′ = ax+ ay, y′ = −x+ 6y

exhibit unstable oscillations?
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11. For which values of β does the linear system

x′ = 5x− y, y′ = −4x− βy

have a saddle point?

12. Find the eigenvalues associated with the following systems. State the type

and stability of each equilibrium.

a) x′ = 2x+ 2y, y′ = 6x+ 3y.

b) x′ = y, y′ = −12x− 7y.

c) x′ = −4x+ 1
4y, y′ = 4x− 4y.

d) x′ = 2x+ 5y, y′ = x− 2y.

e) x′ = 2x+ 5y, y′ = −2x.

f) x′ = 5x− 4y, y′ = x+ y.

g) x′ = 5y, y′ = 2x.

h) x′ = 7x+ y, y′ = −4x+ 11y.

i) x′ = −7x+ 6y, y′ = 12x− y.

j) x′ = αx+ βy, y′ = γy, α, γ > 0, α 6= γ.

k) x′ = −y, y′ = x− y.

l) x′ = −2x+ 4y, y′ = −5x+ 2y.

13. Find the general solution for each of the systems in the previous exercise,

and sketch a phase plane diagram.

14. A fixed number of laboratory mice are fed parasite larva of Heligmosoides

polygyrus at the constant rate of λ larva per mouse, per day. The larva

migrate to the wall of the small intestine. There they die at per capita

rate µ0, and they develop into mature parasites, which migrate to the gut

lumen, at the per capita rate of µ. The mature parasites die at the per

capita rate δ. If L = L(t) is the average number of larva per mouse, and

M = M(t) is the average number of mature parasites per mouse, then the

dynamical model is

L′ =λ− (µ0 + µ)L,

M ′ =µL− δM.

Find the equilibria, or constant solutions, and draw the nullclines and the

direction field in various regions of the LM plane. sketch several possible

sample orbits. (Observe that, because of the term λ in the first equation,

this linear system is nonhomogenous; it can be handled by the geometric

methods introduced in this section.)
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5.4 Nonlinear Models

A two-dimensional nonlinear autonomous system has the general form

x′ = f(x, y), (5.17)

y′ = g(x, y), (5.18)

where f and g are given functions of x and y that are assumed to have contin-

uous first partial derivatives in some open region in the plane. This regularity

assumption on the first partial derivatives guarantees that the initial value prob-

lem associated with (5.17)–(5.18) will have a unique solution through any point

in the region. Nonlinear systems arise naturally in mechanics, circuit theory,

compartmental analysis, reaction kinetics, mathematical biology, economics,

and other areas. In fact, in applications, most systems are nonlinear.

Example 5.20

(Mechanics Revisited) We have repeatedly noted that a second-order equa-

tion can be reformulated as a first-order system. As a reminder, consider New-

ton’s second law of motion for a particle of mass m moving in one dimension,

mx′′ = F (x, x′),

where F is a force depending upon the position and the velocity, but not ex-

plicitly on time. Introducing the velocity y = x′ as another state variable, we

obtain the equivalent first-order system

x′ = y,

y′ =
1

m
F (x, y).

Consequently, we can study nonlinear mechanical systems in an xy phase space

(position–velocity space) rather than the traditional state space (position–time

space). �

We briefly review the terminology of Section 5.1. A solution x = x(t),

y = y(t) to (5.17)–(5.18) can be represented graphically in two different ways.

We can plot x vs t and y versus t to obtain the time series plots showing how

the states x and y vary with time t. Or, we can plot the parametric equations

x = x(t), y = y(t) in the xy phase plane. A solution curve represented in the

xy plane is called an orbit . On a solution curve in the phase plane, time is a

parameter indicating the direction that curves are traced out as time increases.

Because the system is autonomous, on an orbit, time may be shifted at will;



224 5. Systems of Differential Equations

that is, if x = x(t), y = y(t) is a solution, then x = x(t − c), y = y(t − c)

represents the same solution and same orbit for any constant c. The initial

value problem (IVP) consists of the solving the system (5.17)–(5.18) subject to

the initial conditions

x(t0) = x0, y(t0) = y0.

Geometrically, this means finding the orbit that goes through the point (x0, y0)

at time t = t0. If the functions f and g are continuous and have continuous first

partial derivatives with respect to x and y on R2, then the IVP has a unique

solution. Therefore, two different orbits cannot cross in the phase plane. We

always assume conditions that guarantee existence and uniqueness.

As is true for their linear counterparts, there is an important geometric

interpretation for nonlinear systems in terms of vector fields. For a solution

curve x = x(t), y = y(t) we have (x′(t), y′(t)) = (f(x(t), y(t)), g(x(t), y(t))).

Therefore, at each point (x, y) in the plane the functions f and g define a

vector (f(x, y), g(x, y)) that is the tangent vector to the orbit which passes

through that point. Thus, the system (5.17)–(5.18) generates a vector field.

A different way to think about it is this. The totality of all orbits form the

flow of the vector field. Intuitively, we think of the flow as fluid particle paths

with the vector field representing the velocity of the particles at the various

points. A plot of several representative or key orbits in the xy-plane is called a

phase diagram (or, portrait) of the system. It is important that f and g do not

depend explicitly upon time. Otherwise the vector field would not be stationary

and would change, giving a different vector field at each instant of time. This

would spoil a simple geometric approach to nonlinear systems. Nonautonomous

systems, which are not discussed in this text, are much harder to deal with than

autonomous ones.

Equilibria. Among the most important solutions to (5.17)–(5.18) are the

constant solutions, or equilibrium solutions. These are solutions x(t) = xe,

y(t) = ye, where xe and ye are constants; that is, they don’t change. Thus,

equilibrium solutions are found as solutions of the simultaneous algebraic sys-

tem of equations

f(x, y) = 0, g(x, y) = 0.

The time series plots of an equilibrium solution are just constant solutions (hor-

izontal lines) in time. In the phase plane an equilibrium solution is represented

by a single point (xe, ye); the solution just remains there for all time. We of-

ten refer to these as equilibria or critical points. Nonlinear systems may have

several equilibria. If an equilibrium point in the phase plane has the property

that there is a small neighborhood about the point where there are no other

equilibria, then we say the equilibrium point is isolated.
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Nullclines. To sketch the phase diagram, it is useful to plot the set of points

where the vector field is vertical; this is the set of points (x, y) where

x′ = f(x, y) = 0 x nullcline.

The curves where this occurs are called x nullclines. The y nullclines are the

the points where the vector field is horizontal, or

y′ = g(x, y) = 0 y nullcline.

Observe that x and y nullclines intersect at equilibria, where the vector field

vanishes.

Example 5.21

If a particle of massm = 1 moves on an x-axis under the influence of a nonlinear

force F (x) = 3x2 − 1, then the equations of motion in the phase plane take the

form

x′ = y,

y′ = 3x2 − 1,

where the position x and the velocity y are functions of time t. Note that y = 0

is an x nullcline, so the orbits must cross the x axis vertically; the y nullclines

are the lines x = ±
√

1/3, and the orbits must cross these lines horizontally.

Here we can obtain the actual equation for the orbits in terms of x and y.

Dividing the two equations gives

dy/dt

dx/dt
=
dy

dx
=

3x2 − 1

y
.

Separating variables and integrating yields
∫
ydy =

∫
(3x2 − 1)dx,

or
1

2
y2 = x3 − x+ E, (5.19)

where we have chosen the letter E to denote the arbitrary constant of integra-

tion (E stands for total energy). This equation represents a family of orbits in

the phase plane giving a relationship between position and velocity. By divid-

ing the equations as we did, time dependence is lost on these orbits. Equation

(5.19) has an important physical meaning that is worth reviewing (see Section

3.1). The term 1
2y

2 represents the kinetic energy (one-half the mass times the

velocity squared). Secondly, we recall that the potential energy V (x) associated
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with a conservative force F (x) is V (x) = −
∫
F (x)dx, or F (x) = −dV/dx. In

the present case V (x) = −x3 + x, where we have taken V = 0 at x = 0. The

orbits (5.19) can be written

1

2
y2 + (−x3 + x) = E,

which states that the kinetic energy plus the potential energy is constant.

Therefore, the orbits (5.19) represent constant energy curves. The total en-

ergy E can be written in terms of the initial position and velocity as E =
1
2y

2(0) + (−x(0)3 + x(0)). For each value of E we can plot the locus of points

defined by Equation (5.19). To carry this out practically, we may solve for y

and write
y =

√
2
√
x3 − x+ E, y = −

√
2
√
x3 − x+ E.

Then we can plot the curves, or orbits, using a calculator or computer alge-

bra system; the graphing technique explained in Section 3.1 for conservative

systems may also be used. (For values of x that make the expression under

the radical negative, the orbit is not defined.) Figure 5.14 shows several orbits.

Let us discuss their features. There are two points, x =
√

1/3, y = 0 and

x = −
√

1/3, y = 0, where x′ = y′ = 0. These are two equilibrium solutions

where the velocity is zero and the force is zero (so the particle cannot be in

motion). These are the points where the nullclines cross. The x nullcline is

x′ = y = 0, or the y axis; there the orbits are vertical. The y nullclines are

y′ = 3x2 − 1 = 0, or the lines x = ±
√

1/3. There, the orbits cross horizontally.

The equilibrium solution x = −
√

1/3, y = 0 has the structure of a center, and

for initial values close to this equilibrium the system will oscillate. The other

equilibrium x =
√

1/3, y = 0 has the structure of a saddle point. Because

x′ = y, for y > 0 we have x′ > 0, and the orbits are directed to the right in

the upper half-plane. For y < 0 we have x′ < 0, and the orbits are directed to

the left in the lower half-plane. For large initial energies the system does not

oscillate but rather goes to x = +∞, y = +∞; that is, the mass moves farther

and farther to the right with faster speed. �

Example 5.22

Consider the simple nonlinear system

x′ = y2, (5.20)

y′ = − 2
3x. (5.21)

Clearly, the origin x = 0, y = 0, is the only equilibrium solution. In this case

we can divide the two equations and separate variables to get

3y2dy = −2xdx.
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Figure 5.14 Plots of the constant energy curves 1
2y

2 − x3 + x = E in the

xy-phase plane. These curves represent the orbits of the system and show how

position and velocity relate. Time dependence is lost in this representation of

the orbits. Because x′ = y, the orbits are moving to the right (x is increasing)

in the upper half-plane y > 0, and to the left (x is decreasing) in the lower

half-plane y < 0. These plots were produced by MATLAB R©.

Integrating gives

y3 = −x2 + C.

Rearranging,

y = (C − x2)1/3.

Consequently, we have obtained the orbits for system (5.20)–(5.21) in terms

of x and y. These are easily plotted (e.g., on a calculator, for different values

of C), and they are shown in Figure 5.15. Note that the x axis (y = 0) is a

vertical nullcline and the y axis (x = 0) is a horizontal nullcline. To review, this

technique illustrates a general method for finding the equation of the orbits for

simple equations in terms of the state variables alone: divide the differential

equations and integrate, as far as possible. With this technique, however, we

lose information about how the states depend on time, or how time varies along

the orbits. To find solution curves in terms of time t, we can write (5.20) as

x′ = y2 = (C − x2)2/3,

which is a single differential equation for x = x(t). We can separate variables,

but the result is not very satisfying because we get a complicated integral. This

shows that time series solutions are not easily obtained for nonlinear problems.
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Figure 5.15 Phase diagram for x′ = y2, y′ = − 2
3x. Because x′ > 0, all the

orbits are moving to the right as time increases.

Usually, the qualitative behavior shown in the phase diagram is all we want. If

we do need time series plots, we can obtain them using a numerical method,

which we discuss later. �

We point out an important feature of the phase diagram shown in Figure

5.15. The origin does not have the typical structure encountered in Section 5.1

for linear systems. There we were able to completely characterize the nature, or

type, of all isolated equilibria as saddles, foci (spiral points), centers, or nodes.

The origin for the nonlinear system (5.20)–(5.21) is not one of those; nonlinear

systems can have an unusual orbital structure near their equilibria.

Stability. Why are the equilibrium solutions so important? First, much of the

“action” in the phase plane takes place near the equilibrium points, so analysis

of the orbits near those points is insightful. Second, physical systems often seek

out and migrate toward equilibria; so equilibrium states can represent persis-

tent states. For example, let’s think of x and y as representing two competing

animal populations. If a system is in an equilibrium state, the two populations

can coexist. Those populations will remain in the equilibrium states unless the

system is perturbed. This means that some event would either add or subtract

individuals from the populations without changing the underlying processes

that govern the population dynamics. If the inflicted population changes are

small, the populations would be bumped to new values near the equilibrium.

This brings up the stability issue. Do the populations return to the coexis-
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tent state, or do they change to another state? If the populations return to

the equilibrium after a small perturbation, then it is a persistent state and is

said to be asymptotically stable. If the populations move farther away from

the equilibrium, then it is not persistent and the equilibrium is unstable. If

the populations remain close to the equilibrium, but do not actually approach

it, then the equilibrium is neutrally stable. For each model it is important to

determine the stability of the equilibrium states, or persistent states, in order

to understand the dynamics of the model. In Examples 1 and 5, the focal point

and the saddle point, respectively, are asymptotically stable and unstable. The

center in Example 3 is neutrally stable, and the node in Example 4 is asymp-

totically stable. In Example 6 the center is neutrally stable and the saddle is

unstable. A saddle point always has two opposing orbits approaching it and

two opposite orbits exiting it, just as in Figure 5.3, but distorted somewhat

because of the nonlinearity; these orbits are called separatrices.. With an un-

stable equilibrium, orbits that begin near the equilibrium do not remain near.

Examples of different types of stability are discussed in the sequel.

The emphasis in the preceding paragraph is small perturbations from equi-

librium. That is, what happens if small changes occur near an equilibrium.

Therefore we frequently add the word “local” to asymptotic stability and refer

to an equilibrium as being locally asymptotically stable. Of course, large changes

or perturbations can occur (e.g., from a bonanza or catastrophe, say, caused

by an environmental event). What happens if an equilibrium is disturbed by

such a change? If the equilibrium remains asymptotically stable with respect

of all perturbations, including arbitrarily large changes. we say the equilibrium

is globally asymptotically stable. In Figure 5.6 the center is neutrally stable,

but only in a local sense. Clearly, a large perturbation from equilibrium will

displace the state to an orbit that goes far from that equilibrium; this center

is unstable with respect to global perturbations. However, we cannot usually

solve a nonlinear system, and so we cannot get an explicit resolution of its

global behavior. Therefore we are content with analyzing local stability prop-

erties, and not global stability properties. As it turns out, local stability can be

determined because we can approximate the nonlinear system by a tractable

linear system near equilibria.

EXERCISES

1. Consider the uncoupled nonlinear system x′ = x2, y′ = −y.

a) Find a relation between x and y that describes the orbits. Are all possi-

ble orbits contained in this relation for different values of the arbitrary

constant?

b) Find and sketch the x and y nullclines, and determine the equilibria.
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c) Sketch the vector field at several points near the origin.

d) Draw a phase diagram. Is the equilibrium stable or unstable?

e) Find the solutions x = x(t), y = y(t), and plot typical time series. Pick

a single time series plot and draw the corresponding orbit in the phase

plane.

2. Consider the nonlinear system

x′ = y, y′ = −1 − y + x2.

Find the equilibria, nullclines, and direction field in the different regions in

the plane. Given that one of the equilibria is an asymptotically stable spiral

point, determine the nature (type) and stability of the other equilibria and

draw several key orbits.

3. Consider the system x′ = −1/y, y′ = 2x.

a) Are there any equilibrium solutions?

b) Find a relationship between x and y that must hold on any orbit, and

plot several orbits in the phase plane.

c) From the orbits, sketch the vector field.

d) Do any orbits touch the x-axis?

4. The nonlinear system

x′ = x(y − 1), y′ = 4y(2x− 1).

can be completely analyzed with a simple phase plane analysis. Find the

equilibria, nullclines, and direction field in different regions in the plane.

From this information determine the nature (type) and stability of the

equilibria and draw some sample orbits.

5. Consider the nonlinear system x′ = x2 + y2 − 4, y′ = y − 2x.

a) Find the two equilibria and plot them in the phase plane.

b) On the plot in part (a), sketch the nullclines.

c) Indicate the direction of the vector field in the regions separated by

nullclines. Can you determine the nature (node, center, etc.) and sta-

bility of the equilibria?

6. Repeat parts (a), (b), and (c) of the previous problems for the nonlinear

system x′ = y + 1, y′ = y + x2.
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7. Consider the model

x′ = y − x

y′ = −y +
5x2

4 + x2
,

In the first quadrant only, find all equilibrium solutions, sketch nullclines,

and indicate the direction of the vector field in all the regions of the first

quadrant.

8. Find all equilibria for the system x′ = sin y, y′ = 2x.

9. Consider the nonlinear system x′ = y, y′ = −x−y3. Show that the function

V (x, y) = x2 + y2 decreases along any orbit (i.e., (d/dt)V (x(t), y(t)) < 0),

and state why this proves that every orbit approaches the origin as t →
+∞.

10. Consider the nonlinear system x′ = x2 − y2, y′ = x− y.

a) Find and plot the equilibria in the phase plane. Are they isolated?

b) Show that, on orbits, x+ y+ 1 = Cey, where C is a constant, and plot

several of these curves. Hint: Determine dx/dy from the system.

c) Sketch nullclines and the vector field.

d) Describe the fate of the orbit that begins at (1
4 , 0) at t = 0 as t→ +∞

and as t→ −∞.

e) Draw a phase plane diagram, being sure to indicate the directions of

the orbits.

11. The dynamics of a dissipative mechanical system is given by the differential

equation (Newton’s law)

mx′′ = −kx′ − dV

dx
(x), k > 0.

where V (x) is the potential energy. Show that the damping term has the ef-

fect of dissipating the energy, E = 1
2m(x′)2+V (x), in the system; precisely,

show that
dE

dt
= −k(x′)2 < 0.

5.5 Applications

As mentioned in the introduction, nonlinear systems occur in every area where

there are quantitative issues and data. We have seen some examples from
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physics (mechanics). Nonlinear equations also play a central role in popula-

tion ecology, epidemiology, virology, biochemistry, physiology, and many other

areas in the life sciences, as well as in economics and social sciences. In this

section we examine population and disease models. Both of these are easily

understood without a significant background in the areas.

5.5.1 The Lotka–Volterra Model

We formulate and study a simple model involving predator–prey dynamics. Let

x = x(t) be the prey population and y = y(t) be the predator population. We

can think of rabbits and foxes, food fish and sharks, or any consumer–resource

interaction, including herbivores and plants. If there is no predator we assume

the prey dynamics is x′ = rx, or exponential growth, where r is the positive

per capita growth rate. In the absence of prey, we assume that the predator

dies via y′ = −my, where m is the per capita mortality rate. When there are

interactions, we must include terms in the dynamics that decrease the prey

population and increase the predator population. To determine the form of

the predation term, we assume that the rate of predation, or the number of

prey consumed per unit of time, per predator, is proportional to the number

of prey. That is, the rate of predation, per predator, is ax; in ecology, this

is called the predator’s functional response. Thus, if there are y predators,

then the rate that prey is decreased is axy. Note that the interaction term is

proportional to xy, the product of the number of predators and the number

of prey. For example, if there were 20 prey and 10 predators, there would be

200 possible interactions. Only a fraction of them, a, are assumed to result in a

kill. The parameter a, called the capture efficiency, depends upon the fraction

of encounters and the success of the encounters. The prey consumed cause a

rate of increase in predators of εaxy, where ε is the conversion efficiency of the

predator population. (Or, the number of predators produced by consumption of

a single prey; one prey consumed does not mean one predator born.2 Therefore,

we obtain the simplest model of predator–prey interaction, called the Lotka–

Volterra model :

x′ = rx − axy,

y′ = −my + bxy,

where b = εa.

The Lotka–Volterra model, developed by A. Lotka and V. Volterra in the

mid-1920s, is the simplest model in ecology showing how populations can cycle,

2 One can argue that instead of numbers, we should be working with biomass of prey
and predators.
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and it was one of the first strategic models to explain qualitative observations

in natural systems.

The term axy, representing the predation rate, is a common interaction term

in science. In chemistry, if two molecules A and B react to form a product C,

or symbolically, A + B → C, then the law of mass action states that the rate

of the chemical reaction is proportional to the product of the concentrations of

A and B, or

reaction rate = k[A][B].

The constant k is called the rate constant; the latter may depend on tempera-

ture. For diseases, the rate of infection transmission is often taken to be aSI,

where S is the number of susceptible individuals and I is the number of in-

fected individuals; the constant a is the transmission rate, or the fraction of

encounters that lead to infection of a susceptible.

To analyze the Lotka–Volterra model we factor the right sides of the equa-

tions to obtain

x′ = x(r − ay), y′ = y(−m+ bx). (5.22)

Now it is simple to locate the equilibria. Setting the right sides equal to zero

gives two solutions, x = 0, y = 0 and x = m/b, y = r/a. Thus, in the phase

plane, the points (0, 0) and (m/b, r/a) represent equilibria. The origin rep-

resents extinction of both species, and the nonzero equilibrium represents a

possible coexistent state. To determine properties of the orbits we plot the

nullclines, the curves in the xy plane where the vector field is vertical (x′ = 0)

and curves where the vector field is horizontal (y′ = 0). They are not (usually)

orbits, but rather the curves where the orbits cross vertically or horizontally.

The x-nullclines for (5.22) , where x′ = 0, are x = 0 and y = r/a. We can think

of the prey nullcline, or x nullcline, as the number of predators y that exactly

hold the prey in check. Thus the orbits cross these two lines vertically. The

y-nullclines, where y′ = 0, are y = 0 and x = m/b. The orbits cross these lines

horizontally. Notice that the equilibrium solutions are the intersections of the

x- and y-nullclines. The nullclines partition the plane into four regions where

x′ and y′ have various signs, and therefore we get a picture of the direction of

the flow pattern. See Figure 5.16. Next, along each nullcline we can find the

direction of the vector field. For example, on the ray to the right of the equilib-

rium we have x > m/b, y = r/a. We know the vector field is vertical so we need

only check the sign of y′. We have y′ = y(−m+ bx) = (r/a)(−m+ bx) > 0, so

the vector field points upward. Similarly we can determine the directions along

the other three rays. These are shown in the accompanying Figure 5.16. Note

that y = 0 and x = 0, both nullclines, are also orbits. For example, when x = 0

we have y′ = −my, or y(t) = Ce−mt; when there are no prey, the foxes die out.

Similarly, when y = 0 we have x(t) = Cert, so the rabbits increase in number.
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Figure 5.16 Nullclines (dashed) and vector field in regions between the null-

clines. The x and y axes are nullclines, as well as orbits.

Finally, we can determine the direction of the vector field in the regions

between the nullclines either by selecting an arbitrary point in that region and

calculating x′ and y′, or by just noting the sign of x′ and y′ in that region from

information obtained from the system. For example, in the northeast quadrant,

above and to the right of the nonzero equilibrium, it is easy to see that x′ < 0

and y′ > 0; so the vector field points upward and to the left. We can complete

this task for each region and obtain the directions shown in Figure 5.16. Having

the direction of the vector field along the nullclines and in the regions bounded

by the nullclines tells us the directions of the solution curves, or orbits. Near

(0, 0) the orbits appear to veer away and the equilibrium has a saddle point

structure. The equilibrium (0, 0) (extinction) is unstable. It appears that orbits

circle around the nonzero equilibrium in a counterclockwise fashion. But at this

time it is not clear if they form closed paths (a center) or spirals (stable or

unstable, so more work is needed. Later, in Chapter 6, we determine methods

to help resolve such questions.

Here, we can obtain the equation of the orbits by dividing the two equations

in (5.22). This will resolve the question of the type of equilibrium. We get

y′

x′
=
dy

dx
=
y(−m+ bx)

x(r − ay)
.

Rearranging and integrating gives
∫
r − ay

y
dy =

∫
bx−m

x
dx + C.
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Carrying out the integration gives

r ln y − ay = bx−m lnx+ C,

which is the algebraic equation for the orbits. It is obscure what these curves

are because it is not possible to solve for either of the variables. So, cleverness

is required. If we exponentiate we get

yre−ay = eCebxx−m.

Now consider the y nullcline where x is fixed at a value m/b, and fix a positive

C value (i.e., fix an orbit). The right side of the last equation is a positive

number A, and so yr = Aeay. If we plot both sides of this equation (do this!

Plot a power function and a growing exponential), we observe that there can

be at most two intersections; therefore, this equation can have at most two

solutions for y. Hence, along the vertical line x = m/b, there can be at most

two crossings; this means an orbit cannot spiral into or out from the equilib-

rium point, because that would mean many values of y would be possible. We

conclude that the equilibrium is a center with closed periodic orbits encircling

it. A phase diagram is shown in Figure 5.17 Time series plots of the prey and

x ’ = x − x y  
y ’ = − y + x y
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Figure 5.17 Closed, counterclockwise, periodic orbits of the Lotka–Volterra

predator–prey model x′ = x− xy, y′ = −y+ xy. The x-axis is an orbit leaving

the origin and the y-axis is an orbit entering the origin.
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predator populations are shown in Figure 5.18. When the prey population is

high the predators have a high food source and their numbers start to increase,

thereby eventually driving down the prey population. Then the prey popula-

tion gets low, ultimately reducing the number of predators because of lack of

food. Then the process repeats, giving cycles.
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Figure 5.18 Time series solution to the Lotka–Volterra system x′ = x − xy,

y′ = −3y + 3xy, showing the predator (dashed) and prey (solid) populations.

This figure was produced by MATLAB R© (see Appendix B).

Note that the nonzero equilibrium is neutrally stable. A small perturbation

from equilibrium puts the populations on a periodic orbit that stays near the

equilibrium. But the system does not return to that equilibrium, so the nonzero

equilibrium is stable, but not asymptotically stable. The other equilibrium, the

origin, corresponding to extinction of both species, is an unstable saddle point

with the two coordinate axes as separatrices.

5.5.2 Models in Ecology

Ecology provides a rich source of problems in nonlinear dynamics, and now

we take time to introduce another one. In the Lotka–Volterra model the rate

of predation (prey per time, per predator) was assumed to be proportional to
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the number of prey (i.e., ax). Thinking carefully about this leads to concerns.

Increasing the prey density indefinitely leads to an extremely high per predator

consumption rate, which is clearly impossible for any consumer. It seems more

reasonable that the rate of predation would have a limiting value as prey density

gets large. In the late 1950s, C. Holling developed a functional form that has this

limiting property by partitioning the time budget of the predator. He reasoned

that the number N of prey captured by a single predator is proportional to

the number x of prey and the time Ts allotted for searching.3 Thus N = aTsx,

where the proportionality constant a is the effective encounter rate. But the

total time T available to the predator must be partitioned into search time and

total handling time Th, or T = Ts +Th. The total handling time is proportional

to the number captured, Th = hN , where h is the time for a predator to handle

a single prey. Hence N = a(T −hN)x. Solving for N/T , which is the predation

rate, gives
N

T
=

ax

1 + ahx
.

This function for the predation rate is called a Holling type II response, or

the Holling disk equation. Note that limx→∞ ax/(1 + ahx) = 1/h, so the rate

of predation approaches a constant value. This quantity, N/T , is measured in

prey per time, per predator, so multiplying by the number of predators y gives

the predation rate for y predators.

If the encounter rate a is a function of the prey density (e.g., a linear function

a = bx), the the predation, or feeding, rate is

N

T
=

bx2

1 + bhx2
,

which is called a Holling type III response. Figure 5.19 compares different types

of predation rates used by ecologists. For a type III response the predation

is turned on once the prey density is high enough; this models, for example,

predators that must form a “prey image” before they become aware of the prey,

or predators that eat different types of prey. At low densities prey go nearly

unnoticed; but once the density reaches an upper threshold the predation rises

quickly to its maximum rate.

Replacing the linear per predator feeding rate ax in the Lotka–Volterra

model by the Holling type II response, we obtain the model

x′ = rx − ax

1 + ahx
y,

y′ = −my + ε
ax

1 + ahx
y.

3 We are thinking of x and y as population numbers, but we can also regard them
as population densities, or animals per area. There is always an underlying fixed
area where the dynamics is occurring.
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Figure 5.19 Three types of feeding rates, or predation rates, studied in ecol-

ogy. The predation rate is measured in prey per time, per predator.

We can even go another step and replace the linear growth rate of the prey

in the model by a more realistic logistic growth term. Then we obtain the

Rosenzweig–MacArthur model

x′ = rx
(
1 − x

K

)
− ax

1 + ahx
y,

y = −my + ε
ax

1 + ahx
y.

Else, a type III response could be used. All of these models have very interesting

dynamics. Questions abound. Do they lead to cycles? Are there persistent states

where the predator and prey coexist at constant densities? Does the predator

or prey population ever go to extinction? What happens when a parameter, for

example, the carrying capacity K, increases? Some aspects of these models are

examined in Chapter 7.

Other types of ecological models have been developed for interacting species.

A model such as

x′ = xf(x) − axy,

y′ = yg(y) − bxy

is interpreted as a competition model because the interaction terms −axy and

−bxy are both negative and lead to a decrease in each population; f and g are

per capita growth rates. When both interaction terms are positive, then the

model is called a cooperative model . We have already observed that when the

interaction terms have opposite signs, the model is a predator–prey interaction.
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5.5.3 An Epidemic Model

We now consider a simple epidemic model where, in a fixed population of size

N , the function I = I(t) represents the number of individuals that are infected

with a contagious illness and S = S(t) represents the number of individuals

that are susceptible to the illness, but not yet infected. We also introduce a

removed, or recovered, class where R = R(t) is the number who cannot get the

illness because they have recovered permanently, are naturally immune, or have

died. We assume N = S(t) + I(t) + R(t), and each individual belongs to only

one of the three classes. Observe that N includes the number who may have

died. The evolution of the illness in the population can be described as follows.

Infectives communicate the disease to susceptibles with a known infection rate;

the susceptibles become infectives who have the disease a short time, recover (or

die), and enter the removed class. Our goal is to set up a model that describes

how the disease progresses with time. These models are called SIR models.

In this model we make several assumptions. First, we work in a time frame

where we can ignore births and immigration. Next, we assume that the popula-

tion mixes homogeneously, where all members of the population interact with

one another to the same degree and each has the same risk of exposure to the

disease. Think of measles, the flu, or chicken pox at an elementary school. We

assume that individuals get over the disease quickly, so we are not modeling tu-

berculosis, AIDS, or other long-lasting or permanent diseases. Of course, more

complicated models can be developed to account for all sorts of factors, such

as vaccination, the possibility of reinfection, and so on.

The disease spreads when a susceptible comes in contact with an infective.

A reasonable measure of the number of contacts between susceptibles and infec-

tives is S(t)I(t). For example, if there are five infectives and twenty susceptibles,

then one hundred contacts are possible. However, not every contact results in

an infection. We use the letter a to denote the transmission coefficient, or the

fraction of those contacts that usually result in infection. For example, a could

be 0.02, or 2 percent. The parameter a is the product of two effects, the fraction

of the total possible number of encounters that occur, and the fraction of those

that results in infection. The constant a has dimensions time−1 per individual.

The quantity aS(t)I(t) is the infection rate, or the rate that members of the

susceptible class become infected. Observe that this model is the same as the

law of mass action in chemistry where the rate of chemical reaction between two

reactants is proportional to the product of their concentrations; it is also the

same as the Lotka–Volterra interaction model. Therefore, if no other processes

are included, we would have

S′ = −aSI, I ′ = aSI.
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But, as individuals get over the disease, they become part of the removed class

R. The recovery rate r is the fraction of the infected class that ceases to be

infected; thus, the rate of removal is rI(t). The parameter r is measured in

time−1 and 1/r can be interpreted as the average time to recover. Therefore,

we modify the last set of equations to get

S′ = −aSI, (5.23)

I ′ = aSI − rI. (5.24)

These are our working equations. We do not need an equation for R′ because

R can be determined directly from R = N − S − I. At time t = 0 we assume

there are I0 infectives and S0 susceptibles, but no one yet removed. Thus, initial

conditions are given by

S(0) = S0, I(0) = I0, (5.25)

and S0 + I0 = N. SIR models are commonly diagrammed as in Figure 5.20

with S, I, and R compartments and with arrows that indicate the rates that

individuals progress from one compartment to the other. An arrow entering a

compartment represents a positive rate and an arrow leaving a compartment

represents a negative rate.

S I R
aSI rI

Figure 5.20 Compartments representing the number of susceptibles, the

number of infectives, and the number removed, and the flow rates in and out

of the compartments.

Qualitative analysis can help us understand how a parametric solution curve

S = S(t), I = I(t), or orbit, behaves in the first quadrant of the SI phase plane.

First, the initial value must lie on the straight line I = −S +N . Where then

does the orbit go? Note that S′ is always negative so the orbit must always

move to the left, decreasing S. Also, because I ′ = I(aS − r), we see that

the number of infectives increases if S > r/a, and the number of infectives

decreases if S < r/a. This information gives us the direction field; left of the

vertical line S = r/a the curves move down and to the left, and to the right of

the vertical line S = r/a the curves move up and to the left The vertical line

itself is a nullcline. Observe that we are assuming r/a < N. (The other case is

requested in the exercises.) If the initial condition is at point P in Figure 5.21,
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I

I-nullcline

S
S* N

N

r/a

P

Q

Figure 5.21 The SI phase plane showing two orbits in the case r/a < N . One

starts at P and and one starts at Q, on the line I + S = N . The second shows

an epidemic where the number of infectives increases to a maximum value and

then decreases to zero; S∗ represents the number that does not get the disease.

the orbit goes directly down and to the left until it hits I = 0, and the disease

dies out. If the initial condition is at point Q, then the orbit increases to the

left, reaching a maximum at S = r/a. Then it decreases to the left and ends

on I = 0. There are two questions remaining, namely, how steep the orbit is

at the initial point, and where on the S axis the orbit terminates. Figure 5.21

anticipates the answer to the first question. The total number of infectives and

susceptibles cannot go above the line I + S = N , and therefore the slope of

the orbit at t = 0 is not as steep as −1, the slope of the line I + S = N. To

analytically resolve the second issue we can obtain a relationship between S

and I along a solution curve as we have done in previous examples. If we divide

the equations (5.23)–(5.24) we obtain

I ′

S′ =
dI/dt

dS/dt
=
dI

dS
=
aSI − rI

−aSI = −1 +
r

aS
.

Thus
dI

dS
= −1 +

r

aS
.

Integrating both sides with respect to S (or separating variables) yields

I = −S +
r

a
lnS + C,
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where C is an arbitrary constant. From the initial conditions, C = N −
(r/a) lnS0. So the solution curve, or orbit, is

I = −S +
r

a
lnS +N − r

a
lnS0 = −S +N +

r

a
ln

S

S0
.

This curve can be graphed with a calculator or computer algebra system, once

parameter values are specified. Making such plots shows what the general curve

looks like, as plotted in Figure 5.21. Notice that the solution curve cannot

intersect the I axis where S = 0, so it must intersect the S axis at I = 0, or at

the root S∗ of the nonlinear equation

−S +N +
r

a
ln

S

S0
= 0.

See Figure 5.21. This root represents the number of individuals who do not get

the disease. Once parameter values are specified, a numerical approximation

of S∗ can be obtained. In all cases, the disease fades out because of lack of

infectives. Observe, again, in this approach we lost time-dependence on the

orbits. But the qualitative features of the phase plane give good resolution of

the disease dynamics. In a later section we show how to obtain accurate time

series plots using numerical methods.

Generally, we are interested in the question of whether there will be an

epidemic when there are initially a small number of infectives. The number

R0 =
aS(0)

r

is a threshold quantity called the basic reproductive number, and it determines

if there will be an epidemic. To observe why this is true, let there be a single

infective at t = 0. That person infects susceptibles at the rate aIS = a ·1 ·S(0).

Also, that infective has the illness an average time of 1/r. Therefore a single

infective would infect, on the average, R0 = aS(0)/r individuals. If R0 > 1

there will be an epidemic (the number of infectives increase), and if R0 < 1

then the infection dies out. We can think of R0 as the number of secondary

infections produced by a single infective.

Remark 5.23

The following exercises have varying degrees of difficulty. In some cases there

is not enough information to fully solve the problem, that is, to determine the

exact nature and stability of an equilibrium. Therefore, the need for additional

tools becomes clear. The required tools are presented in Chapters 6 and 7.
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EXERCISES

1. In the SIR model analyze the phase plane diagram in the case r/a > N .

Does an epidemic occur in this case?

2. Referring to Figure 5.21, draw the shapes of the times series plots S(t),

I(t), and R(t) on the same set of axes when the initial point is at point Q.

3. In a population of 200 individuals, 20 were initially infected with an in-

fluenza virus. After the flu ran its course, it was found that 100 individuals

did not contract the flu. If it took about 3 days to recover, what was the

transmission coefficient a? What was the average time that it might have

taken for someone to get the flu?

4. In a population of 500 people, 25 have the contagious illness. On the average

it takes about 2 days to contract the illness and 4 days to recover. How

many in the population will not get the illness? What is the maximum

number of infectives at a single time?

5. In a constant population, consider an SIS model (susceptibles become in-

fectives who then become susceptible immediately after recovery) with in-

fection rate aSI and recovery rate rI. Draw a compartmental diagram as in

Figure 5.20, and write down the model equations. Reformulate the model

as a single DE for the infected class, and describe the dynamics of the

disease.

6. If, in the Lotka–Volterra model, we include a constant harvesting rate h of

the prey, the model equations become

x′ = rx− axy − h

y′ = −my + bxy.

Explain how the equilibrium is shifted from that in the Lotka–Volterra

model. How does the equilibrium shift if both prey and predator are har-

vested at the same rate?

7. Modify the Lotka–Volterra model to include refuge. That is, assume that

the environment always provides a constant number of hiding places where

the prey can avoid predators. Argue that

x′ = rx − a(x− k)y

y′ = −my + b(x− k)y.

How does refuge affect the equilibrium populations compared to no refuge?
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8. Formulate a predator–prey model based on Lotka–Volterra, but where the

predator migrates out of the region at a constant rate M . Discuss the

dynamics of the system. Precisely, find the equilibria, sketch the nullclines

and the vector field. Can you determine the nature and stability of the

equilibria?

9. A simple cooperative model where two species depend upon mutual coop-

eration for their survival is

x′ = −kx+ axy

y′ = −my + bxy.

Find the equilibria and identify, insofar as possible, the region in the phase

plane where, if the initial populations lie in that region, then both species

become extinct. Can the populations ever coexist in a nonzero equilibrium?

10. Beginning with the SIR model, assume that susceptible individuals are vac-

cinated at a constant rate ν. Formulate the model equations and describe

the progress of the disease if, initially, there are a small number of infectives

in a large population.

11. (SIRS disease) Beginning with the SIR model, assume that recovered in-

dividuals can lose their immunity and become susceptible again after an

average recovery period of time µ. That is, the rate recovered individu-

als become susceptible is µR. Draw a compartmental diagram and formu-

late a two-dimensional system of model equations for S and I. Find the

two equilibria. By sketching the nullclines and vector field, show that the

disease-free equilibrium is unstable. Can you identify the type of equilib-

rium. Can you determine whether the nonzero equilibrium (the endemic

state) is stable or unstable? What does it appear to be?

12. Two populations X and Y grow logistically and both compete for the same

resource. A competition model is given by

dX

dτ
= r1X

(
1 − X

K1

)
− b1XY,

dY

dτ
= r2Y

(
1 − Y

K2

)
− b2XY.

The competition terms are b1XY and b2XY.

a) Nondimensionalize this model by choosing dimensionless variables

t =
τ

r−1
1

, x =
X

K1
, y =

Y

K2
,

thus deriving the dimensionless model

x′ = x(1 − x) − axy, y′ = cy(1 − y) − bxy,
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where a, b, and c are appropriately defined dimensionless parameters.

Give a biological interpretation of these parameters.

b) In the case a > 1 and c > b determine the equilibria, the nullclines,

and the direction of the vector field on and in between the nullclines.

c) Determine the stability of the equilibria by sketching a generic phase

diagram. How will an initial state evolve in time?

d) Analyze the population dynamics in the case a > 1 and c < b.

13. Consider the system

x′ =
axy

1 + y
− x, y′ = − axy

1 + y
− y + b,

where a and b are positive parameters with a > 1 and b > 1/(a− 1).

a) Find the equilibrium solutions, plot the nullclines, and find the direc-

tions of the vector field along the nullclines.

b) Find the direction field in the first quadrant in the regions bounded by

the nullclines. Can you determine from this information the stability

of any equilibria?

5.6 Numerical Methods

We have formulated a few models that lead to two-dimensional nonlinear sys-

tems and have illustrated some elementary methods of analysis. In Chapters 6

and 7 we advance our techniques and show how a more detailed analysis can

lead to an overall qualitative picture of the nonlinear dynamics. But first we

develop some numerical methods to solve such systems. Unlike two-dimensional

linear systems with constant coefficients, nonlinear systems can rarely be re-

solved analytically by finding solution formulas. So, along with qualitative

methods, numerical methods come to the forefront. There are many packages

on computer algebra systems and calculators that do this automatically. But,

before we use them we should pay our dues and understand the bases of those

packages.

We begin with the Euler method, which was formulated in Chapter 2 for

a single equation. The idea was to discretize the time interval and replace the

derivative in the differential equation by a difference quotient approximation,

thereby setting up an iterative method to advance the approximation from one

time to the next. We take the same approach for systems. Consider the (linear
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or nonlinear) autonomous initial value problem

x′ = f(x, y), y′ = g(x, y),

x(0) = x0, y(0) = y0,

where a solution is sought on the interval 0 ≤ t ≤ T. First we discretize the

time interval by dividing the interval into N equal parts of length h = T/N ,

which is the stepsize; N is the number of steps. The discrete times are tn =

nh, n = 0, 1, 2, ..., N . We let xn and yn denote approximations to the exact

solution values x(tn) and y(tn) at the discrete points. Then, evaluating the

equations at tn, or x′(tn) = f(x(tn), y(tn)), y′(tn) = g(x(tn), y(tn)), and then

replacing the derivatives by their difference quotient approximations, we obtain,

approximately,

x(tn+1) − x(tn)

h
≈ f(x(tn), x(tn)),

y(tn+1) − y(tn)

h
≈ g(x(tn), x(tn)).

Therefore, the Euler method for computing approximations xn and yn is

xn+1 = xn + hf(xn, yn),

yn+1 = yn + hg(xn, yn),

n = 0, 1, 2, . . . . Here, x0 and y0 are the prescribed initial conditions that start

the recursion process.

The Euler method can be selected on calculators to plot the solution, and

it is also available in computer algebra systems. As for a single differential

equation, it is easy to write a simple code that calculates the approximate

values. Appendix B shows sample computations.

Example 5.24

Consider a mass (m = 1) on a nonlinear spring whose oscillations are governed

by the second-order equation

x′′ = −x+ 0.1x3.

This is equivalent to the system

x′ = y,

y′ = −x+ 0.1x3.
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Euler’s formulas are

xn+1 = xn + hyn,

yn+1 = yn + h(−xn + 0.1x3
n).

If the initial conditions are x(0) = 2 and y(0) = 0.5, and if the stepsize is

h = 0.05, then

x1 = x0 + hy0 = 2 + (0.05)(0.5) = 2.025,

y1 = y0 + h(−x0 + 0.1x3
0) = 0.5 + (0.05)(−2 + (0.1)23) = 0.44.

Continuing in this way we can calculate x2, y2, and so on, at all the discrete

time values. It is clear that calculators and computers are better suited to

perform these routine calculations. �

The cumulative error in the Euler method over the interval is proportional

to the step size h. Just as for a single equation we can increase the order

of accuracy with a modified Euler method (predictor–corrector), which has a

cumulative error of order h2, or with the classical Runge–Kutta method, which

has order h4. There are other methods of interest, especially those that deal

with stiff equations where rapid changes in the solution functions occur (such

as in chemical reactions or in nerve-firing mechanisms). Runge–Kutta type

methods sometimes cannot keep up with rapid changes, so numerical analysts

have developed stiff methods that adapt to the changes by varying the step

size automatically to maintain a small local error. These advanced methods are

presented in numerical analysis textbooks. It is clear that the Euler, modified

Euler, and Runge–Kutta methods can be extended to three equations in three

unknowns, and beyond.

The following exercises require some hand calculation as well as numerical

computation. Use a software system or write a program to obtain numerical

solutions (see Appendix B for templates).

EXERCISES

1. In Example 5.24 compute x2, y2 and x3, y3 by hand using the Euler method.

2. Based on your knowledge of single equations, set up the difference equa-

tions for the modified Euler method for a system of two nonautonomous

equations.

3. (Trajectory of a baseball) A ball of massm is hit by a batter. The trajectory

is the xy plane. There are two forces on the ball, gravity and air resistance.

Gravity acts downward with magnitude mg, and air resistance is directed

opposite the velocity vector v and has magnitude kv2, where v is the mag-

nitude of v. Use Newton’s second law to derive the equations of motion
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(remember, you have to resolve vertical and horizontal directions). Now

take g = 32 and k/m = 0.0025. Assume the batted ball starts at the origin

and the initial velocity is 160 ft per sec at an angle of 30 degrees elevation.

Compare a batted ball with air resistance and without air resistance with

respect to height, distance, and time to hit the ground.

4. Use a calculator’s Runge–Kutta solver, or a computer algebra system, to

graph the solution u = u(t) to

u′′ + 9u = 80 cos 5t,

u(0) = u′(0) = 0,

on the interval 0 ≤ t ≤ 6π.

5. Plot several orbits in the phase plane for the system

x′ = x2 − 2xy, y′ = −y2 + 2xy.

6. Consider a nonlinear mechanical system governed by

mx′′ = −kx+ ax′ − b(x′)3,

where m = 2 and a = k = b = 1. Plot the orbit in the phase plane for

t > 0 and with initial conditions x(0) = 0.01, x′(0) = 0. Plot the time

series x = x(t) on the interval 0 ≤ t ≤ 60.

7. The Van der Pol equation

x′′ + a(x2 − 1)x′ + x = 0

arises in modeling RCL circuits with nonlinear resistors. For a = 2 plot the

orbit in the phase plane satisfying x(0) = 2, x′(0) = 0. Plot the time series

graphs, x = x(t) and y = x′(t), on the interval 0 ≤ t ≤ 25. Estimate the

period of the oscillation.

8. Consider an influenza outbreak governed by the SIR model (5.23)–(5.24).

Let the total population be N = 500 and suppose 45 individuals initially

have the flu. The data indicate that the likelihood of a healthy individual

becoming infected by contact with an individual with the flu is 0.1%. And,

once taken ill, an infective is contagious for 5 days. Numerically solve the

model equations and draw graphs of S and I versus time, in days. Draw

the orbit in the SI phase plane. How many individuals do not get the flu?

What is the maximum number of individuals that have the flu at a single

time.
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9. Refer to Exercise 8. One way to prevent the spread of a disease is to quar-

antine some of the infected individuals. Let q be the fraction of infectives

that are quarantined. Modify the SIR model to include quarantine, and use

the data in Exercise 8 to investigate the behavior of the model for several

values of q. Is there a smallest value of q that prevents an epidemic from

occurring?

10. The forced Duffing equation

x′′ = x− cx′ − x3 +A cos t

models the damped motion of a mass on a nonlinear spring driven by a

periodic forcing function of amplitude A. Take initial conditions x(0) = 0.5,

x′(0) = 0 and plot the phase plane orbit and the time series when c = 0.25

and A = 0.3. Is the motion periodic? Carry out the same tasks for several

other values of the amplitude A and comment on the results.



6
Linear Systems and Matrices

This chapter focuses on the solution of linear systems using matrix methods

and their role in analyzing nonlinear systems.

One cannot overestimate the role of linearization in mathematics and its

applications. By linearization, we mean approximating a nonlinear model by

a linear model. Most linear models can be solved, whereas most nonlinear

models cannot. We begin by showing how a nonlinear system can be linearized

in a neighborhood of an isolated equilibrium. Knowledge of the linearization

at an equilibrium gives us precise detail of the structure and stability of that

equilibrium in nearly every instance.

Linear systems are themselves of great interest in all areas of mathematics,

engineering, and science. They are efficiently examined using matrix analysis,

which is our goal. A long section on matrices, which includes the solution of

linear algebraic systems and the eigenvalue problem, is included. Readers who

have studied linear algebra could safely skip this material and refer to it as

needed. Some of the ideas in this chapter review those in Chapter 5, but in a

matrix context.

6.1 Linearization and Stability

For nonlinear systems we learned in Chapter 5 how to find equilibrium solu-

tions, nullclines, and the direction of the vector field in regions bounded by

the nullclines. What is missing is a detailed analysis of the orbits near the

J.D. Logan, A First Course in Differential Equations, Undergraduate Texts in Mathematics, 251
DOI 10.1007/978-1-4419-7592-8_6, © Springer Science+Business Media, LLC 2011 
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equilibrium points, where much of the action takes place in two-dimensional

problems. As mentioned in the last chapter, we classify equilibrium points as

(locally) asymptotically stable, unstable, or neutrally stable, depending upon

whether small deviations from equilibrium decay, grow, or remain close. To get

an idea of where we are going we introduce a simple example.

Example 6.1

Consider

x′ = x− xy, y′ = y − xy. (6.1)

This is a simple competition model where two organisms grow with constant

per capita growth rates, but interaction, represented by the xy terms, has a

negative effect on both populations. The origin (0, 0) is an equilibrium point, as

is (1, 1). What type are they? Let’s try the following strategy. Near the origin

both x and y are small. But terms having products of x and y are even smaller,

and we suspect we can ignore them. That is, in the first equation x has greater

magnitude than xy, and in the second equation y has magnitude greater than

xy. Hence, near the origin, the nonlinear system is approximated by

x′ = x, y′ = y.

This linearized system has eigenvalues λ = 1, 1, and therefore (0, 0) is an un-

stable node. We suspect that the nonlinear system therefore has an unstable

node at (0, 0) as well. This turns out to be correct.

Let’s apply a similar analysis at the equilibrium (1, 1). We can represent

points near (1, 1) as u = x− 1, v = y − 1 where u and v are small. This is the

same as x = 1 + u, y = 1 + v, so we may regard u and v as small deviations

from x = 1 and y = 1. Rewriting the nonlinear system (6.1) in terms of u and

v gives

u′ = (u+ 1)(−v) = −v − uv,

v′ = (v + 1)(−u) = −u− uv,

which is a system of differential equations for the small deviations. Again,

because the deviations u and v from equilibrium are small we can ignore the

products of u and v in favor of the larger linear terms. Then the system can be

approximated by

u′ = −v, v′ = −u.
This linear system has eigenvalues λ = −1, 1, and so (0, 0) is a saddle point

for the uv-system. This leads us to suspect that (1, 1) is a saddle point for the

nonlinear system (6.1). We can look at it in this way. If x = 1+u and y = 1+v,

and changes in u and v have an unstable saddle structure near (0, 0), then x
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Figure 6.1 Phase portrait for the nonlinear system (6.1) with a saddle at

(1, 1) and an unstable node at (0, 0).

and y should have a saddle structure near (1, 1). Indeed, the phase portrait for

(6.1) is shown in Figure 6.1 and it confirms our calculations. Although this is

just a toy model of competition with both species having the same interaction

term, it leads to an interesting conclusion. Both equilibria are unstable in the

sense that small deviations from those equilibria put the populations on orbits

that go away from those equilibrium states. There are always perturbations or

deviations in a system. So, in this model, there are no persistent states. One of

the populations, depending upon where the initial data are, will dominate and

the other will approach extinction. �

If a nonlinear system has an equilibrium, then the behavior of the orbits near

that point is often mirrored by a linear system obtained by discarding the small

nonlinear terms. Therefore the general idea is to approximate the nonlinear

system by a linear system in a neighborhood of the equilibrium and use the

properties of the linear system to deduce the properties of the nonlinear system.

This analysis, which is standard and important fare in differential equations,

is called local stability analysis.

In Chapter 5 we presented an elementary discussion of linear systems. Now

we take up this discussion more seriously. The use of matrices greatly econo-

mizes this study and gives a context for examining higher-order systems, both

linear and nonlinear.
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6.2 Matrices*

The study of simultaneous differential equations is greatly facilitated by ma-

trices. Matrix theory provides a convenient language and notation to express

many of the ideas concisely. Complicated formulas are simplified considerably

in this framework, and matrix notation is more or less independent of dimen-

sion. In this extended section we present a brief introduction to square matrices.

Some of the definitions and properties are given for general n by n matrices,

but our focus is on the two- and three-dimensional cases. This section does not

represent a thorough treatment of matrix theory, but rather a limited discus-

sion centered on ideas necessary to discuss solutions of differential equations.

Students who have studied a course in matrix algebra that included solutions of

systems of linear algebraic equations and eigenvalues can skip this long section

or refer to it as needed.

A square array A of numbers having n rows and n columns is called a square

matrix of size n, or an n×n matrix (we say, “n by n matrix”). The number in

the ith row and jth column is denoted by aij . General 2×2 and 3×3 matrices

have the form

A =

(
a11 a12

a21 a22

)
, A =




a11 a12 a13

a21 a22 a23

a31 a32 a33



 .

The numbers aij are called the entries in the matrix; the first subscript i

denotes the row, and the second subscript j denotes the column. The main

diagonal of a square matrix A is the set of elements a11, a22, ..., ann. We often

write matrices using the brief notation A = (aij). An n-vector x is a list of n

numbers x1, x2, ..., xn, written as a column; so “vector” means “column list.”

The numbers x1, x2, ..., xn in the list are called its components. For example,

x =

(
x1

x2

)

is a 2-vector. Vectors are denoted by lowercase boldface letters such as x, y, and

the like, and matrices are denoted by capital letters like A, B, etc. To minimize

space in typesetting, we often write, for example, a 2-vector x as (x1, x2)
T,

where the T denotes transpose, meaning turn the row into a column.

Two square matrices having the same size can be added entrywise. That is,

if A = (aij) and B = (bij) are both n× n matrices, then the sum A+B is an

n× n matrix defined by A+B = (aij + bij). A square matrix A = (aij) of any

size can be multiplied by a constant c by multiplying all the elements of A by

the constant; in symbols this scalar multiplication is defined by cA = (caij).

Thus −A = (−aij), and it is clear that A + (−A) = 0, where 0 is the zero
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matrix having all entries zero. If A and B have the same size, then subtraction

is defined by A − B = A + (−B). Also, A + 0 = A, if 0 has the same size as

A. Addition, when defined, is both commutative and associative. Therefore the

arithmetic rules of addition for n× n matrices are the same as the usual rules

for addition of numbers.

Similar rules hold for addition of column vectors of the same length and

multiplication of column vectors by scalars; these are the definitions you en-

countered in multivariable calculus where n-vectors are regarded as elements

of Rn. Vectors add componentwise, and multiplication of a vector by a scalar

multiplies each component of that vector by that scalar.

Example 6.2

Let

A =

(
1 2

3 −4

)
, B =

(
0 −2

7 −4

)
, x =

(
−4

6

)
, y =

(
5

1

)
.

Then

A+B =

(
1 0

10 −8

)
, −3B =

(
0 6

−21 12

)
,

5x =

(
−20

30

)
, x+2y =

(
6

8

)
. �

The product of two square matrices of the same size is not found by mul-

tiplying entrywise. Rather, matrix multiplication is defined as follows. Let A

and B be two n × n matrices. Then the matrix AB is defined to be the n ×
n matrix C = (cij) where the ij entry (in the ith row and jth column) of the

product C is found by taking the product (dot product, as with vectors) of the

ith row of A and the jth column of B. In symbols, AB = C, where

cij = ai · bj = ai1b1j + ai2b2j + · · · + ainbnj ,

where ai denotes the ith row of A, and bj denotes the jth column of B.

Generally, matrix multiplication is not commutative (i.e., AB 6= BA), so the

order in which matrices are multiplied is important. However, the associative

law AB(C) = (AB)C does hold, so you can regroup products as you wish. The

distributive law connecting addition and multiplication, A(B+C) = AB+AC,

also holds. The powers of a square matrix are defined by A2 = AA, A3 = AA2,

and so on.
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Example 6.3

Let

A =

(
2 3

−1 0

)
, B =

(
1 4

5 2

)
.

Then

AB =

(
2 · 1 + 3 · 5 2 · 4 + 3 · 2
−1 · 1 + 0 · 5 −1 · 4 + 0 · 2

)
=

(
17 14

−1 −4

)
.

Also

A2 =

(
2 3

−1 0

)(
2 3

−1 0

)

=

(
2 · 2 + 3 · (−1) 2 · 3 + 3 · 0
−1 · 2 + 0 · (−1) −1 · 3 + 0 · 0

)
=

(
−1 6

−2 −3

)
. �

Next we define multiplication of an n×n matrix A times an n-vector x. The

product Ax, with the matrix on the left, is defined to be the n-vector whose

ith component is ai · x. In other words, the ith element in the list Ax is found

by taking the product of the ith row of A and the vector x. The product xA

is not defined.

Example 6.4

When n = 2 we have

Ax =

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
.

For a numerical example take

A =

(
2 3

−1 0

)
, x =

(
5

7

)
.

Then

Ax =

(
2 · 5 + 3 · 7
−1 · 5 + 0 · 7

)
=

(
31

−5

)
. �

The special square matrix having ones on the main diagonal and zeros

elsewhere else is called the identity matrix and is denoted by I. For example,

the 2 × 2 and 3 × 3 identities are

I =

(
1 0

0 1

)
and I =




1 0 0

0 1 0

0 0 1


 .
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It is easy to see that if A is any square matrix and I is the identity matrix of the

same size, then AI = IA = A. Therefore multiplication by the identity matrix

does not change the result, a situation similar to multiplying real numbers by

the unit number 1. If A is an n × n matrix and there exists a matrix B for

which AB = BA = I, then B is called the inverse of A and we denote it by

B = A−1. If A−1 exists, we say A is a nonsingular matrix; otherwise it is called

singular . One can show that the inverse of a matrix, if it exists, is unique. We

never write 1/A for the inverse of A.

A useful number associated with a square matrix A is its determinant.

The determinant of a square matrix A, denoted by detA (also by |A|) is a

number found by combining the elements of the matrix is a special way. The

determinant of a 1 × 1 matrix is just the single number in the matrix. For a

2 × 2 matrix we define

detA = det

(
a b

c d

)
= ad− cb,

and for a 3 × 3 matrix we define

det




a b c

d e f

g h i



 = aei+ bfg + cdh− ceg − bdi− ahf. (6.2)

Example 6.5

We have

det

(
2 6

−2 0

)
= 2 · 0 − (−2) · 6 = 12. �

There is a general inductive formula that defines the determinant of an n×n
matrix as a sum of (n−1)× (n−1) matrices. Let A = (aij) be an n×n matrix,

and let Mij denote the (n− 1) × (n− 1) matrix found by deleting the ith row

and jth column of A; the matrix Mij is called the ij minor of A. Then detA

is defined by choosing any fixed column J of A and summing the elements aiJ

in that column times the determinants of their minors MiJ , with an associated

sign (±), depending upon location in the column. That is, for any fixed J ,

detA =

n∑

i=1

(−1)i+JaiJ det(MiJ ).

This is called the expansion by minors formula. One can show that you get the

same value regardless of which column J you use. In fact, one can expand on
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any fixed row I instead of a column and still obtain the same value,

detA =

n∑

j=1

(−1)I+jaIj det(MIj).

So, the determinant is well defined by these equations. The reader should check

that these formulas give the values for the 2×2 and 3×3 determinants presented

above. A few comments are in order. First, the expansion by minors formulas

are useful only for small matrices. For an n × n matrix, it takes roughly n!

arithmetic calculations to compute the determinant using expansion by mi-

nors, which is enormous when n is large. Efficient computational algorithms

to calculate determinants use row reduction methods. Both computer algebra

systems and calculators have routines for calculating determinants.

Using the determinant we can give a simple formula for the inverse of a

2 × 2 matrix A. Let

A =

(
a b

c d

)

and suppose detA 6= 0. Then

A−1 =
1

detA

(
d −b
−c a

)
. (6.3)

So the inverse of a 2 × 2 matrix is found by interchanging the main diagonal

elements, putting minus signs on the off-diagonal elements, and dividing by the

determinant. There is a similar formula for the inverse of larger matrices; for

completeness we write the formula down, but for the record we comment that

there are more efficient ways to calculate the inverse. With that said, the inverse

of an n× n matrix A is the n× n matrix whose ij entry is (−1)i+j det(Mji),

divided by the determinant of A, which is assumed nonzero. In symbols,

A−1 =
1

detA
((−1)i+j det(Mji)). (6.4)

Note that the ij entry of A−1 is computed from the ji minor, with indices

transposed. In the 3 × 3 case the formula is

A−1 =
1

detA




detM11 − detM21 detM31

− detM12 detM22 − detM32

detM13 − detM23 detM33


 .

Example 6.6

If

A =

(
1 2

4 3

)
,
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then

A−1 =
1

detA

(
3 −2

−4 1

)
=

1

−5

(
3 −2

−4 1

)
=

(
− 3

5
2
5

4
5 − 1

5

)
.

The reader can easily check that AA−1 = I. �

Equations (6.3) and (6.4) are revealing because they seem to indicate the

inverse matrix exists only when the determinant is nonzero (you can’t divide

by zero). In fact, these two statements are equivalent for any square matrix,

regardless of its size: A−1 exists if, and only if, detA 6= 0. This is a major

theoretical result in matrix theory, and it is a convenient test for invertibility

of small matrices. Again, for larger matrices it is more efficient to use row

reduction methods to calculate determinants and inverses. The reader should

remember the equivalences

A−1exists ⇔ A is nonsingular ⇔ detA 6= 0.

Matrices were developed to represent and study linear algebraic systems

(n linear algebraic equations in n unknowns) in a concise way. For example,

consider two equations in two unknowns x1, x2 given in standard form by

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2.

Using matrix notation we can write this as

(
a11 a12

a21 a22

)(
x1

x2

)
=

(
b1
b2

)
,

or just simply as

Ax = b, (6.5)

where

A =

(
a11 a12

a21 a22

)
, x =

(
x1

x2

)
, b =

(
b1
b2

)
.

A is the coefficient matrix, x is a column vector containing the unknowns, and

b is a column vector representing the right side. If b = 0, the zero vector, then

the system (6.5) is called homogeneous. Otherwise it is called nonhomogeneous.

In a two-dimensional system each equation represents a line in the plane. When

b = 0 the two lines pass through the origin. A solution vector x is represented

by a point that lies on both lines. There is a unique solution when both lines

intersect at a single point; there are infinitely many solutions when both lines

coincide; there is no solution if the lines are parallel and different. In the case

of three equations in three unknowns, each equation in the system has the form
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αx1 + βx2 + γx3 = d and represents a plane in space. If d = 0 then the plane

passes through the origin. The three planes represented by the three equations

can intersect in many ways, giving no solution (no common intersection points),

a unique solution (when they intersect at a single point), a line of solutions

(when they intersect in a common line), and a plane of solutions (when all the

equations represent the same plane).

The following theorem tells us when a linear system Ax = b of n equations

in n unknowns is solvable. It is a key result that is applied often in the sequel.

Theorem 6.7

Let A be an n × n matrix. If A is nonsingular, then the system Ax = b has

a unique solution given by x = A−1b; in particular, the homogeneous system

Ax = 0 has only the trivial solution x = 0. If A is singular, then the homoge-

neous system Ax = 0 has infinitely many solutions, and the nonhomogeneous

system Ax = b may have no solution or infinitely many solutions. �

It is easy to show the first part of the theorem, when A is nonsingular,

using the machinery of matrix notation. If A is nonsingular then A−1 exists.

Multiplying both sides of Ax = b on the left by A−1 gives

A−1Ax = A−1b,

Ix = A−1b,

x = A−1b,

which is the unique solution. If A is singular one can appeal to a geometric ar-

gument in two dimensions. That is, if A is singular, then detA = 0, and the two

lines represented by the two equations must be parallel (can you show that?).

Therefore they either coincide or they do not, giving either infinitely many so-

lutions or no solution. We remark that the method of finding and multiplying

by the inverse of the matrix A, as above, is not the most efficient method for

solving linear systems. Row reduction methods, introduced in high school al-

gebra (and reviewed below), provide an efficient computational algorithm for

solving large systems.

Example 6.8

Consider the homogeneous linear system

(
4 1

8 2

)(
x1

x2

)
=

(
0

0

)
.
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The coefficient matrix has determinant zero, so there will be infinitely many

solutions. The two equations represented by the system are

4x1 + x2 = 0, 8x1 + 2x2 = 0,

which are clearly not independent; one is a multiple of the other. Therefore we

need only consider one of the equations, say 4x1 +x2 = 0. With one equation in

two unknowns we are free to pick a value for one of the variables and solve for

the other. Let x1 = 1; then x2 = −4 and we get a single solution x = (1,−4)T.

More generally, if we choose x1 = α, where α is any real parameter, then

x2 = −4α. Therefore all solutions are given by

x =

(
x1

x2

)
=

(
α

−4α

)
= α

(
1

−4

)
, α ∈ R.

Thus all solutions are multiples of (1,−4)T, and the solution set lies along the

straight line through the origin defined by this vector. Geometrically, the two

equations represent two lines in the plane that coincide. �

Next we review the row reduction method for solving linear systems when

n = 3. Consider the algebraic system Ax = b, or

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2, (6.6)

a31x1 + a32x2 + a33x3 = b3.

At first we assume the coefficient matrix A = (aij) is nonsingular, so that the

system has a unique solution. The basic idea is to transform the system into

the simpler triangular form

ã11x1 + ã12x2 + ã13x3 = b̃1,

ã22x2 + ã23x3 = b̃2,

ã33x3 = b̃3.

This triangular system is easily solved by back substitution. That is, the third

equation involves only one unknown and we can instantly find x3. That value

is substituted back into the second equation where we can then find x2, and

those two values are substituted back into the first equation and we can find

x1. The process of transforming (6.6) into triangular form is carried out by

three admissible operations that do not affect the solution structure.

1. Any equation may be multiplied by a nonzero constant.

2. Any two equations may be interchanged.
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3. Any equation may be replaced by that equation plus (or minus) a multiple

of any other equation.

We observe that any equation in the system (6.6) is represented by its

coefficients and the right side, so we only need work with the numbers, which

saves writing. We organize the numbers in an augmented array




a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3



 .

The admissible operations listed above translate into row operations on the

augmented array: any row may be multiplied by a nonzero constant, any two

rows may be interchanged, and any row may be replaced by itself plus (or

minus) any other row. By performing these row operations we transform the

augmented array into a triangular array with zeros in the lower-left corner

below the main diagonal. The process is carried out one column at a time,

beginning from the left.

Example 6.9

Consider the system

x1 + x2 + x3 = 0,

2x1 − 2x3 = 2,

x1 − x2 + x3 = 6.

The augmented array is




1 1 1 0

2 0 −2 2

1 −1 1 6


 .

Begin working on the first column to get zeros in the 2,1 and 3,1 positions by

replacing the second and third rows by themselves plus multiples of the first

row. So we replace the second row by the second row minus twice the first row

and replace the third row by the third row minus the first row. This gives




1 1 1 0

0 −2 −4 2

0 −2 0 6



 .

Next work on the second column to get a zero in the 3,2 position below the

diagonal entry. Specifically, replace the third row by the third row minus the
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second row: 


1 1 1 0

0 −2 −4 2

0 0 4 4


 .

This is triangular, as desired. To make the arithmetic easier, multiply the third

row by 1
4 and the second row by − 1

2 to get




1 1 1 0

0 1 2 −1

0 0 1 1


 ,

with ones on the diagonal. This triangular augmented array represents the

system

x1 + x2 + x3 = 0,

x2 + 2x3 = −1,

x3 = 1.

Using back substitution, x3 = 1, x2 = −3, and x1 = 2, which is the unique

solution, representing a point (2,−3, 1) in R3. �

If the coefficient matrix A is singular we can end up with different types of

triangular forms, for example,



1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 ∗


 ,




1 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


 , or




1 ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗


 ,

where the ∗ denotes an entry. These augmented arrays can be translated back

into equations. Depending upon the values of those entries, we get no solution

(the equations are inconsistent) or infinitely many solutions. As examples, sup-

pose there are three systems with triangular forms at the end of the process

given by



1 1 3 0

0 1 2 5

0 0 0 7


 ,




1 0 3 3

0 0 1 1

0 0 0 0


 , or




1 2 0 1

0 0 0 0

0 0 0 0


 .

There would be no solution for the first system (the last row states 0 = 7),

and infinitely many solutions for the second and third systems. Specifically,

the second system would have solution x3 = 1 and x1 = 0, with x2 = a, which

is arbitrary. Therefore the solution to the second system could be written



x1

x2

x3



 =




0

a

1



 = a




0

1

0



+




0

0

1




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with a an arbitrary constant. This represents a line in R3. A line is a one-

dimensional geometrical object described in terms of one parameter. The third

system above reduced to x1 + 2x2 = 1. So we may pick x3 and x2 arbitrarily,

say x2 = a and x3 = b, and then x1 = 1− 2a. The solution to the third system

can then be written



x1

x2

x3



 =




1 − 2a

a

b



 = a




−2

1

0



+ b




0

0

1



+




1

0

0



 ,

which is a plane in R3. A plane is a two-dimensional object in R3 requiring

two parameters for its description.

The set of all solutions to a homogeneous system Ax = 0 is called the

nullspace of A. The nullspace may consist of a single point x = 0 when A is

nonsingular, or it may be a line or plane passing through the origin in the case

where A is singular.

Finally we introduce the notion of independence of column vectors. A set

of vectors is said to be a linearly independent set if any one of them cannot be

written as a combination of some of the others. We can express this statement

mathematically as follows. A set (p of them) of n-vectors v1,v2, ...,vp is a

linearly independent set if the equation1

c1v1 + c2v2 + · · · + cpvp = 0

forces all the constants to be zero; that is, c1 = c2 = · · · = cp = 0. If all the

constants are not forced to be zero, then we say the set of vectors is linearly

dependent. In this case there would be at least one of the constants, say cr,

which is not zero, at which point we could solve for vr in terms of the remaining

vectors.

Notice that two vectors are independent if one is not a multiple of the other.

In the sequel we also need the notion of linear independence for vector

functions. A vector function in two dimensions has the form of a 2-vector whose

entries are functions of time t; for example,

r(t) =

(
x(t)

y(t)

)
,

where t belongs to some interval I of time. The vector function r(t) is the po-

sition vector, and its arrowhead traces out a curve in the plane given by the

parametric equations x = x(t), y = y(t), t ∈ I. As observed in Section 5.1,

solutions to two-dimensional systems of differential equations are vector func-

tions. Linear independence of a set of n-vector functions r1(t), r2(t), ..., rp(t) on

1 A sum of constant multiples of a set of vectors is called a linear combination of
those vectors.
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an interval I means that if a linear combination of those vectors is set equal to

zero, for all t ∈ I, then the set of constants is forced to be zero. In symbols,

c1r1(t)+c2r2(t)+ · · ·+cprp(t) = 0, t ∈ I, implies c1 = 0, c2 = 0, ..., cp = 0.

Finally, if a matrix has entries that are functions of t, that is, A = A(t) =

(aij(t)), then we define the derivative of the matrix as the matrix of derivatives,

or A′(t) = (a′ij(t)).

Example 6.10

The two vector functions

r1(t) =

(
e2t

7

)
, r2(t) =

(
5e2t

sin t

)

form a linearly independent set on the real line because one is not a multiple

of the other. Looked at differently, if we set a linear combination of them equal

to the zero vector (i.e., c1r1(t) + c2r2(t) = 0), and take t = 0, then

c1 + 5c2 = 0, 7c1 = 0,

which forces c1 = c2 = 0. Because the linear combination is zero for all t, we

may take t = 0. �

Example 6.11

The three vector functions

r1(t) =

(
e2t

7

)
, r2(t) =

(
5e2t

sin t

)
, r3(t) =

(
1

3 sin t
2

)
,

form a linearly independent set on R because none can be written as a combi-

nation of the others. That is, if we take a linear combination and set it equal

to zero; that is, c1r1(t)+ c2r1(t)+ c3r1(t) = 0, for all t ∈ R, then we are forced

into c1 = c2 = c3 = 0 (see Exercise 15). �

EXERCISES

1. Let

A =

(
1 3

2 4

)
, B =

(
−1 0

3 7

)
, x =

(
2

−5

)
.

Find A + B, B − 4A, AB, BA, A2, Bx, ABx, A−1, detB, B3, AI, and

det(A− λI ), where λ is a parameter.
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2. With A given in Exercise 1 and b = (2, 1)T , solve the system Ax = b using

A−1. Then solve the system by row reduction.

3. Let

A =




0 2 −1

1 6 −2

2 0 3



 , B =




1 −1 0

2 1 4

−1 −1 1



 , x =




2

0

−1



 .

Find A+B, B − 4A, BA, A2, Bx, detA, AI, A− 3I, and det(B − I).

4. Find all values of the parameter λ that satisfy the equation det(A−λI) = 0,

where A is given in Exercise 1.

5. Let

A =

(
2 −1

−4 2

)
.

Compute detA. Does A−1 exist? Find all solutions to Ax = 0 and plot the

solution set in the plane.

6. Use the row reduction method to determine all values m for which the

algebraic system

2x+ 3y = m, −6x− 9y = 5,

has no solution, a unique solution, or infinitely many solutions.

7. Use row reduction to determine the value(s) of m for which the following

system has infinitely many solutions.

x+ y = 0,

2x+ y = 0,

3x+ 2y +mz = 0.

8. If a square matrix A has all zeros either below its main diagonal or above

its main diagonal, show that detA equals the product of the elements on

the main diagonal.

9. Construct simple homogeneous systems Ax = 0 of three equations in three

unknowns that have: (a) a unique solution, (b) an infinitude of solutions

lying on a line in R3, and (c) an infinitude of solutions lying on a plane in

R3. Is there a case when there is no solution?

10. Let

A =




0 2 −1

1 6 −2

2 0 3


 .
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a) Find detA by the expansion by minors formula using the first column,

the second column, and the third row. Is A invertible? Is A singular?

b) Find the inverse of A and use it to solve Ax = b, where b = (1, 0, 4)T.

c) Solve Ax = b in part (b) using row reduction.

11. Find all solutions to the homogeneous system Ax = 0 if

A =




−2 0 2

2 −4 0

0 4 −2



 .

12. Use the definition of linear independence to show that the 2-vectors

(2,−3)T and (−4, 8)T are linearly independent.

13. Use the definition to show that the 3-vectors (0, 1, 0)T, (1, 2, 0)T, and

(0, 1, 4)T are linearly independent.

14. Use the definition to show that the 3-vectors (1, 0, 1)T, (5,−1, 0)T, and

(−7, 1, 2)T are linearly dependent.

15. Verify the claim in Example 6.11 by taking two special values of t.

16. Plot each of the following vector functions in the xy plane, where −∞ <

t < +∞.

r1(t) =

(
3 cos t

2 sin t

)
, r2(t) =

(
1

3

)
t, r3(t) =

(
t

t+ 1

)
e−t.

Show that these vector functions form a linearly independent set by setting

c1r1(t)+ c2r1(t)+ c3r1(t) = 0 and then choosing special values of t to force

the constants to be zero.

17. Show that a 3 × 3 matrix A is invertible if, and only if, its three columns

form an independent set of 3-vectors.

18. Find A′(t) if

A(t) =




cos t t2 0

2e2t 1 sin 2t

0
√

2t −5
t2+1


 .
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6.3 Two-Dimensional Linear Systems

6.3.1 Matrix Formulation

Some of these ideas were introduced in Chapter 5 in an elementary context.

Here we reiterate the key ideas with an outlook toward using a matrix setting.

A two-dimensional linear system of differential equations

x′ = ax+ by,

y′ = cx+ dy,

where a, b, c, and d are constants, can be written compactly using vectors and

matrices. Denoting

x(t)=

(
x(t)

y(t)

)
, A =

(
a b

c d

)
,

the system can be written

(
x′(t)

y′(t)

)
=

(
a b

c d

)(
x(t)

y(t)

)
,

or

x′(t) =

(
a b

c d

)
x(t).

We often write this simply as

x′ = Ax, (6.7)

where we have suppressed the understood dependence of x on t. We briefly

reiterate the ideas introduced in the introduction, Section 5.1. A solution to

the system (6.7) on an interval is a vector function x(t) = (x(t), y(t))T, that

satisfies the system on the required interval. We can graph x(t) and y(t) versus

t, which gives the state space representation or time series plots of the solu-

tion. Alternatively, a solution can be graphed as a parametric curve, or vector

function, in the xy plane. We call the xy plane the phase plane, and we call

a solution curve plotted in the xy plane an orbit . Observe that a solution is

a vector function x(t) with components x(t) and y(t). In the phase plane, the

orbit is represented in parametric form and is traced out as time proceeds.

Time is not explicitly displayed in the phase plane representation, but it is a

parameter along the orbit. An orbit is traced out in a specific direction as time

increases, and we usually denote that direction by an arrow along the curve.

Furthermore, time can always be shifted along a solution curve; that is, if x(t)

is a solution, then x(t− c) is a solution for any real number c and it represents

the same solution curve.
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Our main objective is to find the phase portrait, or a plot of key orbits of

the given system. We are particularly interested in the equilibrium solutions

of (6.7). These are the constant vector solutions x∗ for which Ax∗ = 0. An

equilibrium solution is represented in the phase plane as a point. The vector

field vanishes at an equilibrium point. The time series representation of an

equilibrium solution is two constant functions plotted against t. If detA 6= 0,

then x∗ = 0 is the only equilibrium of (6.7), and it is represented by the origin,

(0, 0), in the phase plane. The solution just remains at that point for all time.

We say in this case that the origin is an isolated equilibrium. If detA = 0, then

there will be an entire line of equilibrium solutions through the origin. Each

point on the line represents an equilibrium solution, and the equilibria are not

isolated. Equilibrium solutions are important because the interesting behavior

of the orbits usually occurs near these solutions. Equilibrium solutions are also

called critical points by some authors.

Example 6.12

Consider the system

x′ = −2x− y,

y′ = 2x− 5y,

which we write as

x′ =

(
−2 −1

2 −5

)
x.

The coefficient determinant is nonzero, so the only equilibrium solution is rep-

resented by the origin, x(t) = 0, y(t) = 0. By substitution, it is straightforward

to check that

x1(t)=

(
x(t)

y(t)

)
=

(
e−3t

e−3t

)
=

(
1

1

)
e−3t

is a solution. Also

x2(t) =

(
e−4t

2e−4t

)
=

(
1

2

)
e−4t

is a solution. Each of these solutions has the form of a constant vector times

a scalar exponential function of time t. Why should we expect exponential

solutions? The two equations involve both x and y and their derivatives; a

solution must cause everything to cancel out, and so each term must basically

have the same form. Exponential functions and their derivatives both have the

same form, and therefore exponential functions for both x and y are likely

candidates for solutions. We graph these two independent solutions x1(t) and
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x2(t) in the phase plane. See Figure 6.2. Each solution, or orbit, plots as a ray

traced from infinity (as time t approaches −∞) into the origin (as t approaches

+∞). The slopes of these ray-like solutions are defined by the constant vectors

preceding the scalar exponential factor, the latter of which has the effect of

stretching or shrinking the vector. Note that these two orbits approach the

origin as time gets large, but they never actually reach it. Another way to look

y

x

x2(t)

–x2(t)

–x1(t)

x1(t)

Figure 6.2 x1(t) and x2(t) are shown as linear orbits (rays) entering the

origin in the first quadrant. The reflection of those rays in the third quadrant

are the solutions −x1(t) and −x2(t). Note that all four of these linear orbits

approach the origin as t → +∞ because of the decaying exponential factor in

the solution. As t → −∞ (backward in time) all four of these linear orbits go

to infinity.

at it is this. If we eliminate the parameter t in the parametric representation

x = e−4t, y = 2e−4t of x2(t), say, then y = 2x, which is a straight line in

the xy plane. This orbit is on one ray of this straight line, lying in the first

quadrant. When we write orbits only in terms of x and y, as y = 2x, we have

lost information about how the orbit is traced out in time. �

Solutions of (6.7) the form x(t) = veλt, where λ is a real constant and v is

a constant real vector, are called linear orbits because they plot as rays in the

xy-phase plane.

We are ready to make some observations about the structure of the solution

set to the two-dimensional linear system (6.7). All of these properties can be
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extended to three, or even n, dimensional systems.

1. (Superposition) If x1(t) and x2(t) are any solutions and c1 and c2 are

any constants, then the linear combination c1x1(t) + c2x2(t) is a solution.

2. (General Solution) If x1(t) and x2(t) are two linear independent solutions

(i.e., one is not a multiple of the other), then all solutions are given by

x(t) = c1x1(t) + c2x2(t), where c1 and c2 are arbitrary constants. This

combination is called the general solution of (6.7).

3. (Existence–Uniqueness) The initial value problem

x′ = Ax, x(t0)= x0,

where x0 is a fixed vector, has a unique solution valid for all −∞ < t < +∞.

The existence–uniqueness property actually guarantees that there are two

independent solutions to a two-dimensional system. Let x1 be the unique so-

lution to the initial value problem x′
1 = Ax1, x1(0)= (1, 0)

T
and x2 be the

unique solution to the initial value problem x′
2 = Ax2, x(0)=(0, 1)T. These

must be independent. Otherwise they would be proportional and we would have

x1(t) = kx2(t),

for all t, where k is a nonzero constant. But if we take t = 0, we would have

(1, 0)
T

= k(0, 1)T,

which is a contradiction.

The question is how to determine two independent solutions so that we

can write down the general solution. This is a central issue we address in the

sequel. As we observed in Chapter 5, one method to solve a two-dimensional

linear system is to eliminate one of the variables and reduce the problem to a

single second-order equation. We give one additional example of this procedure

to observe the relationship between the vector and scalar forms of the general

solution.

Example 6.13

(Method of Elimination) Consider

x′ = 4x− 3y,

y′ = 6x− 7y.
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Differentiate the first and then use the second to get

x′′ = 4x′ − 3y′ = 4(4x− 3y) − 3(6x− 7y)

= −2x+ 9y = −2x+ 9(−1

3
x′ +

4

3
x)

= −3x′ + 10x,

which is a second-order equation. The characteristic equation is λ2+3λ−10 = 0

with roots λ = −5, 2. Thus

x(t) = c1e
−5t + c2e

2t.

Then

y(t) = −1

3
x′ +

4

3
x = 3c1e

−5t +
2

3
c2e

2t.

We can write the solution in vector form as

x(t) =

(
x(t)

y(t)

)
= c1

(
e−5t

3e−5t

)
+ c2

(
e2t

2
3e

2t

)
.

In this form we can see that two independent vector solutions are

x1(t) =

(
e−5t

3e−5t

)
, x2(t) =

(
e2t

2
3e

2t

)
,

and the general solution is a linear combination of these, x(t) = c1x1(t) +

c2x2(t). However simple this strategy appears in two dimensions, it does not

work as easily in higher dimensions, nor does it expose methods that are easily

adaptable to higher-dimensional systems. Therefore we do not often use the

elimination method.

Now we point out features of the phase plane. Notice that x1 graphs as a

linear orbit in the first quadrant of the xy phase plane, along the ray defined

by of the vector (1, 3)T. It enters the origin as t→ ∞ because of the decaying

exponential factor. The other solution x2 also represents a linear orbit along

the direction defined by the vector (1, 2/3)T. This solution, because of the

increasing exponential factor e2t, tends to infinity as t→ +∞. Notice that the

linear orbits are found by setting c1 = 0 and c2 = 0, respectively. Figure 6.3

shows the linear orbits. Figure 6.4 shows several orbits on the phase diagram

obtained by taking different values of the arbitrary constants in the general

solution. The structure of the orbital system near the origin, where curves veer

away and approach the linear orbits as time goes forward and backward, is

called a saddle point structure. The linear orbits are called separatrices because

they separate different types of orbits. All orbits approach the separatrices as

time gets large, either negatively or positively. �
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y

x

x2(t)

–x2(t)

–x1(t)

x1(t)

Figure 6.3 Linear orbits in Example 6.13 representing the solutions corre-

sponding to x1(t) and x2(t), and the companion orbits −x1(t) and −x2(t).

These linear orbits are called separatrices.
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Figure 6.4 Phase portrait for the system showing a saddle point at the origin.
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6.3.2 The Eigenvalue Problem

Now we introduce general matrix methods for solving a two-dimensional system

x′ = Ax. (6.8)

We assume that detA 6= 0, so that the only equilibrium solution of the system

is at the origin. As examples have shown, we should expect an exponential-type

solution. Therefore, we attempt to find a solution of the form

x = veλt, (6.9)

where λ is a constant and v is a nonzero constant vector, and both are to be

determined.

Substituting x = veλt and x′=λveλt into (6.8) gives

λveλt = A(veλt),

or

Av = λv. (6.10)

Therefore, if a λ and v can be found that satisfy (6.10), then we have deter-

mined a solution of the form (6.9). The vector equation (6.10) represents a

well-known problem in mathematics called the algebraic eigenvalue problem.

The eigenvalue problem is to determine values of λ for which (6.10) has a non-

trivial solution v. A value of λ for which there is a nontrivial solution v is called

an eigenvalue, and a corresponding v associated with that eigenvalue is called

an eigenvector . The pair λ,v is called an eigenpair. Geometrically we think

of the eigenvalue problem like this: A represents a transformation that maps

vectors in the plane to vectors in the plane; a vector x gets transformed to a

vector Ax. An eigenvector of A is a special vector that is mapped to a multiple

(λ) of itself; that is, Ax = λx. In summary, we have reduced the problem of

finding solutions to a system of differential equations to the problem of finding

solutions of an algebra problem; every eigenpair gives a solution.

Geometrically, if λ is real, the linear orbit representing this solution lies

along a ray emanating from the origin along the direction defined by the vector

v. If λ < 0 the solution approaches the origin along the ray, and if λ > 0 the

solution goes to infinity along the ray. The situation is similar to that shown

in Figure 6.3. When there is a solution graphing as a linear orbit, then there is

automatically a second, opposite, linear orbit along the ray −v. This is because

if x = veλt is a solution, then so is −x = −veλt

To solve the eigenvalue problem we rewrite (6.10) as a homogeneous linear

system

(A−λI)v = 0. (6.11)
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This system will have the desired nontrivial solutions if the determinant of the

coefficient matrix is zero, or

det(A− λI) = 0. (6.12)

Written out explicitly, this system (6.11) has the form

(
a− λ b

c d− λ

)(
v1
v2

)
=

(
0

0

)
,

where the coefficient matrix A−λI is the matrix A with λ subtracted from the

diagonal elements. Equation (6.12) is, explicitly,

det

(
a− λ b

c d− λ

)
= (a− λ)(d− λ) − cb = 0,

or equivalently,

λ2 − (a+ b)λ+ (ad− bc) = 0.

This last equation can be memorized easily if it is written

λ2 − (trA)λ + detA = 0, (6.13)

where trA = a+d is called the trace of A, defined to be the sum of the diagonal

elements of A. Equation (6.13) is called the characteristic equation associated

with A, and it is a quadratic equation in λ. Its roots, found by factoring or

using the quadratic formula, are the two eigenvalues. The eigenvalues may be

real and unequal, real and equal, or complex conjugates.

Once the eigenvalues are computed, we can substitute them in turn into

the system (6.11) to determine corresponding eigenvectors v. Note that any

multiple of an eigenvector is again an eigenvector for that same eigenvalue; this

follows from the calculation

A(cv) = cAv = c(λv) = λ(cv).

Thus, an eigenvector corresponding to a given eigenvalue is not unique; we may

multiply them by constants. Some calculators display normalized eigenvectors

(of length one) found by dividing by their length.

As noted, the eigenvalues may be real and unequal, real and equal, or com-

plex numbers. We discuss these different cases.
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6.3.3 Real Unequal Eigenvalues

If the two eigenvalues are real and unequal, say λ1 and λ2, then correspond-

ing eigenvectors v1 and v2 are independent and we obtain two independent

solutions v1e
λ1t and v2e

λ2t. The general solution of the system is then a linear

combination of these two independent solutions, or linear orbits,

x(t) = c1v1e
λ1t + c2v2e

λ2t,

where c1 and c2 are arbitrary constants. Each of the independent solutions

represents linear orbits in the phase plane, which helps in plotting the phase

diagram. All solutions (orbits) x(t) are linear combinations of the two inde-

pendent solutions, with each specific solution obtained by fixing values of the

arbitrary constants.

Example 6.14

Consider the linear system

x′ =

(
− 3

2
1
2

1 −1

)
x. (6.14)

The characteristic equation (6.13) is

λ2 +
5

2
λ+ 1 = 0.

By the quadratic formula the eigenvalues are

λ = −1

2
,−2.

Now we take each eigenvalue successively and substitute it into (6.11) to obtain

corresponding eigenvectors. First, for λ = − 1
2 , we get

(
−1 1

2

1 − 1
2

)(
v1
v2

)
=

(
0

0

)
,

which has a solution (v1, v2)
T = (1, 2)T. Notice that any multiple of this eigen-

vector is again an eigenvector, but all we need is one. Therefore an eigenpair

is

−1

2
,

(
1

2

)
.

Now take λ = −2. The system (6.11) becomes

(
1
2

1
2

1 1

)(
v1
v2

)
=

(
0

0

)
,
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which has solution (v1, v2)
T = (−1, 1)T. Thus, another eigenpair is

−2,

(
−1

1

)
.

The two eigenpairs give two independent solutions

x1(t) =

(
1

2

)
e−t/2 and x2(t)=

(
−1

1

)
e−2t. (6.15)

Each one plots, along with its negative counterparts, as a linear orbit in the

phase plane entering the origin as time increases. The general solution of the

system (6.14) is

x(t) = c1

(
1

2

)
e−t/2 + c2

(
−1

1

)
e−2t.

This is a two-parameter family of solution curves, and the totality of all these

solution curves, or orbits, represents the phase diagram in the xy plane. These

orbits are shown in Figure 6.5. Because both terms in the general solution decay

as time increases, all orbits enter the origin as t→ +∞. And, as t gets large, the

term with e−t/2 dominates the term with e−2t. Therefore all orbits approach

the origin along the direction (1, 2)T. As t→ −∞ the orbits go to infinity; for

large negative times the term e−2t dominates the term e−t/2, and the orbits

become parallel to the direction (−1, 1)T. Each of the two basic solutions (6.15)

represents linear orbits along rays in the directions of the eigenvectors. When

both eigenvalues are negative, as in this case, all orbits approach the origin in

the direction of one of the eigenvectors. When we obtain this type of phase

plane structure, we call the origin an asymptotically stable node. When both

eigenvalues are positive, then the time direction along orbits is reversed and we

call the origin an unstable node. The meaning of the term stable is discussed

subsequently. �

Example 6.15

(Initial Value Problem) An initial condition picks out one of the many orbits

by fixing values for the two arbitrary constants. For example, if x(0) = (1, 4)T,

or we want an orbit passing through the point (1, 4), then

c1

(
1

2

)
+ c2

(
−1

1

)
=

(
1

4

)
,
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Figure 6.5 A node. All orbits approach the origin, tangent to the direction

(1, 2)T, as t→ +∞. Backwards in time, as t→ −∞, the orbits become parallel

to the direction (−1,−1)T. Notice the linear orbits.

giving c1 = 5/3 and c2 = 2/3. Therefore, the unique solution to the initial

value problem is

x(t) =
5

3

(
1

2

)
e−t/2 +

2

3

(
−1

1

)
e−2t

=

(
5
3e

−t/2 − 2
3e

−2t

10
3 e

−t/2 + 2
3e

−2t

)
. �

Example 6.16

If a system has eigenpairs

−2,

(
3

2

)
, 3,

(
−1

5

)
,

with real eigenvalues of opposite sign, then the general solution is

x(t) = c1

(
3

2

)
e−2t + c2

(
−1

5

)
e3t.

In this case one of the eigenvalues is positive and one is negative. Now there are

two sets of opposite linear orbits, one pair corresponding to −2 approaching
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the origin from the directions ±(3, 2)T, and one pair corresponding to λ = 3

approaching infinity along the directions ±(−1, 5)T. The orbital structure is

that of a saddle point (Figure 6.4), and we anticipate saddle point structure

when the eigenvalues are real and have opposite sign. �

6.3.4 Complex Eigenvalues

If the eigenvalues of the matrix A are complex, there are still solutions of the

form

x(t) = veλt,

but they do not correspond geometrically to linear orbits. The eigenvalues

must appear as complex conjugates, or λ = a ± bi. The eigenvectors will be

v = w ± iz. Therefore, taking the eigenpair a + bi, w + iz, we obtain the

complex solution

(w + iz)e(a+bi)t.

Recalling that the real and imaginary parts of a complex solution are real

solutions, we expand this complex solution using Euler’s formula to get

(w + iz)eateibt = eat(w + iz)(cos bt+ i sin bt)

= eat(w cos bt− z sin bt) + ieat(w sin bt+ z cos bt).

Therefore two real, independent solutions are

x1(t) = eat(w cos bt− z sin bt), x2(t) = eat(w sin bt+ z cos bt),

and the general solution is a combination of these,

x(t) = c1e
at(w cos bt− z sin bt) + c2e

at(w sin bt+ z cos bt). (6.16)

In the case of complex eigenvalues we need not consider both eigenpairs; each

eigenpair leads to the same two independent solutions. For complex eigenvalues

there are no linear orbits, as you can see from the presence of oscillatory terms.

The terms involving the trigonometric functions are periodic functions with

period 2π/b, and they define orbits that rotate around the origin. The factor

eat acts as an amplitude factor causing the rotating orbits to expand if a > 0,

and we obtain spiral orbits going away from the origin. If a < 0 the amplitude

decays and the spiral orbits go into the origin. In the complex eigenvalue case

we say the origin is an asymptotically stable spiral point when a < 0, and an

unstable spiral point when a > 0.
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Purely Imaginary Eigenvalues. If the eigenvalues of A are purely imagi-

nary, λ = ±bi, then the amplitude factor eat in (6.16) is absent and the solutions

are periodic of period 2π/b, given by

x(t) = c1(w cos bt− z sin bt) + c2(w sin bt+ z cos bt).

The orbits are closed cycles and plot as either concentric ellipses or concentric

circles. In this case we say the origin is a (neutrally) stable center .

Example 6.17

Let

x′ =

(
−2 −3

3 −2

)
x.

The matrix A has eigenvalues λ = −2 ± 3i. An eigenvector corresponding to

λ = −2 + 3i is v1 = [−1 i]T. Therefore a complex solution is

x =

(
−1

i

)
e(−2+3i)t =

[(
−1

0

)
+ i

(
0

1

)]
e−2t(cos 3t+ i sin 3t)

=

(
−e−2t cos 3t

−e−2t sin 3t

)
+ i

(
−e−2t sin 3t

−e−2t cos 3t

)
.

Therefore two linearly independent solutions are

x1(t) =

(
−e−2t cos 3t

−e−2t sin 3t

)
, x2(t) =

(
−e−2t sin 3t

−e−2t cos 3t

)
.

The general solution is a linear combination of these two solutions, x(t) =

c1x1(t) + c2x2(t). In the phase plane the orbits are spirals that approach the

origin as t → +∞ because the real part −2 of the eigenvalues is negative. See

Figure 6.6. At the point (1, 1) the tangent vector (direction field) is (−5, 1)T,

so the spirals are counterclockwise. To help plot spirals by hand, it is often

helpful to calculate a tangent vector along the positive and negative axes and

draw in the nullclines where the vector field is vertical and horizontal. �

6.3.5 Real Repeated Eigenvalues

One case remains, when A has a repeated real eigenvalue λ with a single eigen-

vector v. Then x1 = veλt is one solution (representing a linear orbit), and

we need another independent solution. We try a second solution of the form

x2 = eλt(tv + w), where w is to be determined. A more intuitive guess, based
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Figure 6.6 A stable spiral from Example 6.17.

on our experience with second-order equations in Chapter 3, would have been

eλttv, but that does not work (try it). Substituting x2 into the system we get

x′
2 = eλtv + λeλt(tv + w),

Ax2 = eλtA(tv + w).

Therefore we obtain an algebraic system for w:

(A− λI)w = v.

This system will always have a solution w, and therefore we will have deter-

mined a second linearly independent solution. In fact, this system always has

infinitely many solutions, and all we have to do is find one solution. The vector

w is called a generalized eigenvector . Therefore, the general solution to the

linear system x′ = Ax in the repeated eigenvalue case is

x(t) = c1ve
λt + c2e

λt(tv + w).

If the eigenvalue is negative the orbits enter the origin as t → +∞, and they go

to infinity as t→ −∞. If the eigenvalue is positive, the orbits reverse direction

in time.

In the case where the eigenvalues are equal, the origin has a nodal-like struc-

ture. When there is a single eigenvector associated with the repeated eigen-

value, we often call the origin a degenerate node. It may occur in a special
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case that a repeated eigenvalue λ has two independent eigenvectors vectors

v1 and v2 associated with it. When this occurs, the general solution is just

x(t) = c1v1e
λt + c2v2e

λt. It happens when the two equations in the system

are decoupled, and the matrix is diagonal with equal elements on the diagonal.

In this exceptional case all of the orbits are linear orbits entering (λ < 0) or

leaving (λ > 0) the origin; we refer to the origin in this case as a starlike node.

Example 6.18

Consider the system

x′ =

(
2 1

−1 4

)
x.

The eigenvalues are λ = 3, 3 and a corresponding eigenvector is v = (1, 1)T.

Therefore one solution is

x1(t) =

(
1

1

)
e3t.

Notice that this solution plots as a linear orbit coming out of the origin and

approaching infinity along the direction (1, 1)T. There is automatically an oppo-

site orbit coming out of the origin and approaching infinity along the direction

−(1, 1)T. A second independent solution has the form x2 = e3t(tv + w) where

w satisfies

(A− 3I)w =

(
−1 1

−1 1

)
w =

(
1

1

)
.

This equation has many solutions, and so we choose

w =

(
0

1

)
.

Therefore a second solution has the form

x2(t) = e3t(tv + w) = e3t

[(
1

1

)
t+

(
0

1

)]
=

(
te3t

(t+ 1)e3t

)
.

The general solution of the system is the linear combination

x(t) = c1x1(t) + c2x2(t).

If we append an initial condition, for example,

x(0) =

(
1

0

)
,

then we can determine the two constants c1 and c2. We have

x(0) = c1x1(0) + c2x2(0) = c1

(
1

1

)
+ c2

(
0

1

)
=

(
1

0

)
.
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Hence

c1 = 1, c2 = −1.

Therefore the solution to the initial value problem is given by

x(t) = (1)

(
1

1

)
e3t + (−1)

(
te3t

(t+ 1)e3t

)
=

(
(1 − t)e3t

−te3t

)
.

As time goes forward (t → ∞), the orbits go to infinity, and as time goes

backward (t → −∞), the orbits enter the origin. The origin is an unstable

node. �

How to Draw a Phase Diagram. To draw a rough phase diagram for

a linear system all you need to know are the eigenvalues and eigenvectors. If

the eigenvalues are real, then draw straight lines through the origin in the di-

rection of the associated eigenvectors. Label each ray of the line with an arrow

that points inward toward the origin if the eigenvalue is negative and outward

if the eigenvalue is positive. Then fill in the regions between these linear or-

bits with consistent solution curves, paying attention to which “eigendirection”

dominates as t → ∞ and t → −∞. Real eigenvalues with the same sign give

nodes, and real eigenvalues of opposite signs give saddles. If the eigenvalues are

purely imaginary then the orbits are closed loops around the origin, and if they

are complex the orbits are spirals. They spiral in if the eigenvalues have neg-

ative real part, and they spiral out if the eigenvalues have positive real part.

The direction (clockwise or counterclockwise) of the cycles or spirals can be

determined directly from the direction field, often by just plotting one vector

in the vector field. Another helpful device to get an improved phase diagram

is to plot the set of points where the vector field is vertical (the orbits have

a vertical tangent) and where the vector field is horizontal (the orbits have a

horizontal tangent). These sets of points are found by setting x′ = ax+ by = 0

and y′ = cx + dy = 0, respectively. These straight lines are called the x and y

nullclines.

Example 6.19

The system

x′ =

(
2 5

−2 0

)
x

has eigenvalues 1 ± 3i. The orbits spiral outward (because the real part of the

eigenvalues, 1, is positive). They are clockwise because the second equation in

the system is y′ = −2x, and so y decreases (y′ < 0) when x > 0. Observe that

the orbits are vertical as they cross the nullcline 2x + 5y = 0, and they are
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horizontal as they cross the nullcline x = 0. With this information the reader

should be able to draw a rough phase diagram. �

6.4 Stability

We have regularly mentioned the word stability in the last section. Now we

extend the discussion. For the linear system x′ = Ax, an equilibrium solution

is a constant vector solution x(t) = x∗ representing a point in the phase plane.

The zero-vector x∗ = 0 (the origin) is always an equilibrium solution to a

linear system. Other equilibria will satisfy Ax∗ = 0, and thus the only time we

get a nontrivial equilibrium solution is when detA = 0; in this case there are

infinitely many equilibria. If detA 6= 0, then x∗ = 0 is the only equilibrium,

and it is called an isolated equilibrium. For the discussion in the remainder of

this section we assume detA 6= 0.

Suppose the system is in its zero equilibrium state. Intuitively, the equilib-

rium is stable if a small perturbation, or disturbance, does not cause the system

to deviate too far from the equilibrium; the equilibrium is unstable if a small

disturbance causes the system to deviate far from its original equilibrium state.

We have seen in two-dimensional systems that if the eigenvalues of the matrix

A are both negative or have negative real parts, then all orbits approach the

origin as t → +∞. In these cases we say that the origin is an asymptotically

stable node (including degenerate and starlike nodes) or an asymptotically sta-

ble spiral point . If the eigenvalues are both positive, have positive real parts,

or are real of opposite sign, then some or all orbits that begin near the origin

do not stay near the origin as t → +∞, and we say the origin is an unsta-

ble node (including degenerate and starlike nodes), is an unstable spiral point ,

and a saddle, respectively. If the eigenvalues are purely imaginary we obtain

periodic solutions, or closed cycles, and the origin is a center. In this case a

small perturbation from the origin puts us on one of the elliptical orbits and

we cycle near the origin; we say a center is neutrally stable, or just stable, but

not asymptotically stable. Asymptotically stable equilibria are also called at-

tractors or sinks , and unstable equilibria are called repellers or sources. Also,

we often refer to asymptotically stable spirals and nodes as just stable spirals

and nodes; the word asymptotic is understood.

Key Points. We make some important summarizing observations. For two-

dimensional systems it is easy to check stability of the origin, and sometimes

this is all we want to do. The eigenvalues are roots of the characteristic equation

λ2 − (trA)λ + detA = 0.
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By the quadratic formula,

λ =
1

2
(trA±

√
(trA)2 − 4 detA).

One can easily check the following facts:

1. If detA < 0, then the eigenvalues are real and have opposite sign, and the

origin is a saddle.

2. If detA > 0 and trA = 0, and the origin is a center.

3. If detA > 0 and trA 6= 0, then the eigenvalues are real with the same

sign (nodes) or complex (spirals). Nodes require a positive discriminant,

trA)2 − 4 detA > 0, and spirals require a negative discriminant, trA)2 −
4 detA < 0. If trA)2 − 4 detA = 0 then we obtain degenerate and star-like

nodes. If trA < 0 then the nodes and spirals are stable, and if trA > 0 they

are unstable.

4. If detA = 0, then at least one of the eigenvalues is zero and there is a line

of equilibria.

We summarize with an important stability theorem for two-dimensional sys-

tems. This key result was also derived in Chapter 5.

Theorem 6.20

The origin is asymptotically stable if, and only if,

trA < 0 and detA > 0. �

EXERCISES

1. Find the eigenvalues and eigenvectors of the following matrices:

A =

(
−1 4

−2 5

)
; B =

(
2 3

4 6

)
; C =

(
2 −8

1 −2

)
.

2. Write the general solution of the linear system x′ = Ax if A has eigenpairs

2, (1, 5)T and −3, (2,−4)T. Sketch the linear orbits in the phase plane

corresponding to these eigenpairs. Find the solution curve that satisfies

the initial condition x(0) = (0, 1)T and plot it in the phase plane. Do the

same for the initial condition x(0) = (−6, 12)T.

3. Answer the questions in Exercise 2 for a system whose eigenpairs are −6,

(1, 2)T and −1, (1,−5)T.
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4. For each system find the general solution and sketch the phase portrait.

Indicate the linear orbits (if any) and the direction of the solution curves.

a) x′ =

(
1 2

3 2

)
x.

b) x′ =

(
−3 4

0 −3

)
x.

c) x′ =

(
2 2

6 3

)
x.

d) x′ =

(
−5 3

2 −10

)
x.

e) x′ =

(
2 0

0 2

)
x.

f) x′ =

(
3 −2

4 −1

)
x.

g) x′ =

(
5 −4

1 1

)
x.

h) x′ =

(
0 9

−1 0

)
x.

5. Solve the initial value problem

x′ =

(
2 1

−1 0

)
x, x(0) =

(
1

−1

)
.

6. Consider the system

x′ =

(
1 −2

−2 4

)
x.

a) Find the equilibrium solutions and plot them in the phase plane.

b) Find the eigenvalues and determine if there are linear orbits.

c) Find the general solution and plot the phase portrait.

7. Determine the behavior of solutions near the origin for the system

x′ =

(
3 a

1 1

)
x

for different values of the parameter a.
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8. For the systems in Exercise 4, characterize the origin as to type (node, de-

generate node, starlike node, center, spiral, saddle) and stability (unstable,

neutrally stable, asymptotically stable).

9. Consider the system

x′ = −3x+ ay,

y′ = bx− 2y.

Are there values of a and b where the solutions are closed cycles (periodic

orbits)?

6.5 Nonhomogeneous Systems*

Corresponding to a two-dimensional, linear homogeneous system x′ = Ax, we

now examine the nonhomogeneous system

x′ = Ax + f(t), (6.17)

where

f(t) =

(
f1(t)

f2(t)

)

is a given vector function. We think of this function as the driving force in the

system.

To ease the notation in writing the solution we define a fundamental matrix

Φ(t) as a 2 × 2 matrix whose columns are two independent solutions to the

associated homogeneous system x′ = Ax. So, the fundamental matrix is a

square array that holds both vector solutions. It is straightforward to show

that Φ(t) satisfies the matrix equation Φ′(t) = AΦ(t), and that the general

solution to the homogeneous equation x′ = Ax can therefore be written in the

form

xh(t) = Φ(t)c,

where c = (c1, c2)
T is an arbitrary constant vector. (The reader should do

Exercise 1 presently, which requires verifying these relations.)

The variation of parameters method introduced in Chapter 3 for nonho-

mogeneous, second-order equations is applicable to first-order linear systems.

Therefore we assume a solution to (6.17) of the form

x(t) = Φ(t)c(t), (6.18)
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where we have “varied” the constant vector c. Then, using the product rule for

differentiation (which works for matrices),

x′(t) = Φ(t)c′(t) + Φ′(t)c(t) = Φ(t)c′(t) +AΦ(t)c(t)

= Ax + f(t) = AΦ(t)c(t) + f(t).

Comparison gives

Φ(t)c′(t) = f(t) or c′(t) = Φ(t)−1f(t).

We can invert the fundamental matrix because its determinant is nonzero, a

fact that follows from the independence of its columns. Integrating the last

equation from 0 to t then gives

c(t) =

∫ t

0

Φ(s)−1f(s)ds + k,

where k is a arbitrary constant vector. Note that the integral of a vector func-

tion is defined to be the vector consisting of the integrals of the components.

Substituting into (6.18) shows that the general solution to the nonhomogeneous

equation (6.17) is

x(t) = Φ(t)k + Φ(t)

∫ t

0

Φ(s)−1f(s)ds. (6.19)

As for a single first-order linear DE, this formula gives the general solution

of (6.17) as a sum of the general solution to the homogeneous equation (first

term) and a particular solution to the nonhomogeneous equation (second term).

Equation (6.19) is called the variation of parameters formula for systems. It

is equally valid for systems of any dimension, with appropriate size increase in

the vectors and matrices.

It is sometimes a formidable task to calculate the solution (6.19), even in

the two-dimensional case. It involves finding the two independent solutions

to the homogeneous equation, forming the fundamental matrix, inverting the

fundamental matrix, and then integrating.

Example 6.21

Consider the nonhomogeneous system

x′ =

(
4 3

−1 0

)
x +

(
0

t

)
.

It is a straightforward exercise to find the solution to the homogeneous system

x′ =

(
4 3

−1 0

)
x.
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The eigenpairs are 1, (1,−1)T and 3, (−3, 1)T. Therefore two independent

solutions are (
et

−et

)
,

(
−3e3t

e3t

)
.

A fundamental matrix is

Φ(t) =

(
et −3e3t

−et e3t

)
,

and its inverse is

Φ−1(t) =
1

detΦ

(
e3t 3e3t

et et

)
=

1

−2e4t

(
e3t 3e3t

et et

)
= −1

2

(
e−t 3e−t

e−3t e−3t

)
.

By the variation of parameters formula (6.19), the general solution is

x(t) = Φ(t)k +

(
et −3e3t

−et e3t

)∫ t

0

−1

2

(
e−s 3e−s

e−3s e−3s

)(
0

s

)
ds

= Φ(t)k − 1

2

(
et −3e3t

−et e3t

)∫ t

0

(
3se−s

se−3s

)
ds

= Φ(t)k − 1

2

(
et −3e3t

−et e3t

)(
3
∫ t

0 se
−sds∫ t

0
se−3sds

)

= Φ(t)k − 1

2

(
et −3e3t

−et e3t

)(
3 − 3(t+ 1)e−t

1
9 − ( t

3 + 1
9 )e−3t

)

=

(
k1e

t − 3k2e
3t

−k1e
t + k2e

3t

)
+

(
t+ 4

3

− 4
3 t− 13

9

)
. �

If the nonhomogeneous term f(t) is relatively simple, we can use the method

of undetermined coefficients (judicious guessing) introduced for second-order

equations in Chapter 3 to find the particular solution. In this case we guess

the trial form of a particular solution, depending upon the form of f(t). For

example, if both components are polynomials, then we guess a particular so-

lution with both components being polynomials that have the highest degree

that appears.

Example 6.22

If

f(t) =

(
1

t2 + 2

)
,
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then a guess for the particular solution would be

xp(t) =

(
a1t

2 + b1t+ c1
a2t

2 + b2t+ c2

)
.

Substitution into the nonhomogeneous system then determines the six con-

stants. �

Generally, if a term appears in one component of f(t), then the guess must

have that term appear in all its components. The method is successful on forcing

terms with sines, cosines, polynomials, exponentials, and products and sums of

those. The rules are the same as for single equations. But the calculations are

tedious and a computer algebra system is often preferred.

Example 6.23

We use the method of undetermined coefficients to find a particular solution

to the equation in Example 6.21. The forcing function is

(
0

t

)
,

and therefore we guess a particular solution of the form

xp =

(
at+ b

ct+ d

)
.

Substituting into the original system yields

(
a

c

)
=

(
4 3

−1 0

)(
at+ b

ct+ d

)
+

(
0

t

)
.

Simplifying leads to the two equations

a = (4a+ 3c)t+ 4b+ 3d,

c = −b+ (1 − a)t.

Comparing coefficients gives

a = 1, b = −c =
4

3
, d = −13

9
.

Therefore a particular solution is

xp =

(
t+ 4

3

− 4
3 t− 13

9

)
. �
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EXERCISES

1. Let

x1 =

(
φ1(t)

φ2(t)

)
, x2 =

(
ψ1(t)

ψ2(t)

)

be independent solutions to the homogeneous equation x′ = Ax, and let

Φ(t) =

(
φ1(t) ψ1(t)

φ2(t) ψ2(t)

)

be a fundamental matrix. Show, by direct calculation and comparison of

entries, that Φ′(t) = AΦ(t). Show that the general solution of the homoge-

neous system can be written equivalently as

c1x1 + c2x2 = Φ(t)c,

where c = (c1, c2)
T is an arbitrary constant vector.

2. Two lakes of volume V1 and V2 initially have no contamination. A toxic

chemical flows into lake 1 at q+ r gallons per minute with a concentration

c grams per gallon. From lake 1 the mixed solution flows into lake 2 at q

gallons per minute, and it simultaneously flows out into a drainage ditch

at r gallons per minute. In lake 2 the the chemical mixture flows out at q

gallons per minute. If x and y denote the concentrations of the chemical in

lake 1 and lake 2, respectively, set up an initial value problem whose solu-

tion would give these two concentrations (draw a compartmental diagram).

What are the equilibrium concentrations in the lakes, if any? Find x(t) and

y(t). Now change the problem by assuming the initial concentration in lake

1 is x0 and fresh water flows in. Write down the initial value problem and

qualitatively, without solving, describe the dynamics of this problem using

eigenvalues.

3. Solve the initial value problem

(
x′

y′

)
=

(
3 −1

1 1

)(
x

y

)
+

(
1

2

)
,

(
x(0)

y(0)

)
=

(
1

2

)

if

Φ =

(
1 + t −t
t 1 − t

)
e2t

is a fundamental matrix.

4. Solve the problem in Exercise 3 using undetermined coefficients to find a

particular solution.
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5. Consider the nonhomogeneous equation

x′ =

(
−5 3

2 −10

)
x+

(
e−t

0

)
.

Find the fundamental matrix and its inverse. Find a particular solution to

the system and the general solution.

6. In pharmaceutical studies it is important to model and track concentrations

of chemicals and drugs in the blood and in the body tissues. Let x and y

denote the amounts (in milligrams) of a certain drug in the blood and in the

tissues, respectively. Assume that the drug in the blood is taken up by the

tissues at rate r1x and is returned to the blood from the tissues at rate r2y.

At the same time the drug amount in the blood is continuously degraded

by the liver at rate r3x. Argue that the model equations governing the drug

amounts in the blood and tissues are

x′ = −r1x− r3x+ r2y,

y′ = r1x− r2y.

Find the eigenvalues of the matrix and determine the response of the system

to an initial dosage of x(0) = x0, given intravenously, with y(0) = 0. (Hint:

Show both eigenvalues are negative.)

7. In the preceding problem assume that the drug is administered intra-

venously and continuously at a constant rate D. What are the governing

equations in this case? What is the amount of the drug in the tissues after

a long time?

8. An animal species of population P = P (t) has a per capita mortality rate

m. The animals lay eggs at a rate of b eggs per day, per animal. The eggs

hatch at a rate proportional to the number of eggs E = E(t); each hatched

egg gives rise to a single new animal.

a) Write down model equations that govern P and E, and carefully de-

scribe the dynamics of the system in the two cases b > m and b < m.

b) Modify the model equations if, at the same time, an egg–eating preda-

tor consumes the eggs at a constant rate of r eggs per day.

c) Solve the model equations in part (b) when b > m, and discuss the

dynamics.

d) How would the model change if each hatched egg were multi-yolked

and gave rise to y animals?
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6.6 Three-Dimensional Systems*

In this section we present examples of solving three linear differential equations

in three unknowns. The method is the same as for two-dimensional systems, but

now the matrix A for the system is 3× 3, and there are three eigenvalues, and

so on. We assume detA 6= 0. Eigenvalues λ are found from the characteristic

equation det(A − λI) = 0, which, when written out, is a cubic equation in

λ. For each eigenvalue λ we solve the homogeneous system (A − λI)v = 0 to

determine the associated eigenvector(s). We have to worry about real, complex,

and equal eigenvalues, as in the two-dimensional case. Each eigenpair λ,v gives

a solution veλt, which, if λ is real, is a linear orbit lying on a ray in R3 in the

direction defined by the eigenvector v. We need three independent solutions

x1(t),x2(t),x3(t) to form the general solution, which is the linear combination

x(t) = c1x1(t) + c2x2(t) + c3x3(t) of those. If all the eigenvalues are real and

unequal, then the eigenvectors will be independent and we will have three

independent solutions; this is the easy case. Other cases, such as repeated roots

and complex roots, are discussed in the examples and in the exercises.

If all the eigenvalues are negative, or have negative real part, then all so-

lution curves approach (0,0,0), and the origin is an asymptotically stable equi-

librium. If there is a positive eigenvalue, or complex eigenvalues with positive

real part, then the origin is unstable because there is at least one orbit reced-

ing from the origin. Three-dimensional orbits can be drawn using computer

software, but the plots are often difficult to visualize.

Examples illustrate the key ideas, and we suggest the reader work through

the missing details.

Example 6.24

Consider the system

x′1 = x1 + x2 + x3

x′2 = 2x1 + x2 − x3

x′3 = −8x1 − 5x2 − 3x3

with matrix

A =




1 1 1

2 1 −1

−8 −5 −3


 .

Eigenpairs of A are given by

−1,




−3

4

2



 , −2,




−4

5

7



 , 2,




0

1

−1



 .
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These lead to three independent solutions

x1 =




−3

4

2



 e−t, x2 =




−4

5

7



 e−2t, x3 =




0

1

−1



 e2t.

Each represents a linear orbit in three-dimensional space. The general solution

is a linear combination of these three; that is, x(t) = c1x1(t)+c2x2(t)+c3x3(t).

The origin is unstable because of the positive eigenvalue. �

Example 6.25

Consider

x′ =




1 0 2

0 3 0

2 0 1



x.

The eigenvalues, found from det(A− λI) = 0, are λ = −1, 3, 3. An eigenvector

corresponding to λ = −1 is (1, 0,−1)T, and so

x1 =




1

0

−1



 e−t

is one solution. To find eigenvector(s) corresponding to the other eigenvalue, a

double root, we form (A− 3I)v = 0, or




−2 0 2

0 0 0

2 0 −2






v1
v2
v3


 =




0

0

0


 .

This system leads to the single equation

v1 − v3 = 0,

with v2 arbitrary Letting v2 = β and v1 = α, we can write the solution as




v1
v2
v3



 = α




1

0

1



+ β




0

1

0



 ,

where α and β are arbitrary. Therefore there are two independent eigenvectors

associated with λ = 3. This gives two independent solutions

x2 =




1

0

1



 e3t, x3 =




0

1

0



 e3t.
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Therefore the general solution is a linear combination of the three independent

solutions we determined:

x(t) = c1x1 + c2x2 + c3x3. �

We remark that a given eigenvalue with multiplicity two may not yield two

independent eigenvectors, as was the case in the last example. Then we must

proceed differently to find another independent solution by using a generalized

eigenvector; this is the method we described for two-dimensional systems. (See

Exercise 2(c) below for an example.)

Example 6.26

If the matrix for a three-dimensional system x′ = Ax has one real eigenvalue

λ and two complex conjugate eigenvalues a ± ib, with associated eigenvectors

v and w ± iz, respectively, then the general solution is, as is expected from

Section 5.3.2,

x(t) = c1ve
λt + c2e

at(w cos bt− z sin bt) + c3e
at(w sin bt+ z cos bt). �

Remark 6.27

The issue of stability is key in understanding linear systems, regardless of di-

mension. For an n-dimensional system with matrix A, with detA 6= 0, the

origin is asymptotically stable if, and only if, all the eigenvalues are negative

or have negative real part. The practical issue is how to check this condition

inasmuch as it is impossible to solve analytically the characteristic equation

det(A − λI) = 0 for the n eigenvalues λ1, . . . , λn. Fortunately, there are theo-

rems that guarantee asymptotic stability based only on the coefficients in the

characteristic equation. The main conditions are given by the Routh–Hurewitz

criteria. For example, in three dimensions, if the characteristic equation is

written as

λ3 + a1λ
2 + a2λ+ a3 = 0,

then the origin is asymptotically stable if, and only if,

a1 > 0, a3 > 0, a1a2 > a3.

An accessible introductory discussion with examples can be found in Edelstein–

Keshet (2005, p 233). �



296 6. Linear Systems and Matrices

EXERCISES

1. Find the eigenvalues and eigenvectors of the following matrices:

A =




2 3 0

0 6 2

0 0 −1



 ; B =




2 3 4

2 0 2

4 2 3



 ; C =




1 0 1

0 1 0

1 −1 1



 .

2. Find the general solution of the following three-dimensional systems:

a) x′ =




3 1 3

−5 −3 −3

6 6 4


x. (Hint: λ = 4 is one eigenvalue.)

b) x′ =




−0.2 0 0.2

0.2 −0.4 0

0 0.4 −0.2


x. (Hint: λ = −1 is one eigenvalue.)

c) x′ =




2 1 −2

−1 0 0

0 2 −2



x.

d) x′ =




1 0 1

0 1 0

1 −1 1



x.

3. Find the general solution of the system

x′ = ρx− y,

y′ = x+ ρy,

z′ = −2z,

where ρ is a constant.

4. Consider the system

x′ =




0 1 2

1 0 2

−1 −2 −3


x.

a) Show that the eigenvalues are λ = −1,−1,−1.

b) Find an eigenvector v1 associated with λ = −1 and obtain a solution

to the system.

c) Show that a second independent solution has the form (v2 + tv1)e
−t

and find v2.
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d) Show that a third independent solution has the form (v3 + tv2 +
1
2 t

2v1)e
−t and find v3.

e) Find the general solution and then solve the initial value problem x′ =

Ax, x(0) = (0, 1, 0)T.



7
Nonlinear Systems

If a nonlinear system has an equilibrium, then the behavior of the orbits near

that point is often mirrored by a linear system obtained by discarding the

small nonlinear terms. We already know from Chapter 6 how to analyze lin-

ear systems; their behavior is determined by the eigenvalues of the associated

matrix for the system. Therefore the general idea is to approximate the non-

linear system by a linear system in a neighborhood of the equilibrium and use

the properties of the linear system to deduce the properties of the nonlinear

system. This analysis, which is standard fare in differential equations, is called

local stability analysis.

7.1 Linearization Revisited

We have seen examples of nonlinear systems where the vector field does not

give complete information about the nature of an equilibrium. For example, it

is difficult to discern between a center and a spiral. To motivate the study of

linear systems, we remarked in Section 6.1 on the importance of approximating

a nonlinear system with a linear one near its equilibrium point; the linearization

can give us the information we need. (The reader may wish to review Example

6.1.) Now we take this important topic in detail. We begin with the nonlinear

J.D. Logan, A First Course in Differential Equations, Undergraduate Texts in Mathematics, 
DOI 10.1007/978-1-4419-7592-8_7, © Springer Science+Business Media, LLC 2011 
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system

x′ = f(x, y) (7.1)

y′ = g(x, y). (7.2)

Let x∗ = (xe, ye) be an isolated equilibrium, which means

f(xe, ye) = 0, g(xe, ye) = 0.

Now let u and v denote small deviations, or small perturbations, from equilib-

rium, or

u = x− xe, v = y − ye.

To determine if the perturbations grow or decay, we derive differential equations

for those perturbations. Substituting into (7.1)–(7.2) we get, in terms of u and

v, the system

u′ = f(xe + u, ye + v),

v′ = g(xe + u, ye + v).

This system of equations for the perturbations has a corresponding equilibrium

at u = v = 0. Now, in this system, we discard the nonlinear terms in u and

v. Formally we can do this by expanding the right sides in Taylor series about

point (xe, ye) to obtain

u′ = f(xe, ye) + fx(xe, ye)u + fy(xe, ye)v + higher-order terms in u and v,

v′ = g(xe, ye) + gx(xe, ye)u+ gy(xe, ye)v + higher-order terms in u and v,

where the higher-order terms are nonlinear terms involving powers of u and v

and their products. The first terms on the right sides are zero because (xe, ye)

is an equilibrium, and the higher-order terms are small in comparison to the

linear terms (e.g., if u is small, say 0.1, then u2 is much smaller, 0.01). Therefore

the perturbation equations can be approximated by

u′ = fx(xe, ye)u + fy(xe, ye)v,

v′ = gx(xe, ye)u + gy(xe, ye)v.

This linear system for the small deviations is called the linearized perturbation

equations, or simply the linearization of (7.1)–(7.2) at the equilibrium (xe, ye).

It has an equilibrium point at (0, 0) corresponding to (xe, ye) for the nonlinear

system. In matrix form we can write the linearization as

(
u′

v′

)
=

(
fx(xe, ye) fy(xe, ye)

gx(xe, ye) gy(xe, ye)

)(
u

v

)
. (7.3)
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The matrix J = J(xe, ye) of first partial derivatives of f and g defined by

J(xe, ye) =

(
fx(xe, ye) fy(xe, ye)

gx(xe, ye) gy(xe, ye)

)

is called the Jacobian matrix at the equilibrium (xe, ye). Note that this matrix

is a matrix of numbers because the partial derivatives are evaluated at the

equilibrium. We assume that J does not have a zero eigenvalue (i.e., detJ 6= 0).

If so, we would have to look at the higher-order terms in the Taylor expansions

of the right sides of the equations.

We already know that the nature of the equilibrium of (7.3) is determined by

the eigenvalues of the matrix J . The question is: does the linearized system for

the perturbations u and v near u = v = 0 aid in predicting the stability in the

nonlinear system of the solution curves near an equilibrium point (xe, ye)? The

answer is yes in all cases except when the eigenvalues of the Jacobian matrix are

purely imaginary (i.e., λ = ±bi). Furthermore, the phase portrait of a nonlinear

system close to an equilibrium point behaves geometrically essentially the same

as that of the linearization provided the eigenvalues have nonzero real part and

are not equal. Pictorially, near the equilibrium the small nonlinearities in the

nonlinear system produce a slightly distorted phase diagram from that of the

linearization. We summarize the basic results in the following items.

1. If (0, 0) is asymptotically stable for the linearization (7.3), then the pertur-

bations decay and (xe, ye) is asymptotically stable for the nonlinear system

(7.1)–(7.2). This will occur when J has negative eigenvalues, or complex

eigenvalues with negative real part. The conditions are

trJ(xe, ye) < 0 and detJ(xe, ye) > 0. (7.4)

We use this result often in analyzing nonlinear systems.

2. If (0, 0) is unstable for the linearization (7.3), then some or all of the pertur-

bations grow and (xe, ye) is unstable for the nonlinear system (7.1)–(7.2).

This will occur when J has a positive eigenvalue or complex eigenvalues

with positive real part.

3. The exceptional case for stability is that of a center. If (0, 0) is a center

for the linearization (7.3), then (xe, ye) may be a center or a spiral (stable

or unstable) for the nonlinear system (7.1)–(7.2). This case occurs when J

has purely imaginary eigenvalues.

4. The borderline case (equal eigenvalues) of nodes maintains stability, but

the local behavior of equilibria may change. For example, the inclusion of

nonlinear terms can alter a node into a spiral, but it will not affect stability.
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Most of the time we are only interested in whether an equilibrium is asymp-

totically stable or unstable. This can be determined by examining the trace of

J and the determinant of J at the equilibrium, as stated in condition (7.4).

Example 7.1

Consider the decoupled nonlinear system

x′ = x− x3, y′ = 2y.

The equilibria are (0, 0) and (±1, 0). The Jacobian matrix at an arbitrary (x, y)

for the linearization is

J(x, y) =

(
fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

)
=

(
1 − 3x2 0

0 2

)
.

Therefore

J(0, 0) =

(
1 0

0 2

)
,

which has eigenvalues 1 and 2. Thus (0, 0) is an unstable node. Next

J(1, 0) =

(
−2 0

0 2

)
, J(−1, 0) =

(
−2 0

0 2

)
,

and both have eigenvalues −2 and 2. Therefore (1, 0) and (−1, 0) are saddle

points. The phase diagram is easy to draw. The vertical nullclines are x = 0,

x = 1, and x = −1, and the horizontal nullcline y = 0. Along the x axis we

have x′ > 0 if −1 < x < 1, and x′ < 0 if |x| > 1. The phase portrait is shown

in Figure 7.1. �

Example 7.2

Consider the Lotka–Volterra model introduced in Chapter 5:

x′ = x(r − ay), y′ = y(−m+ bx). (7.5)

The equilibria are (0, 0) and (m/b,r/a). The Jacobian matrix is

J(x, y) =

(
fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

)
=

(
r − ay −ax
by −m+ bx

)
.

We have

J(0, 0) =

(
r 0

0 −m

)
,
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x ’ = x − x3

y ’ = 2 y    
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Figure 7.1 Phase diagram for the system x′ = x−x3, y′ = 2y. In the upper

half-plane the orbits are moving upward, and in the lower half-plane they are

moving downward.

which has eigenvalues r and −m. Thus (0, 0) is a saddle. For the other equilib-

rium,

J(m/b, r/a) =

(
0 −am/b

rb/a 0

)
.

The characteristic equation is λ2 + rm = 0, and therefore the eigenvalues are

purely imaginary: λ = ±√
rm i.This is the exceptional case; we cannot conclude

that the equilibrium is a center, and we must work further to determine the

nature of the equilibrium. We did this in Section 5.3 and found that (m/b, r/a)

was indeed a center. �

Example 7.3

The nonlinear system

x′ =
1

2
x− y − 1

2
(x3 + xy2),

y′ = x+
1

2
y − 1

2
(y3 + yx2),

has an equilibrium at the origin. The linearized system is
(
u′

v′

)
=

(
1
2 −1

1 1
2

)(
u

v

)
,
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Figure 7.2 Orbits spiral out from the origin and approach the limit cycle

x2 + y2 = 1, which is a closed periodic orbit. Orbits outside the limit cycle

spiral toward it. We say the limit cycle is stable.

with eigenvalues 1
2 ± i. Therefore the origin is an unstable spiral point. One

can check the direction field near the origin to see that the spirals are counter-

clockwise. Do these spirals go out to infinity? We do not know without further

analysis. We have only checked the local behavior near the equilibrium. What

happens beyond that is unknown and is described as the global behavior of the

system. Using software, in fact, shows that there is cycle at radius one and

the spirals coming out of the origin approach that cycle from within. Outside

the closed cycle the orbits come in from infinity and approach the cycle. See

Figure 7.2. A cycle, or periodic solution, that is approached by another orbit

as t→ +∞ or as t→ −∞ is called a limit cycle. �

One can use computer algebra systems and calculators to draw phase plane

diagrams. With computer algebra systems there are two options. You can write

a program to numerically solve and plot the solutions (e.g., a Runge-Kutta

routine), or you can use built-in programs that plot solutions automatically.

Another option is to use codes developed by others to sketch phase diagrams.

One of the best is a MATLAB R© code, pplane6, developed by Professor John

Polking at Rice University (see the references for further information).

In summary, we have developed a set of tools to analyze nonlinear sys-

tems. We can systematically follow the steps below to obtain a complete phase

diagram.
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1. Find the equilibrium solutions and check their nature by examining the

eigenvalues of the Jacobian J for the linearized system.

2. Draw the nullclines and indicate the direction of the vector field along those

lines.

3. Find the direction of the vector field in the regions bounded by the null-

clines.

4. Find directions of the separatrices (if any) at equilibria, indicated by the

eigenvectors of the linearization J .

5. By dividing the equations, find the orbits (this may be impossible in most

cases).

6. Use a software package or graphing calculator to get a complete phase

diagram.

Example 7.4

A model of vibrations of a nonlinear spring with restoring force F (x) = −x+x3

is

x′′ = −x+ x3,

where the mass is m = 1. As a system,

x′ = y, y′ = −x+ x3,

where y is the velocity. The equilibria are easily (0, 0), (1, 0), and (−1, 0). Let

us check their nature. The Jacobian matrix is

J(x, y) =

(
0 1

−1 + 3x2 0

)
.

Then

J(0, 0) =

(
0 1

−1 0

)
, J(1, 0) = J(−1, 0) =

(
0 1

2 0

)
.

The eigenvalues of these two matrices are ±i and ±
√

2, respectively. Thus

(−1, 0) and (1, 0) are saddles and are unstable; (0, 0) is a center for the lin-

earization, which gives us no information about that point for the nonlinear

system. It is easy to see that the x-nullcline (vertical vector field) is y = 0,

or the x-axis, and the y-nullclines (horizontal vector field) are the three lines

x = 0, 1,−1. The directions of the separatrices coming in and out of the saddle

points are given by the eigenvectors of the Jacobian matrix, which are easily

found to be (1,±
√

2)T. So we have an accurate picture of the phase plane
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structure except near the origin. To analyze the behavior near the origin we

can find formulas for the orbits. Dividing the two differential equations gives

dy

dx
=

−x+ x3

y
,

which, using separation of variables, integrates to

1

2
y2 +

1

2
x2 − 1

4
x4 = E,

where E is a constant of integration. Again, observe that this expression is the

conservation of energy law because the kinetic energy is 1
2y

2 and the potential

energy is V (x) = −
∫
F (x)dx = −

∫
(−x + x3)dx = 1

2x
2 − 1

4x
4. We can solve

for y to obtain

y = ±
√

2

√
E − 1

2
x2 +

1

4
x4.

These curves can be plotted for different values of E and we find that they

are cycles near the origin. So the origin is a center, which is neutrally stable.

A phase diagram is shown in Figure 7.3. This type of analysis can be carried

out for any conservative mechanical system x′′ = F (x). The orbits are always

given by y = ±
√

2
√
E − V (x), where V (x) = −

∫
F (x)dx is the potential

energy. �

In summary, what we described in this section is local stability analysis,

that is, how small perturbations from the equilibrium evolve in time. Local

stability analysis approximates a nonlinear problem by a linear one near an

equilibrium, and it is a procedure that answers the question of what happens

when we perturb the states x and y a small amount from their equilibrium

values. Local analysis does not give any information about global behavior

of the orbits far from equilibria, but it usually does give reliable information

about perturbations near equilibria. The local behavior is determined by the

eigenvalues of the Jacobian matrix, or the matrix of the linearized system. The

only exceptional case is that of a center. One big difference between linear and

nonlinear systems is that linear systems, as discussed in Chapter 6, can be

solved completely and the global behavior of solutions is known. For nonlinear

systems we can obtain only local behavior near equilibria; it is difficult to tie

down the global behavior.

One additional remark. In Chapter 1 we investigated a single autonomous

equation, and we plotted on a bifurcation diagram how equilibria and their

stability change as a function of some parameter in the problem. This same

type of behavior is also interesting for systems of equations. As a parameter in

a given nonlinear system varies, the equilibria vary and stability can change.

Some of the exercises explore bifurcation phenomena in systems.
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x ’ = y      
y ’ = x3 − x
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Figure 7.3 Phase portrait of the system x′ = y, y′ = −x + x3. The orbits

are moving to the right in the upper half-plane and to the left in the lower

half-plane.

7.1.1 Malaria*

When another organism is involved in the transmission of a disease, that organ-

ism is called a vector. These types of diseases are not contagious, or spread by

contact, such as in the flu, measles, or some sexually transmitted diseases. In

the case of malaria, the mosquito is a vector in the transmission of malaria to

different individuals, and the human is also a vector in transmitting the disease

among mosquitos; so, this is a criss-cross infection. Malaria affects more indi-

viduals worldwide than any other disease, especially in tropical areas. Other

vector diseases transmitted by mosquitos include West Nile virus, dengue and

yellow fever, and filariasis.

The malaria culprit, from the human point of view, is the female Anopheles

mosquito. The infectious agent is a protozoan parasite that is injected into

the blood stream by a mosquito when she is taking a blood meal, which is

necessary for the development of her eggs. The parasite develops inside the

host and produces gametocytes which then can be taken up by another biting

mosquito.

We have to make some highly simplifying assumptions to obtain a tractable

model. We present the classic model of R. Ross, developed in 1911, and modified

by G. Macdonald in 1957. Sir Ronald Ross is given credit for first understanding
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and modeling the complex malarial cycle, a feat for which he was awarded the

Nobel Prize.1

We assume that human victims have no immune system response and

that they eventually recover from the disease without dying. We assume the

mosquito and the human populations are approximately constant. Thus, the

disease dynamics is fast compared to the dynamics of either hosts or mosquitos

Let HT and MT be the total number of hosts (humans) and total number of

mosquitos, respectively, in a fixed region; both are assumed to be constant.

Furthermore, let

H(t) = number of infected hosts (humans)

M(t) = number of infected mosquitos

First we consider the hosts. The rate that a human gets infected depends

on the number of mosquitos, the biting rate a (bites per time), and b, the

fraction of bites that lead to an infection of a human, and the probability of

the mosquito encountering a susceptible human. The fraction of susceptible

humans is (HT −H)/HT . Finally, we assume that the per capita recovery rate

of infected humans is r, where 1/r is the average time to recovery. Therefore,

the rate equation for H is

dH

dt
= abM

HT −H

HT
− rH,

which is the infection rate minus the recovery rate. Notice that the infection

rate is proportional to the product of susceptible hosts and infected mosquitos,

which should remind the reader of the simple SIR model studied earlier. The

rate that mosquitos become infected from biting an infected host depends on

a and c (the fraction of bites by an uninfected mosquito of an infected human

that causes infection in the mosquito). If µ is the per capita death rate of

infected mosquitos, then

dM

dt
= ac(MT −M)

H

HT
− µM,

and H/HT is the probability of encountering an infected human. Note that

the infection rate is jointly proportional to MT −M , the number of susceptible

mosquitos, and the number of infected hosts, again a reminder of an SIR model.

Implicit in our assumptions is that birth rates of mosquitos compensates for

the death because the total population is constant.

1 See R. M. Anderson & R. M. May, 1991, Infectious Diseases of Humans, Oxford
University Press, Oxford UK. This book is the standard reference for diseases, both
micro- and macroparasitic.
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We can immediately simplify these equations by introducing

h =
H

HT
, m =

M

MT
,

which are the fractions of the populations that are infected. Then the governing

equations become

dh

dt
= ab

(
MT

HT

)
m(1 − h) − rh, (7.6)

dm

dt
= ach(1 −m) − µm. (7.7)

For convenience, let’s define the parameters

α = ab

(
MT

HT

)
, β = ac.

Then the equations are

dh

dt
= αm(1 − h) − rh, (7.8)

dm

dt
= βh(1 −m) − µm. (7.9)

We can analyze this geometrically in the phase plane in the usual way.

Setting the right sides equal to zero gives the nullclines

m =
rh

α(1 − h)
, (h nullcline) (7.10)

m =
βh

µ+ βh
, (m nullcline) (7.11)

Note that h = m = 0 is always an equilibrium. Also, the h nullcline is concave

up with a vertical asymptote at h = 1; the m nullcline is concave down with a

horizontal asymptote at m = 1. The two possibilities are shown in Figure 7.4

There will be a nonzero equilibrium only when these curves cross. If there is

a nonzero equilibrium, then the slope of the m nullcline must be steeper than

the slope of the h nullcline at h = 0. Calculating these slopes from (7.10)–(7.11),

respectively, we get

m′(0) =
r

α
, (h nullcline)

m′(0) =
β

µ
. (m nullcline)

Therefore, for a nonzero equilibrium, we must have the condition

β

µ
>
r

α
. (7.12)
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Figure 7.4 The two cases for the malaria model: the nullclines cross only at

the origin, and the nullclines cross at the origin and at a nonzero state. The

second case will occur only when the slope of the mosquito nullcline exceeds

the slope of the host nullcline at the origin, or β/µ > r/α.

We show that this nonzero equilibrium is asymptotically stable, which

means the infectious populations approach a nonzero endemic state. First, how-

ever, let’s interpret this result (7.12) in terms of the actual parameter values.

We can rewrite (7.12) as

ac

µ

abMT

HT

r
> 1.

The first factor is the rate of infection of mosquitos (ac) times their aver-

age lifetime (1/µ). The second factor is the rate of infection of human hosts

(abMT /HT ) times the average length of infection (1/r).

We can easily check the stability of the nonzero equilibrium by sketching the

direction field. Or, we can approach this analytically by finding the equilibrium

and checking the Jacobian matrix. Setting (7.10) equal to (7.11) and solving

for h gives

h∗ =
αβ − µr

β(r + α)
.

Then,

m∗ =
αβ − µr

α(µ+ β)
.

Notice that this is a viable equilibrium only if the numerator is positive, which

is the same as the condition (7.12). Otherwise it is not viable and the origin,

(0, 0), is the only equilibrium. The Jacobian matrix at an arbitrary (h,m) is

easily

J(h,m) =

(
−αm− r α(1 − h)

β(1 −m) −βh− µ

)
.

Clearly

J(0, 0) =

(
−r α

β −µ

)
.
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Figure 7.5 Orbits in the two cases. In case 1 the origin is a stable node and

the disease epidemic dies out. In case two, the origin is unstable and the disease

approaches an endemic state.

The trace is negative in both cases. The determinant µr−αβ is positive when

condition (7.12) holds, and negative when it does not hold. Therefore, the

origin (extinction of the disease) is asymptotically stable when it is the only

equilibrium, and it is unstable when a nonzero equilibrium exists.

For the nonzero equilibrium

J(h∗,m∗) =

(
−αm∗ − r α(1 − h∗)

β(1 −m∗) −βh∗ − µ

)
.

The trace is negative and

det J(h∗,m∗) = (αm∗ + r)(βh∗ + µ) − αβ(1 −m∗)(1 − h∗)

= αβ − µr > 0,

by condition (7.12), and after considerable simplification. Thus, (h∗,m∗) is

asymptotically stable.

To give some idea of parameter values used in computation, we list a sample

set in Table 7.1.

Parameter Name Sample Value

MT /HT population ratio 2

a biting rate 0.2–0.5 per day

b effective bites infecting humans 0.5

c effective bites infecting mosquitos 0.5

r recovery rate 0.01–0.05 per day

µ mortality rate 0.05–0.5 per day

Table 7.1 Sample parameters
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In the exercises we request a numerical computation of solution curves.

EXERCISES

1. Find the equation of the orbits of the system x′ = ex − 1, y′ = yex and

plot the the orbits in phase plane.

2. Write down an equation for the orbits of the system x′ = y, y′ = 2y+ xy.

Sketch the phase diagram.

3. For the following system find the equilibria, sketch the nullclines and the

direction of the flow along the nullclines, and sketch the phase diagram:

x′ = y − x2, y′ = 2x− y.

What happens to the orbit beginning at (1, 3/2) as t→ +∞?

4. Determine the nature of each equilibrium of the system x′ = 4x2−a, y′ =

− y
4 (x2 +4), and show how the equilibria change as the parameter a varies.

5. Consider the system

x′ = 2x(1 − x

2
) − xy,

y′ = y

(
9

4
− y2

)
− x2y.

Find the equilibria and sketch the nullclines. Use the Jacobian matrix to

determine the type and stability of each equilibrium point and sketch the

phase portrait.

6. Completely analyze the nonlinear system

x′ = y, y′ = x2 − 1 − y.

7. In some systems there are snails with two types of symmetry. Let R be the

number of right curling snails and L be the number of left curling snails.

The population dynamics is given by the competition equations

R′ = R− (R2 + aRL)

L′ = L− (L2 + aRL),

where a is a positive constant. Analyze the behavior of the system for

different values of a. Which snail dominates?
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8. Consider the system

x′ = xy − 2x2

y′ = x2 − y.

Find the equilibria and use the Jacobian matrix to determine their types

and stability. Draw the nullclines and indicate on those lines the direction

of the vector field. Draw a phase diagram.

9. The dynamics of two competing species is governed by the system

x′ = x(10 − x− y),

y′ = y(30 − 2x− y).

Find the equilibria and sketch the nullclines. Use the Jacobian matrix to

determine the type and stability of each equilibrium point and sketch the

phase diagram.

10. Show that the origin is asymptotically stable for the system

x′ = y,

y′ = 2y(x2 − 1) − x.

11. Consider the system

x′ = y,

y′ = −x− y3.

Show that the origin for the linearized system is a center, yet the nonlinear

system itself is asymptotically stable. Hint: Show that (d/dt)(x2 + y2) < 0.

12. A particle of mass 1 moves on the x-axis under the influence of a potential

V (x) = x − 1
3x

3. Formulate the dynamics of the particle in x, y coor-

dinates, where y is velocity, and analyze the system in the phase plane.

Specifically, find and classify the equilibria, draw the nullclines, determine

the xy equation for the orbits, and plot the phase diagram.

13. A system

x′ = f(x, y)

y′ = g(x, y),

is called a Hamiltonian system if there is a function H(x, y) for which

f = Hy and g = −Hx. The function H is called the Hamiltonian. Prove

the following facts about Hamiltonian systems.
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a) If fx + gy = 0, then the system is Hamiltonian. (Recall that fx + gy is

the divergence of the vector field (f, g).)

b) Prove that along any orbit, H(x, y) = constant, and therefore all the

orbits are given by H(x, y) = constant.

c) Show that if a Hamiltonian system has an equilibrium, then it is not a

source or sink (node or spiral).

d) Show that any conservative dynamical equation x′′ = f(x) leads to

a Hamiltonian system, and show that the Hamiltonian coincides with

the total energy.

e) Find the Hamiltonian for the system x′ = y, y′ = x − x2, and plot

the orbits.

14. In a Hamiltonian system the Hamiltonian given by H(x, y) = x2 + 4y4.

Write down the system and determine the equilibria. Sketch the orbits.

15. A system

x′ = f(x, y)

y′ = g(x, y),

is called a gradient system if there is a function G(x, y) for which f = Gx

and g = Gy.

a) If fy − gx = 0, prove that the system is a gradient system. (Recall that

fy − gx is the curl of the two-dimensional vector field (f, g); a zero curl

ensures existence of a potential function on nice domains.)

b) Prove that along any orbit, (d/dt)G(x, t) ≥ 0. Show that periodic orbits

are impossible in gradient systems.

c) Show that if a gradient system has an equilibrium, then it is not a

center or spiral.

d) Show that the system x′ = 9x2−10xy2, y′ = 2y−10x2y is a gradient

system.

e) Show that the system x′ = sin y, y′ = x cos y has no periodic orbits.

16. The populations of two competing species x and y are modeled by the

system

x′ = (K − x)x− xy,

y′ = (1 − 2y)y − xy,
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where K is a positive constant. In terms of K, find the equilibria. Explain

how the equilibria change, as to type and stability, as the parameter K

increases through the interval 0 < K ≤ 1, and describe how the phase

diagram evolves. Especially describe the nature of the change at K = 1
2 .

17. Give a thorough description, in terms of equilibria, stability, and phase

diagram, of the behavior of the system

x′ = y + (1 − x)(2 − x),

y′ = y − ax2,

as a function of the parameter a > 0.

18. A predator–prey model is given by

x′ = rx
(
1 − x

K

)
− f(x)y,

y′ = −my + cf(x)y,

where r, m, c, and K are positive parameters, and the predation rate f(x)

satisfies f(0) = 0, f ′(x) > 0, and f(x) →M as x→ ∞.

a) Show that (0, 0) and (K, 0) are equilibria.

b) Classify the (0, 0) equilibrium. Find conditions that guarantee (K, 0)

is unstable and state what type of unstable point it is.

c) Under what conditions will there be an equilibrium in the first quad-

rant?

19. Consider the dynamical equation x′′ = f(x), with f(x0) = 0. Find a condi-

tion that guarantees that (x0, 0) will be a saddle point in the phase plane

representation of the problem.

20. The dynamics of two competing species is given by

x′ = 4x(1 − x/4) − xy,

y′ = 2y(1 − ay/2) − bxy.

For which values of a and b can the two species coexist? Physically, what

do the parameters a and b represent?

21. A particle of mass m = 1 moves on the x-axis under the influence of a

conservative force F = −x+ x3.

a) Determine the values of the total energy for which the motion will be

periodic.
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b) Find and plot the equation of the orbit in phase space of the particle

if its initial position and velocity are x(0) = 0.5 and y(0) = 0. Do the

same if x(0) = −2 and y(0) = 2.

22. (Malaria) In this exercise develop and analyze a simplified version of the

malaria model under the condition that r is much less that µ.

a) Beginning with (7.6)–(7.7), nondimensionalize these equations by rescal-

ing time by taking τ = µt. Obtain

dh

dτ
= λm(1 − h) − εh,

dm

dτ
= ηh(1 −m) −m,

where

ε =
r

µ
, λ =

ab

µ

MT

HT
, η =

ac

µ
.

b) Assuming ε is very small, neglect the εh term in the host equation and

draw the phase portrait. Include the equilibria, nullclines, direction

field, and a local stability analysis for the equilibria.

c) For the simplified dimensionless model in part (b), with the values

given in Table 1, specifically, a = 0.5, r = 0.01, and µ = 0.5, use a

numerical method to draw time series plots of h and m for various

initial initial conditions.

23. Analyze an SIR disease model when susceptibles are removed from the

population at a per capita rate µ. Thus,

dS

dt
= −aSI − µS,

dI

dt
= aSI − rI,

dR

dt
= rI + µS.

Proceed as in the SIR model, noting the differences in the dynamics. Hint:

Note that the last equation is independent of the first two.

7.2 Periodic Orbits

We noted an exceptional case in the linearization procedure: if the associated

linearization for the perturbations has a center (purely imaginary eigenvalues)
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at (0,0), then the behavior of the nonlinear system at the equilibrium is unde-

termined. This fact suggests that the existence of periodic solutions, or (closed)

cycles, for nonlinear systems is not always easily decided. In this section we dis-

cuss some special cases when we can be assured that periodic solutions do not

exist, and when they do exist. The presence of oscillations in physical and bi-

ological systems often represent important phenomena, and that is why such

solutions are of great interest.

We first state two negative criteria for the nonlinear system

x′ = f(x, y) (7.13)

y′ = g(x, y). (7.14)

1. (Equilibrium Criterion) If the nonlinear system (7.13)–(7.14) has a cy-

cle, then the region inside the cycle must contain an equilibrium. Therefore,

if there are no equilibria in a given region, then the region can contain no

cycles.

2. (Dulac’s Criterion) Consider the nonlinear system (7.13 )–(7.14). If in a

given region of the plane there is a function β(x, y) for which

∂

∂x
(βf) +

∂

∂y
(βg)

is of one sign (strictly positive or strictly negative) entirely in the region,

then the system cannot have a cycle in that region.

We omit the proof of the equilibrium criterion (it may be found in the

references), but we can give the proof of Dulac’s criterion because it is a simple

application of Green’s theorem,2 encountered in multivariable calculus. The

proof is by contradiction, and it assumes that there is a cycle of period p given

by x = x(t), y = y(t), 0 ≤ t ≤ p, lying entirely in the region and represented

by a simple closed curve C. Assume it encloses a domain R. Without loss

of generality suppose that (∂/∂x)(βf) + (∂/∂y)(βg) > 0. Then, to obtain a

contradiction, we make the following calculation.

0 <

∫ ∫

R

(
∂

∂x
(βf) +

∂

∂y
(βg)

)
dA =

∫

C

(−βgdx+ bfdy)

=

∫ p

0

(−βgx′dt+ bfy′dt) =

∫ p

0

(−βgfdt+ bfgdt) = 0,

the contradiction being 0 < 0. Therefore the assumption of a cycle is false, and

there can be no periodic solution.

2 Green’s theorem: For a nice region R enclosed by a simple closed curve C we
have

R
C

Pdx + Qdy =
R R

R
(Qx − Py)dA, where C is taken counterclockwise. The

functions P and Q are assumed to be continuously differentiable in a open region
containing R.
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Example 7.5

The system

x′ = 1 + y2, y′ = x− y + xy

does not have any equilibria (note x′ can never equal zero), so this system

cannot have cycles. �

Example 7.6

Consider the system

x′ = x+ x3 − 2y, y′ = −3x+ y3.

Then

∂

∂x
f +

∂

∂x
g =

∂

∂x
(x+ x3 − 2y) +

∂

∂x
(−3x+ y3) = 1 + 3x2 + 3y2 > 0,

which is positive for all x and y. Dulac’s criterion implies there are no periodic

orbits in the entire plane. Note here that β = 1. �

One must be careful in applying Dulac’s criterion. If we find that

∂

∂x
(βf) +

∂

∂y
(βg) > 0

in, say, the first quadrant only, then that means there are no cycles lying entirely

in the first quadrant; but there still may be cycles that go out of the first

quadrant.

Sometimes cycles can be detected easily in a polar coordinate system. Pres-

ence of the expression x2 + y2 in the system of differential equations often

signals that a polar representation might be useful in analyzing the problem.

Example 7.7

Consider the system

x′ = y + x(1 − x2 − y2)

y′ = −x+ y(1 − x2 − y2).

The reader should check, by linearization, that the origin is an unstable spiral

point. But what happens beyond that? To transform the problem to polar

coordinates x = r cos θ and y = r sin θ, we note that

r2 = x2 + y2, tan θ =
y

x
.
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Figure 7.6 Limit cycle. The orbits rotate clockwise.

Taking time derivatives and using the chain rule,

rr′ = xx′ + yy′, (sec2 θ)θ′ =
xy′ − yx′

x2
.

We can solve for r′ and θ′ to get

r′ = x′ cos θ + y′ sin θ, θ′ =
y′ cos θ − x′ sin θ

r
.

Finally we substitute for x′ and y′ on the right side from the differential equa-

tions to get the polar forms of the equations: r′ = F (r, θ), θ′ = G(r, θ). Leaving

the algebra to the reader, we finally get

r′ = r(1 − r2),

θ′ = −1.

By direct integration of the second equation, θ = −t+C, so the angle θ rotates

clockwise with constant speed. Notice also that r = 1 is a solution to the

first equation. Thus we have obtained a periodic solution, a circle of radius

one, to the system. For r < 1 we have r′ > 0, so r is increasing on orbits,

consistent with our remark that the origin is an unstable spiral. For r > 1 we

have r′ < 0, so r is decreasing along orbits. Hence, there is a limit cycle that

is approached by orbits from its interior and its exterior. Figure 7.6 shows the

phase diagram. �
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7.3 The Poincaré–Bendixson Theorem

To sum up, through several examples we have observed various nonlinear phe-

nomena in the phase plane, including equilibria, orbits that approach equilibria,

orbits that go to infinity, cycles, and orbits that approach cycles. What have

we missed? Is there some other complicated orbital structure that is possible?

The answer to this question is no; dynamical possibilities in a two-dimensional

phase plane are very limited. If an orbit is confined to a closed bounded region

in the plane, then as t → +∞ that orbit must be an equilibrium solution (a

point), be a cycle, approach a cycle, or approach an equilibrium. (Recall that a

closed region includes its boundary). The same result holds as t → −∞. This

is a famous result called the Poincaré–Bendixson theorem, and it is proved in

advanced texts.

We remark that the theorem is not true in three dimensions or higher

where orbits for nonlinear systems can exhibit bizarre behavior, for example,

approaching sets of fractal dimension (strange attractors) or showing chaotic

behavior. Henri Poincaré (1854–1912) was one of the great contributors to the

theory of differential equations and dynamical systems; I. O. Bendixson (1861–

1935) was a Swedish mathematician.

Example 7.8

Consider the model

x′ =
2

3
x
(
1 − x

4

)
− xy

1 + x
,

y′ = ry
(
1 − y

x

)
, r > 0.

In an ecological context, we can think of this system as a predator–prey model.

The prey (x) grow logistically and are harvested by the predators (y) with

a Holling type II rate. The predator grows logistically, with its carrying ca-

pacity depending linearly upon the prey population. The horizontal, y null-

clines, are y = x and y = 0, and the vertical, or x nullcline, is the parabola

y =
(

2
3 − 1

6x
)
(x + 1). The equilibria are (1, 1), and (4, 0). The system is not

defined when x = 0 and we classify the y-axis as a line of singularities ; no

orbits can cross this line. The Jacobian matrix is

J(x, y) =

(
fx fy

gx gy

)
=

(
2
3 − 1

6x− y
(1+x)2

−x
1+x

ry2

x2 r − 2ry
x

)
.

Evaluating at the equilibria yields

J(4, 0) =

(
− 2

3 − 4
5

0 r

)
, J(1, 1) =

(
1
12 − 1

2

r −r

)
.
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Figure 7.7 A square representing a basin of attraction. Orbits cannot escape

the square.

It is clear that (4, 0) is a saddle point with eigenvalues r and −2/3. At (1, 1)

we find trJ = 1
12 − r and detJ = 5

12r > 0. Therefore (1, 1) is asymptotically

stable if r > 1
12 and unstable if r < 1

12 . So, there is a bifurcation, or change, at

r = 1
12 because the stability of the equilibrium changes. For a large predator

growth rate r there is a nonzero persistent state where predator and prey can

coexist. As the growth rate of the predator decreases to a critical value, this

persistence goes away. What happens then? Let us imagine that the system is

in the stable equilibrium state and other factors, possibly environmental, cause

the growth rate of the predator to slowly decrease. How will the populations

respond once the critical value of r is reached?

Let us carefully examine the case when r < 1
12 . Consider the direction of

the vector field on the boundary of the square with corners (0, 0), (4, 0), (4, 4),

(0, 4). See Figure 7.7 On the left side (x = 0) the vector field is undefined, and

near that boundary it is nearly vertical; orbits cannot enter or escape along that

edge. On the lower side (y = 0) the vector field is horizontal (y′ = 0, x′ > 0).

On the right edge (x = 4) we have x′ < 0 and y′ > 0, so the vector field points

into the square. And, finally, along the upper edge (y = 4) we have x′ < 0 and

y′ < 0, so again the vector field points into the square. The equilibrium at (1, 1)

is unstable, so orbits go away from equilibrium; but they cannot escape from the

square. On the other hand, orbits along the top and right sides are entering the

square. What can happen? They cannot crash into each other! (Uniqueness.)

So, there must be a counterclockwise limit cycle in the interior of the square (by

the Poincaré–Bendixson theorem). The orbits entering the square approach the

cycle from the outside, and the orbits coming out of the unstable equilibrium
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Figure 7.8 Phase diagram showing a counterclockwise limit cycle. Curves

approach the limit cycle from the outside and from the inside. The interior

equilibrium is an unstable spiral point.

at (1, 1) approach the cycle from the inside. Now we can state what happens as

the predator growth rate r decreases through the critical value. The persistent

state becomes unstable and a small perturbation, always present, causes the

orbit to approach the limit cycle. Thus, we expect the populations to cycle near

the limit cycle. A phase diagram is shown in Figure 7.8. �

In this example we used a common technique of constructing a region,

called a basin of attraction, that contains an unstable spiral (or node), but

orbits cannot escape the region. In this case there must be a limit cycle in

the region. A similar result holds true for annular type regions (doughnut type

regions bounded by concentric simple close curves); if there are no equilibria in

an annular region R and the vector field points inward into the region on both

the inner and outer concentric boundaries, then there must be a limit cycle in

R.

Example 7.9

(Schistosomiasis) Schistosomiasis is a macroparasitic disease of humans

caused by trematode worms, or blood flukes. Trematodes form a class of flat-



7.3 The Poincaré–Bendixson Theorem 323

hosts

eggs eggs
hatch

larva

susceptible
    snails
     N - I

infected
  snails
     I

mature
 worms
     m

free-living
parasites

 penetration
   ingestion

m

d

Figure 7.9 Diagrammatic life cycle of schistosome parasites in humans.

worms in the phylum Platyhelminthes, or helminths. Schistosomiasis is highly

prevalent in tropical areas, and it is estimated that hundreds of millions of

people suffer from it.

The life cycle of the parasite is complicated and involves a definitive host

(humans), where maturity and reproduction occur, and a secondary host (e.g.,

snails), in which the intermediate larval stage develop into infectious larva (cer-

caria) that are shed and then penetrate, or are ingested, by the definitive host,

completing the cycle. Figure 7.9 is a diagrammatic flow chart summarizing the

principle processes. A thorough, readable, discussion can be found in Anderson

& May3.

As one might imagine, it is possible to keep track of the host population, the

snail population, eggs, and larval stages. However, here we consider a simplified

model tracking the number of infected snails I and the average worm burden m

in the host, which is the total number of mature worms divided by the number

of hosts. The total number of hosts is assumed to be constant.

The dynamics for the average number of mature parasites in a host is

dm

dt
= −µm+ a

I

N
, (7.15)

where a is the rate that infected snails produce the free living stage larva that

infects the host (through ingestion or skin penetration). The factor I/N is the

fraction of snails infected, and µ is the per capita mortality rate. The dynamics

3 R. M, Anderson & R. M May, 1991, Infectious Diseases of Humans, Oxford Uni-
versity Press, Oxford.
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C

m

C = C (m)

Figure 7.10 Generic plot of C vs m, showing the sigmoid shape. Such a curve

has the form, for example, C(m) = αm2/1 + βm2.

for the number of infected snails is

dI

dt
= −δI + C(m)(N − I), (7.16)

where δ represents the per capita mortality rate of the infected snails, and

N − I is the number of susceptible snails. C(m) is proportional to the rate of

production of eggs by (paired) female adult worms; the latter includes the rate

of hatching of the eggs that eventually produce the infecting, free-living larva.

Therefore, C contains several rates in the life cycle and perhaps complicated

dependence on the fraction of paired females.

We assume that the function C(m) is a type III sigmoid (S-shaped) curve,

as shown in Figure 7.10. It saturates, or goes to a constant value as m → ∞,

and C(0) and C ′(0) are both zero. The small values of C for small m reflect

the difficulty of females finding mates at low parasite populations.

To carry out the phase plane analysis we first calculate the nullclines:

I =
C(m)N

δ + C(m)
(I nullcline)

and

I =
µN

a
m (m nullcline).

Because C(m) is sigmoid, the I nullcline is sigmoid as well. The m nullcline is

a straight line. Figure 7.11 shows the phase plane for small a. The only equi-

librium is the zero state. As a increases, the slope of the m nullcline decreases

until it is tangent to the sigmoid curve and we obtain a single nonzero equilib-

rium. As a increases further, there are two nonzero equilibria. Thus, treating

a as a bifurcation parameter, there is a bifurcation at the value a∗ when there

is tangency. In the case of tangency it is a simple exercise to determine the

equilibrium (m∗, I∗) and a = a∗. Easily,

C(m∗)N

δ + C(m∗)
=
µN

a∗
m∗.
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Figure 7.11 Nullclines and direction field in the case where a is small (left

panel), and in the case where the nullclines are tangent (right panel) (i.e.,

a = a∗).

I
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m� = 0

I � = 0

a > a*case

Figure 7.12 Nullclines and direction field in the case a > a∗. It is clear that

the origin is asymptotically stable, the smaller nonzero equilibrium is unstable,

and the upper equilibrium is asymptotically stable.

The phase diagram is shown in Figure 7.11.

In the case of two nonzero intersections, the phase plane takes the form of

Figure 7.12, where the smaller nonzero equilibrium is unstable, and the higher

equilibrium is asymptotically stable. We leave it as an exercise to confirm this

conclusion using the Jacobian matrix.

Now we calculate a∗. Figure 7.13 shows the tangency case, where the I

nullcline is given by

I =
C(m)N

δ + C(m)
≡ f(m).

The fact that the two nullclines intersect at m = m∗ when a = a∗ gives

µN

a∗
=
f(m∗)

m∗ .
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I

m

I = f (m)

m*

Figure 7.13 Calculation of m∗ and a∗ in the tangency case.

Because the nullclines are tangent at that point,

µN

a∗
= f ′(m∗).

Then, eliminating a∗ gives an equation for m∗, namely,

f ′(m∗) =
f(m∗)

m∗ .

Then a∗ is determined.

It is interesting to transfer all these results to a bifurcation diagram, plotting

the mature parasite equilibria m versus the parameter a∗. See Figure 7.14. For

a < a∗ there is only one equilibrium, m = 0, and it is stable. We get extinction

of the infection in this case. At a = a∗ a new nonzero equilibrium occurs at

m = m∗, the point of tangency. As a further increases, for a > a∗, the nonzero

equilibrium bifurcates into two nonzero equilibria; the upper branch is stable

and the lower branch is unstable. The zero equilibrium is always stable. In

summary, the rate a at which infected snails produce the free-living infectious

stage (cerceria) that penetrates hosts and become adults is a critical life cycle

quantity; it must exceed a certain threshold value to lead to an endemic state.

This might suggest strategies for intervention to control the disease. Certainly,

high standards of hygiene and proper sanitation could reduce the value of a.

EXERCISES

1. Does the system

x′ = x− y − x
√
x2 + y2,

y′ = x+ y − y
√
x2 + y2,

have periodic orbits? Does it have limit cycles?
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stable branch

unstable branch

a* a

m

stable

equilibrium

Figure 7.14 A bifurcation diagram plotting the equilibria m versus the pa-

rameter a.

2. Show that the system

x′ = 1 + x2 + y2,

y′ = (x− 1)2 + 4,

has no periodic solutions.

3. Show that the system

x′ = x+ x3 − 2y,

y′ = y5 − 3x,

has no periodic solutions.

4. Analyze the dynamics of the system

x′ = y,

y′ = −x(1 − x) + cy

for different positive values of c. Draw phase diagrams for each case, illus-

trating the behavior.

5. An RCL circuit with a nonlinear resistor (the voltage drop across the re-

sistor is a nonlinear function of the current) can be modeled by the Van

der Pol equation

x′′ + a(x2 − 1)x′ + x = 0,

where a is a positive constant, and x = x(t) is the current. In the phase

plane formulation, show that the origin is unstable. Sketch the nullclines

and the vector field. Can you tell if there is a limit cycle? Use a computer

algebra system to sketch the phase plane diagram in the case a = 1. Draw a
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time series plot for the current in this case for initial conditions x(0) = 0.05,

x′(0) = 0. Is there a limit cycle?

6. For the system

x′ = y,

y′ = x− y − x3,

determine the equilibria. Write down the Jacobian matrix at each equilib-

rium and investigate stability. Sketch the nullclines. Finally, sketch a phase

diagram.

7. Let P denote the carbon biomass of plants in an ecosystem and H the

carbon biomass of herbivores. Let φ denote the constant rate of primary

production of carbon in plants due to photosynthesis. Then a model of

plant–herbivore dynamics is given by

P ′ = φ− aP − bHP,

H ′ = εbHP − cH,

where a, b, c, and ε are positive parameters.

a) Explain the various terms in the model and determine the dimensions

of each constant.

b) Find the equilibrium solutions.

c) Analyze the dynamics in two cases, that of high primary production

(φ > ac/εb) and low primary production (φ < ac/εb). Determine what

happens to the system if the primary production is slowly increased

from a low value to a high value.

8. Consider the system

x′ = ax+ y − x(x2 + y2), y′ = −x+ ay − y(x2 + y2),

where a is a parameter. Discuss the qualitative behavior of the system as a

function of the parameter a. In particular, how does the phase plane evolve

as a is changed?

9. Show that periodic orbits, or cycles, for the system

x′ = y, y′ = −ky − V ′(x)

are possible only if k = 0.
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10. Consider the system

x′ = x(P − ax+ by), y′ = y(Q− cy + dx),

where a, c > 0. Show that there cannot be periodic orbits in the first

quadrant of the xy plane. Hint: Take β = (xy)−1.

11. Analyze the nonlinear system

x′ = y − x,

y′ = −y +
5x2

4 + x2
.

12. (Project) Consider two competing species where one of the species immi-

grates or emigrates at constant rate h. The populations are governed by

the dynamical equations

x′ = x(1 − ax) − xy,

y′ = y(b− y) − xy + h,

where a, b > 0.

a) In the case h = 0 (no immigration or emigration) give a complete

analysis of the system and indicate in a, b parameter space (i.e., in the

ab plane) the different possible behaviors, including where bifurcations

occur. Include in your discussion equilibria, stability, and so forth.

b) Repeat part (a) for various fixed values of h, with h > 0.

c) Repeat part (a) for various fixed values of h, with h < 0.

13. Consider the system

x′ = x2 − h, y′ = −y.
Show that a bifurcation occurs at h = 0 because of a change in dynamics.

Plot, for h > 0, the equilibrium values of x versus h and label the branches

as stable or unstable.

14. Consider the nonlinear system

x′ = 1 − (a+ 1)x− x2y,

y′ = ax− x2y, a > 0.

a) Find the equilibrium and the Jacobian matrix in the first quadrant.

b) Show the equilibrium is stable for a < 2 and unstable for a > 0.

c) Use a numerical algorithm to detect a limit cycle when a = 3.
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15. (HIV) In a simplified model of HIV infection, let x be the population of

susceptibles and y the population of those who are infected with HIV, but

not AIDS. Suppose there is a constant instream b of susceptibles to the

population, and suppose the natural death rate of both susceptibles and

infecteds is µ; also, assume that those infected with HIV get AIDS at the

rate cy and are thus removed from the HIV population. Finally, assume

that the infection rate is

ax
y

x+ y
,

or, the per capita rate of becoming infected is proportional to the fraction

of infectious individuals. Draw a compartmental diagram for susceptibles

and infectives showing the rates between them and write down the model

equations. Show that there is a threshold value a∗ of a given by a∗ = µ+ c

such that the infection dies out for a < a∗, and for a > a∗ the infection

becomes endemic. Verify this conclusion numerically using the values b =

1000, µ = 0.03, c = 0.087 with a = 0.1 and 0.13.

16. (Macroparasites) In Example 7.9 we examined a helminth parasite infection

by tracking the average worm burden in a host and the number of infected

secondary hosts (snails). Now consider a different model of a helminth

infection that tracks mature worms in the host and the larval population.

Let L be the number of larval parasites in the environment and M the

number of mature parasites in the hosts. The equations are

dL

dt
= bM − λLN − νL,

dM

dt
= λLN − µM,

where N is the total number of hosts, b is the larval per capita birth rate

at which adults produce larva, nu is the per capita larval death rate, µ is

the per capita parasite death rate, and λ is the force of infection.

a) Interpret this model and give a standard phase plane analysis; draw

the phase diagram in the case that an epidemic breaks out.

b) Interpret the basic reproduction number

R0 =
b

µ

λN

λN + ν

for the infection.
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B
Computer Algebra Systems

There is great diversity in differential equations courses with regard to tech-

nology use, and there is equal diversity regarding the choice of technology.

MATLAB R©, Maple, and Mathematica are common computer environments

used at many colleges and universities. MATLAB R©, in particular, has become

an important tool in scientific computation; Maple and Mathematica are com-

puter algebra systems that are used for symbolic computation. There is also an

add-on symbolic toolbox for the professional version of MATLAB R©; the student

edition includes the toolbox. In this appendix we present a list of useful com-

mands in Maple and MATLAB R©. The presentation is only for reference and

to present some standard templates for tasks commonly faced in differential

equations. It is not meant to be an introduction or tutorial to these environ-

ments, but only a statement of the syntax of a few basic commands. The reader

should realize that these systems are updated regularly, so there is danger that

the commands will become obsolete quickly as new versions appear.

Advanced scientific calculators also perform symbolic computation. Man-

uals that accompany these calculators give specific instructions that are not

repeated here.
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B.1 Maple

Maple has single automatic commands that perform most of the calculations

and graphics used in differential equations. There are excellent Maple appli-

cation manuals available, but everything required can be found in the help

menu in the program itself. A good strategy is to find what you want in the

help menu, copy and paste it into your Maple worksheet, and then modify

it to conform to your own problem. Listed below are some useful commands

for plotting solutions to differential equations, and for other calculations. The

output of these commands is not shown; we suggest the reader type these com-

mands in a worksheet and observe the results. There are packages that must be

loaded before making some calculations: with(plots): with(DEtools): and

with(linalg): In Maple, a colon suppresses output, and a semicolon presents

output.

Define a function f(t, u) = t2 − 3u:

f:=(t,u) → t^2-3*u;

Draw the slope field for the DE u′ = sin(t− u) :

DEplot(diff(u(t),t)=sin(t-u(t)),u(t),t=-5..5,u=-5..5);

Plot a solution satisfying u(0) = −0.25 superimposed upon the slope field:

DEplot(diff(u(t),t)=sin(t-u(t)),u(t),t=-5..5,

u=-5..5,[[u(0)=-.25]]);

Find the general solution of a differential equation u′ = f(t, u) symbolically:

dsolve(diff(u(t),t)=f(t,u(t)),u(t));

Solve an initial value problem symbolically:

dsolve({diff(u(t),t) = f(t,u(t)), u(a)=b}, u(t));

Plot the solution to: u′′ + sinu = 0, u(0) = 0.5, u′(0) = 0.25.

DEplot(diff(u(t),t$2)+sin(u(t)),u(t),t=0..10,

[[u(0)=.5,D(u)(0)=.25]],stepsize=0.05);

Euler’s method for the IVP u′ = sin(t− u), u(0) = −0.25 :

f:=(t,u) → sin(t-u):

t0:=0: u0:=-0.25: Tfinal:=3:

n:=10: h:=evalf((Tfinal-t0)/n):

t:=t0: u=u0:

for i from 1 to n do

u:=u+h*f(t,u):

t:=t+h:

print(t,u);

od:

Set up a matrix and calculate the eigenvalues, eigenvectors, and inverse:
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with(linalg):

A:=array([[2,2,2],[2,0,-2],[1,-1,1]]);

eigenvectors(A);

eigenvalues(A);

inverse(A);

Solve a linear algebraic system:

Ax = b:
b:=matrix(3,1,[0,2,3]);

x:=linsolve(A,b);

Solve a linear system of DEs with two equations:
eq1:=diff(x(t),t)=-y(t):

eq2:=diff(y(t),t)=-x(t)+2*y(t):

dsolve({eq1,eq2},{x(t),y(t)});
dsolve({eq1,eq2,x(0)=2,y(0)=1},{x(t),y(t)});

A fundamental matrix associated with the linear system x′ = Ax:

Phi:=exponential(A,t);

Plot a phase diagram in two dimensions:
with(DEtools):

eq1:=diff(x(t),t)=y(t):

eq2:=2*diff(y(t),t)=-x(t)+y(t)-y(t)^3:

DEplot([eq1,eq2],[x,y],t=-10..10,x=-5..5,y=-5..5,

{[x(0)=-4,y(0)=-4],[x(0)=-2,y(0)=-2] },
arrows=line, stepsize=0.02);

Plot time series:

DEplot([eq1,eq2],[x,y],t=0..10,

{[x(0)=1,y(0)=2] },scene=[t,x],arrows=none,stepsize=0.01);
Laplace transforms:

with(inttrans):

u:=t*sin(t):

U:=laplace(u,t,s):

U:=simplify(expand(U));

u:=invlaplace(U,s,t):

Display several plots on same axes:
with(plots):

p1:=plot(sin(t), t=0..6): p2:=plot(cos(2*t), t=0..6):

display(p1,p2);

Plot a family of curves:
eqn:=c*exp(-0.5*t):

curves:={seq(eqn,c=-5..5)}:
plot(curves, t=0..4, y=-6..6);

Solve a nonlinear algebraic system: fsolve({2*x-x*y=0,-y+3*x*y=0},{x,y},
{x=0.1..5,y=0..4});
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Find an antiderivative and definite integral:

int(1/(t*(2-t)),t); int(1/(t*(2-t)),t=1..1.5);

B.2 MATLAB R©

There are many references on MATLAB R© applications in science and engi-

neering. Among the best is Higham & Higham (2005). The MATLAB R© files

dfield7.m and pplane7.m, developed by J. Polking (2004), are two excellent

programs for solving and graphing solutions to differential equations. These

programs can be downloaded from his website (see references). In the table

we list several common MATLAB R© commands. We do not include commands

from the symbolic toolbox. The package’s “help” file contains a very complete

reference with samples of all the commands.

An m-file for Euler’s Method. For scientific computation we often write

several lines of code to perform a certain task. In MATLAB R©, such a code, or

program, is written and stored in an m-file. The m-file below is a program of

the Euler method for solving a pair of DEs, namely, the predator–prey system

x′ = x− 2 ∗ x2 − xy, y′ = −2y + 6xy,

subject to initial conditions x(0) = 1, y(0) = 0.1. The m-file euler.m plots the

time series solution on the interval [0, 15].

function euler

x=1; y=0.1; xhistory=x; yhistory=y; T=15; N=200; h=T/N;

for n=1:N

u=f(x,y); v=g(x,y);

x=x+h*u; y=y+h*v;

xhistory=[xhistory,x]; yhistory=[yhistory,y];

end

t=0:h:T;

plot(t,xhistory,’-’,t,yhistory,’--’)

xlabel(’time’), ylabel(’prey (solid),predator (dashed)’)

function U=f(x,y)

U=x-2*x.*x-x.*y;

function V=g(x,y)

V=-2*y+6*x.*y;

Direction Fields. The quiver command plots a vector field in MATLAB R©.
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Figure B.1 Predator (dashed) and prey (solid) populations.

Consider the system

x′ = x(8 − 4x− y), y′ = y(3 − 3x− y).

To plot the vector field on 0 < x < 3, 0 < y < 4 we use:
[x,y] = meshgrid(0:0.3:3, 0:0.4:4];

dx = x.*(8-4*x-y); dy = y.*(3-3*x-y);

quiver(x,y,dx,dy)

Using the DE Packages. MATLAB R© has several differential equations rou-

tines that numerically compute the solution to an initial value problem. To use

these routines we define the DEs and calling routine in an m-file. The files below

use the package ode45, which is a Runge–Kutta type solver with an adaptive

step size. Consider the initial value problem

u′ = 2u(1 − 0.3u) + cos 4t, 0 < t < 3, u(0) = 0.1.

function diffeq

trange = [0 3]; ic=0.1;

[t,u] = ode45(@uprime,trange,ic);

plot(t,u,’*--’)

We define the differential equation as follows:

function uprime = f(t,u)

uprime = 2*u.*(1-0.3*u)+cos(4*t);
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Solving a System of DEs. As for a single equation, we write an m-file that

calls the system of DEs. Consider the Lotka–Volterra model

x′ = x− xy, y′ = −3y + 3xy,

with initial conditions x(0) = 5, y(0) = 4. Figure B.1 shows the time series

plots.
function lotkatimeseries

tspan=[0 10]; ics=[5;4];

[T,X]=ode45(@lotka,tspan,ics);

plot(T,X)

xlabel(’time t’), ylabel(’populations’)

function deriv=lotka(t,z)

deriv=[z(1)-z(1).*z(2); -3*z(2)+3*z(1).*z(2)];

Phase Diagrams. To produce phase plane plots we simply plot z(1) versus

z(2). In the following example we draw two orbits. The calling portion of the

m-file is:
function lotkaphase

tspan=[0 10]; ICa=[5;4]; ICb=[4;3];

[ta,ya]=ode45(@lotka,tspan, ICa);

[tb,yb]=ode45(@lotka,tspan, ICb);

plot(ya(:,1),ya(:,2), yb(:,1),yb(:,2))

Symbolic Solution. This script solves the logistic equation symbolically and

plots the solution.
y=dsolve(’Dy=r*y*(1-(1/K)*y)’,’y(0)=y0’);

y=vectorize(y);

r=0.5; K=150; y0=15; t=0:.05:20; y=eval(y);

plot(t,y), ylim([0 K+10]), title(’Logistic Growth’)

xlabel(’time (years)’), ylabel(’Population’)

To solve a system:
[x,y] = dsolve(’Dx=r*x+4*y, Dy =4*x-3*y’, ’x(0) = a, y(0) = b’);

x=vectorize(x), y=vectorize(y);

a=1; b=3; r=1; t=1:.01:2;

x=eval(x); y=eval(y);

plot(t,x,t,y)

l

The command vectorize in the preceding scripts turns a symbolic solution

into a vector solution that MATLAB R© can evaluate and plot.
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To plot a function defined by an integral:
clear all

f=inline(’exp(-t)./t’,’t’);

for n=0:20

t(n+1)=1+n/10;

u(n+1)=2+(quad(f,1,t(n+1))).∧2;
end

plot(t,u,xlabel(’t’),ylabel(’u(t)’)

l
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The following table contains several useful MATLAB R© commands.

MATLAB R© Command Instruction

>> command line prompt

; semicolon suppresses output

clc clear the command screen

Ctrl+C stop a program

help topic help on MATLAB topic

a = 4, A = 5 assigns 4 to a and 5 to A

clear a b clears the assignments for a and b

clear all clears all the variable assignments

x=[0,3,6,9,12,15,18] row vector (list) assignment

x=0:3:18 defines the same vector as above

x=linspace(0,18,7) defines the same vector as above

x’ transpose of x

+, -, *, /, ∧ operations with numbers

sqrt(a) square root of a

exp(a), log(a) ea and ln a

pi the number π

.*, ./, .∧ operations on vectors of same length (with dot)

t=0:0.01:5, x=cos(t), plot(t,x) plots cos t on 0 ≤ t ≤ 5

xlabel(’time’), ylabel(’state’) labels horizontal and vertical axes

title(’Title of Plot’) titles the plot

xlim([a b]), ylim([c d]) sets plot range on x and y axes

hold on, hold off does not plot immediately; releases hold on

for n=1:N,...,end syntax for a “for-end” loop from 1 to N

bar(x) plots a bar graph of a vector x

plot(x) plots a line graph of a vector x

A=[1 2; 3 4] defines a matrix

(
1 2

3 4

)

x=A\b solves Ax=b, where b=[α;β] is a column vector

inv(A) the inverse matrix

A’ transpose of a matrix

det(A) determinant of A

[V,D]=eig(A) computes eigenvalues and eigenvectors of A

q=quad(fun,a,b,tol); Approximates
∫ b

a
fun(t)dt, tol = error tolerance

function fun=f(t), fun=t.∧ 2 defines f(x) = t2 in an m-file
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Practice Test Questions

Below are some sample questions on which students can assess their skills

and review for exams.

Practice Exercises Chapters 1–2

1. Find the function u = u(t) that solves the initial value problem u′ =

(1 + t2)/t, u(1) = 0.

2. A particle of mass 1 moves in one dimension with acceleration given by

3− v(t), where v = v(t) is its velocity. If its initial velocity is v = 1, when,

if ever, is the velocity equal to two?

3. Find y′(t) if

y(t) = t2
∫ t

1

1

r
e−rdr.

4. Consider the autonomous equation

du

dt
= −(u− 2)(u − 4)2.

Find the equilibrium solutions, sketch the phase line, and indicate the type

of stability of the equilibrium solutions.

5. Consider the initial value problem

u′ = t2 − u, u(−2) = 0.

Use your calculator to draw the graph of the solution on the interval −2 ≤
t ≤ 2. Reproduce the graph on your answer sheet.
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6. For the initial value problem in Problem 5, use the Euler method with

stepsize h = 0.25 to estimate u(−1).

7. For the differential equation in Problem 5, plot in the tu-plane the locus of

points where the slope field has value −1.

8. At noon the forensics expert measured the temperature of a corpse and

it was 85 degrees F. Two hours later it was 74 degrees. If the ambient

temperature of the air was 68 degrees, use Newton’s law of cooling to

estimate the time of death. (Set up and solve the problem).

9. Consider the differential equation

du

dt
= (t2 + 1)u− t.

a) In the tu plane sketch the graph of the of the set of points where the

slope field is zero.

b) Consider the initial value problem consisting of the differential equation

(1) and the initial condition u(1) = 3. State precisely why you are

guaranteed that the IVP has a unique solution in some small open

interval containing t = 1.

10. Find two different solutions of the differential equation

t2u′′ − 6u = 0

having the form u(t) = tm. (That is, determine value(s) of m for which tm

is a solution.)

11. Find an explicit analytic formula for the solution to the initial value prob-

lem
du

dt
= 2te−t2 , u(0) = 1.

12. Find the explicit solution to the initial value problem

tu
du

dt
− (2t2 + 1) = 0, u(1) = 4.

13. Solve the initial value problem

du

dt
+

2

t
u = 3, u(1) = 5.

14. A roasting chicken at room temperature (70 deg) is put in a 325 deg oven

to cook. The heat loss coefficient for chicken meat is 0.4 per hour. Set up

an initial value problem for the temperature T (t) of the chicken at time t.

Set up only but do not solve.
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15. Consider a population model governed by the autonomous equation

p′ =
√

2 p− 4p2

1 + p2
.

a) Sketch a graph of the growth rate p′ versus the population p, and sketch

the phase line.

b) Find the equilibrium populations and determine their stability.

16. You are driving your truck, which has mass m, down the freeway at a

constant speed of V0 when you apply the brakes hard, exerting a constant

stopping force of −F0. How long does it take you to stop? (You must set

up an initial value problem and solve it.)

17. An RC circuit with no emf has an initial charge of q0 on the capacitor. The

resistance is R = 1 and the capacitance is C = 1/2. Set up an initial value

problem for the charge on the capacitor and solve to find q = q(t).

18. An autonomous differential equation is given by

du

dt
= (u2 − 36)(a− u)3,

where a is a fixed constant with b > 12.

a) Find all equilibrium solutions and draw the phase line diagram. (Label

all axes with “arrows” appropriately placed on the phase line.)

b) Draw a rough graph of the solution curve u = u(t) when the initial

condition is u(0) = 8.

Practice Exercises Chapters 3–4

1. Find the general solution to the equation u′′ + 3u′ − 10u = 0.

2. A mass of 2 kg is hung on a spring with stiffness (spring constant) k = 3

N/m. After the system comes to equilibrium, the mass is pulled downward

0.25 m and then given an initial velocity of 1 m/sec. What is the amplitude

of the resulting oscillation?

3. Find the general solution to the linear differential equation

u′′ − 1

t
u′ +

2

t2
u = 0.

4. A particle of mass m = 2 moves on a u-axis under the influence of a force

F (u) = −au, where a is a positive constant. Write down the differential

equation that governs the motion of the particle and then write down the

expression for conservation of energy.
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5. Find the general solution x = x(t) of the damped spring–mass equation

2x′′ + x′ +
3

32
x = 0.

6. In the previous problem, suppose there is a forcing term of magnitude

g(t) = 5t cos 5t. What is the form that the particular solution xp(t) takes?

(Do not find the constants.)

7. The solution of a second-order, linear, homogeneous DE is u(t) = 5+2e−10t.

What is the equation?

8. A conservative mechanical system is governed by Newton’s second law of

motion (mass × acceleration = force):

2
d2x

dt2
= −xe−x2

.

Find the potential energy V (x) of this system for which V (0) = 0. Then

write down the conservation of energy expression if x(0) = 0 and x′(0) = 1.

9. Using a graphing calculator, sketch the solution u = u(t) of the initial value

problem

u′′ + u′ − 3 cos 2t = 0, u(0) = 1, u′(0) = 0

on the interval 0 < t < 6.

10. Consider the IVP

u′ =
√

1 + t+ u, u(1) = 7.

Use the modified Euler (predictor–corrector) method to approximate the

value of u(1.1). You may use your calculator, but show your work. Go out

to 4 decimal places.

11. Transform the following nonlinear Bernoulli equation

u′ + tu =
1

t2u

into a linear equation using a transformation of the dependent variable.

DO NOT solve the linear equation.

12. An RCL circuit with no emf is governed by the circuit equation

Lq′′ +Rq +
1

C
q = 0,

where q = q(t) is the charge on the capacitor.
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a) If the resistance is R = 8, shade the region in CL parameter space, or

the CL plane (C is the horizontal axis, and L is the vertical) where

the solution can be described as “oscillatory decay.”

b) What is the decay rate?

c) If R = 0, what is the natural frequency of oscillation of the circuit?

What is its period?

13. Find the Laplace transform of u(t) = e−3th2(t) using the integral definition

of Laplace transform.

14. Find the inverse transform of

U(s) =
1

(s− 5)3
.

15. Use the convolution integral to solve the initial value problem

u′′ + 6u = f(t), u(0) = u′(0) = 0.

(Write down the correct integral.)

16. Solve the initial value problem

u′ + 2u = δa(t), u(0) = 1,

where δa(t) is a unit impulse at some fixed time t = a > 0. Sketch a generic

plot of the solution for t ≥ 0.

Practice Exercises Chapters 4–6

1. Consider the system

x′ = xy, y′ = 2y.

Find a relation between x and y that must hold on the orbits in the phase

plane.

2. Consider the system

x′ = 2y − x, y′ = xy + 2x2.

Find the equilibrium solutions. Find the nullclines and indicate the null-

clines and equilibrium solutions on a phase diagram. Draw several inter-

esting orbits.

3. Consider the two-dimensional linear system

x′ =

(
1 12

3 1

)
x.



346 C. Practice Tests

a) Find the eigenvalues and corresponding eigenvectors and identify the

type of equilibrium at the origin.

b) Write down the general solution.

c) Draw a rough phase plane diagram, being sure to indicate the directions

of the orbits.

4. Find the equation of the orbits in the xy plane for the system x′ =

4y, y′ = 2x− 2.

5. For the following system, for which values of the constant b is the origin

an unstable spiral?

x′ = x− (b+ 1)y

y′ = −x+ y.

6. Consider the nonlinear system

x′ = x(1 − xy),

y′ = 1 − x2 + xy.

a) Find all the equilibrium solutions.

b) In the xy plane plot the x and y nullclines.

7. Find a solution representing a linear orbit of the three-dimensional system

x′ =




1 2 0

0 0 −1

0 1 2



x.

8. Classify the equilibrium as to type and stability for the system

x′ = x+ 13y, y′ = −2x− y.

9. A two-dimensional system xx′ = Ax has eigenpairs

−2,

(
1

2

)
, 1,

(
1

0

)
.

a) If x(0) =

(
1

3

)
, find a formula for y(t) (where x(t) =

(
x(t)

y(t)

)
.

b) Sketch a rough, but accurate, phase diagram.
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10. Consider the IVP

x′ = −2x+ 2y

y′ = 2x− 5y,

x(0) = 3, y(0) = −3.

a) Use your calculator’s graphical DE solver to plot the solution for t > 0

in the xy-phase plane.

b) Using your plot in (a), sketch y(t) versus t for t > 0.

11. Consider

x′ = 5x− y, y′ = −4x− py.

For which values of p is the origin a saddle point?

12. In the xy phase plane, plot the orbit

x(t) = 2e−t,

y(t) = −e−2t, −∞ < t <∞.

13. For the the system

x′ = −2x+ 4y,

y′ = −5x+ 2y,

sketch a few of the orbits in the phase plane.

14. The general solution of a linear system is

x(t) = c1e
−7t + c2e

−2t,

y(t) = −c1e−7t +
1

4
c2e

−2t.

State the type and stability of the equilibrium (0, 0), and then draw the

linear orbits. Draw on your diagram a few other orbits, indicating exactly

their behavior as they enter the origin.

Practice Final Examination 1

1. Find the general solution of the DE u′′ = u′ + 1
2u.

2. Find a particular solution to the DE u′′ + 8u′ + 16u = t2.
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3. Find the (implicit) solution of the DE

u′ =
1 + t

3tu2 + t

that passes through the point (1, 1).

4. Consider the autonomous system u′ = −u(u−2)2. Determine all equilibria

and their stability. Draw a rough time series plot (u versus t) of the solution

that satisfies the initial condition x(0) = 1.

5. Consider the nonlinear system

x′ = 4x− 2x2 − xy, y′ = y − y2 − 2xy.

Find all the equilibrium points and determine the type and stability of the

equilibrium point (2, 0).

6. An RC circuit has R = 1, C = 2. Initially the voltage drop across the

capacitor is 2 volts. For t > 0 the applied voltage (emf) in the circuit is

b(t) volts. Write down an IVP for the voltage across the capacitor and find

a formula for it.

7. Solve the IVP

u′ + 3u = δ2(t) + h4(t), u(0) = 1.

8. Use eigenvalue methods to find the general solution of the linear system

x′ =

(
2 0

−1 2

)
x.

9. In a recent TV episode of Miami: CSI, Horatio took the temperature of a

murder victim at the crime scene at 3:20 A.M. and found that it was 85.7

degrees F. At 3:50 A.M. the victim’s temperature dropped to 84.8 degrees.

If the temperature during the night was 55 degrees, at what time was the

murder committed? Note: Body temperature is 98.6 degrees; work in hours.

10. Consider the model u′ = λ2u − u3, where λ is a parameter. Draw the

bifurcation diagram (equilibria solutions versus the parameter) and deter-

mine analytically the stability (stable or unstable) of the branch in the first

quadrant.

11. Consider the IVP u′′ =
√
u+ t, u(0) = 3, u′(0) = 1. Pick step size h = 0.1

and use the modified Euler method to find an approximation to u(0.1).

12. A particle of mass m = 1 moves on the x-axis under the influence of a

potential V (x) = x2(1 − x).
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a) Write down Newton’s second law, which governs the motion of the

particle.

b) In the phase plane, find the equilibrium solutions. If one of the equi-

libria is a center, find the type and stability of all the other equilibria.

c) Draw the phase diagram.

Practice Final Examination 2

1. Classify the type and stability of the equilibrium of the system

x′ = −2x+ y,

y′ = −2x.

In a phase plane, draw in the nullclines (as dashed lines) and indicate which

is which. Then, noting the direction field along the x axis, sketch in a couple

of sample orbits.

2. A mass of m = 1 gm is subjected to a positive force proportional to the

square root of the velocity; the initial velocity is 3 cm/sec. Find the velocity

as a function of time and sketch a time series plot for t ≥ 0.

3. Find two independent solutions of the differential equation

d2y

dt2
+

4

t

dy

dt
+

2

t2
y = 0

of the form y = tλ, where λ is to be determined.

4. Consider a damped spring–mass system where x = x(t) is the displacement

of the mass from equilibrium. Let m, c, and k denote the mass, damping

constant, and spring constant, respectively.

a) If there is no damping and there is a external forcing function of mag-

nitude 3 cos 5t, what is the relationship between the mass m and spring

constant k for which pure resonance occurs?

b) If c = 2 and k = 0.1 and there is no external forcing, what values of

the mass m will lead to damped oscillations?

5. Consider the initial value problem

u′ = 0.5u

(
1 − u

t+ 10

)
, u(5) = 3.

Use the Euler algorithm (method) to approximate the solution at t = 5.1.
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6. Consider the autonomous equation

dp

dt
= (p− h)(p2 − 2p), h > 0.

Clearly, p = h is an equilibrium. Use an analytic equilibrium criterion, or

whatever, to determine the values of h for which the equilibrium is unstable.

7. Solve the initial value problem using Laplace transforms:

u′ + 2u = e−th3(t), u(0) = 0.

8. Find the general solution of the fourth-order differential equation

u′′′′ + 4u′′ = 0.

9. Find the particular solution of

u′′ + u = 7 + 6et.

10. Find the solution of the initial value problem

y′ − 2

t+ 1
y = (t+ 1), y(0) = 3.

11. Find the inverse transformation of

U(s) =
s

(s2 − 10)(s− 5)

using convolution. Write down the appropriate convolution integral, but do

not calculate it.

12. Lizards, like other reptiles, are cold-blooded. A small lizard, whose body

temperature is 50 deg, comes out from under a rock into an environment

with temperature 70 deg. Furthermore, through solar radiation the sun

heats its body at the rate of q(t) = 1 deg per minute. The heat loss/gain

coefficient of the lizard is h, given in per minute. Very carefully think about

the model and answer the following questions.

a) Set up an initial value problem whose solution would give the body

temperature T (t) of the lizard for all times t ≥ 0. (Be sure to explain

what you are doing. Of course, your model will contain the parameter

h.)

b) Find the general solution of the differential equation in part (a) using

any correct method. You must show your work.

c) From the general solution, or otherwise, determine the value of h if the

long time equilibrium temperature of the lizard is 90 deg. Show your

reasoning and work.



D
Solutions and Hints to Selected Exercises

This appendix contains hints and partial solutions to most of the even-

numbered problems. Plots are not included, but enough information is often

given to construct the required graph.

CHAPTER 1

Section 1.1

2. Both u(t) = 1/t and u(t) = 1/(t− 2) are solutions.

4. Substitute into the differential equation and equate like coefficients.

6. Substitute into the differential equation and obtain the quadratic m(m −
1) − 6 = 0, giving m = −2, 3. Therefore t−2 and t3 are solutions.

8. The solution to u′ = −ku is u(t) = u0e
−kt. If u(t) = 0.5u0e

−kt, then k =

(ln 2)/t1/2 is the relation between k and the half-life t1/2. If t1/2 = 5730,

then k = 0.000121 per year. If u(t) = 0.2u0, then the solution gives 0.2 =

e−kt, then t = −(ln 0.2)/k = 13, 301 years,

10. If lnT = −at + b, then T ′ = −aT , which is Newton’s law of cooling with

environment temperature zero and heat loss coefficient a. From the given

data, ln 8 = −2a + b and ln 22 = −0 · a + b = b. Then b = ln 22 and

a = (ln 22 − ln 8)/2. When T = 2, then t = (ln 2 − b)/a.
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12. We want to find Te. We are given T0 = 46. Then, from Newton’s law of

cooling, T (t) = (46−Te)e
−ht +Te. Therefore, 39 = (46−Te)e

−10h +Te and

33 = (46 − Te)e
−20h + Te. These two equations determine h and Te. For

example, solve each equation for Te and equate to obtain a single equation

for h, which then can be solved using a “solver” routine on a calculator.

14. Let 1:00 P.M. correspond to t = 0. Substituting the initial and environmen-

tal temperatures, Newton’s law of cooling has solution T (t) = 58e−ht +10.

At 1:00 P.M., or t = 9, we have 57 = 58e−9h + 10. Solving for h gives

h = 0.023. Then, at t = 17, we have T (17) = 58e−17(.023) + 10 ≈ 49

degrees.

16. (b) Setting T ′ = 0 we get q − k(T − Te) = 0 or T = Te + q/k as the

limiting temperature. (c)–(d) Setting u = q−k(T −Te), we get u′ = −kT ′.

Substituting into the differential equation yields an equation for u, namely,

−(mc/k)u′ = u, or u′ = −(k/mc)u, which is the decay equation. The

solution is u(t) = u(0) exp(−kt/mc), where u(0) = q − k(T (0) − Te). Now

write the solution in terms of T using T (t) = (q + kTe − u(t))/k.

Section 1.2

2. We have u′ = C, and so tu′ − u+ f(u′) = tC − (Ct+ f(C)) + f(C) = 0.

4. Here f(t, u) = (t2 + 1)u − t and ∂f/∂u = t2 + 1 is continuous for all t and

u in the plane.

6. Here f(t, u) = ln(t2 + u2) is continuous for all (t, u) 6= (0, 0). So a solution

exists in a small interval for all initial conditions (t0, u0) 6= (0, 0). For

uniqueness, we need ∂f/∂u = 2u/(t2 + u2) continuous. Again, (t0, u0) 6=
(0, 0).

8. We have u′ = p(t)u+q(t). If u1 and u2 are two solutions, then u′1 = p(t)u1 +

q(t), u′2 = p(t)u2 + q(t). But (u1 + u2)
′ 6= p(t)(u1 + u2)u + q(t). So, the

sum of solutions is not a solution. Is a constant times a solution again a

solution? No, because cu′ = c(p(t)u + q(t)) 6= p(t)(cu) + q(t). If q(t) = 0,

both these statements are true. If u1 is a solution to u′ = p(t)u and u2 is

a solution to u′ = p(t)u + q(t), then (u1 + u2)
′ = p(t)u1 + p(t)u2 + q(t) =

p(t)(u1 + u2) + p(t).

10. By the hint,

d

dt
((u′)2 − u2) = 2u′u′′ − 2uu′ = 2u(u′′ − u) = 0.

Therefore (u′)2 − u2 must be constant. The curves (u′)2 − u2 = C plot as

a family of hyperbolas in the uu′ plane; that is, for each C 6= 0 we obtain

an opposing pair of hyperbolas. When C = 0 we get the two straight lines

u′ = u and u′ = −u.
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12. Note that

u(t) =

{
at2 + 1, t < 0,

bt2 + 1, t > 0,

is continuous at t = 0 for any constants a and b (the one-sided limits are

equal). The derivative is

u′(t) =

{
2at, t < 0,

2bt, t > 0,

Therefore u′ is continuous at t = 0. It is easy to check that u(t) satisfies

the differential equation and u(0) = 1. The right side of the differential

equation f(t, u) is not continuous at t = 0, and neither is its u-derivative.

But this does not mean a solution does not exist. The theorem states that

if f and fu are continuous, there is a solution. Here we have the converse;

if there is a solution that does not mean f and fu are continuous.

Section 1.2.1

2. The isoclines are u2 + t2 = C, C > 0, which are circles. So, the slope is the

same on each circle.

4. The isoclines are t− u2 = C, which are parabolas opening to the right. The

slope field is positive when t − u2 > 0, which is the region to the right of

the parabola t = u2. In the region to the left, the slope field is negative.

Section 1.3

2. We have

u(t) =

∫
t+ 1√
t
dt =

∫
(t1/2 + t−1/2)dt = (2/3)t3/2 + 2t1/2 + C.

Next, u(1) = 4 gives 2/3 + 2 + C = 4, or C = 4/3.

4. We have u(t) =
∫
te−2tdt + C. The integral can be done using integration

by parts. Let w = t and dv = e−2t; then dw = dt and v = − 1
2e

−2t. Then

u(t) =

∫
te−2tdt+C = −1

2
te−2t +

1

2

∫
e−2tdt+C = −1

2
te−2t− 1

4
e−2t +C.

6. Here,

u(t) =

∫
cos

√
t√

t
dt = 2

∫
coswdw = 2 sinw + C = 2 sin

√
t+ C.

We made the substitution w =
√
t, dw = 1/2

√
t.
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8. Letting u = ye3t gives u′ = 3ye3t + y′e3t. Substituting into the DE and

simplifying yields an equation for y, namely, y′ = e−4t. Integrating, y =

−(1/4)e−4t + C. Therefore,

u(t) = −1

4
e−t + Ce3t.

10.
d

dt
erf(sin t) = erf′(sin t) cos t =

2√
π
e− sin2 t cos t.

12. Write the integral equation as

u(t) + e−pt

∫ t

0

epsu(s)ds = A.

Take the derivative, using the product rule on the second term; use the

fundamental theorem of calculus on the integral. Then,

u′(t) + u(t) − pe−pt

∫ t

0

epsu(s)ds = 0.

Using the integral equation, we get

u′ + (1 + p)u+Ap = 0.

14. Integrate both sides of the differential equation from 0 to t and use the

fundamental theorem of calculus to compute the left side. We get
∫ t

0

u′(s)ds = u(t) − u(0) =

∫ t

0

(5su(s) + 1)ds,

with u(0) = 0.

Section 1.4

2. Substitute the given expression into the equation and equate the coefficients

of like terms to get λ = −c/2m and ω =
√

4mk − c2/2m. The amplitude

A is arbitrary.

4. Taking the derivative of the conservation law gives

d

dt

[
1

2
l(θ′)2 + g(1 − cos θ)

]
= 0,

Use the chain rule to get

d

dt

(
(θ′)2

)
= 2θ′θ′′,

and
d

dt
cos θ = −(sin θ)θ′.

Then simplify to get the equation of motion.
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6. For small θ, the graphs of θ and sin θ are nearly the same. And, θ is the first-

term approximation of sin θ in its Taylor expansion. (a) By substitution into

the differential equation, we find ω =
√
g/l.

(b) From the last part, small displacements satisfy θ(t) = A cos
√
g/lt.

Setting θ(t) = 0 gives cos
√
g/lt = 0, or

√
g/l t = π/2. Here, l = 20 and

g = 9.8. Then, t = 2.2 sec. Note that the displacement does not depend on

mass.

Section 1.5

2. (b) Separating variables, e2udu = dt. Integrating,

1

2
e2u = t+ C

Therefore,

u(t) =
1

2
ln |2t+ C|.

Evaluating at t = 0 and using the initial condition gives C = e2.

4. Separate variables and integrate to get x(t) = 1/(C − t2). The initial condi-

tion gives C = 1, so x(t) = 1/(1 − t2). The maximum interval of existence

is −1 < t < 1.

6. We have
1

u(4 + u)
=
a

u
+

b

4 + u
=

4a+ (a+ b)u

u(4 + u)
.

Therefore, equating both sides, a = 1
4 and b = − 1

4 . The differential equation

becomes, therefore, upon separating variables and integrating,
∫

1

u(4 + u)
du =

1

4

∫ {
1

u
− 1

4 + u

}
= t+ C.

Then,
1

4
ln

(
u

u+ 4

)
= t+ C.

Then,
u

u+ 4
= e4t+C ,

and you can solve for u.

8. Separate variables to get

lnu

u
du = (4 + 2t)dt.
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Integrating (in the left integral make the substitution w = lnu) to get

1

2
(lnu)2 = 4t+ t2 + C.

Now u(0) = e gives C = 1/2. Hence,

lnu(t) =
√

8t+ 2t2 + 1, u(t) = exp(
√

8t+ 2t2 + 1).

The solution exists as long as 8t + 2t2 + 1 > 0, which is valid for t ≥
(−8 +

√
56)/4.

10. Separating variables and integrating gives the general solution

u(t) = 1 + (t2 + C)3.

Clearly, no value of C gives u(t) = 1.

12. Integrate both sides of the allometric equation to get

ln |u1| = ln |u2|a + lnC,

where we have written the arbitrary constant as lnC. Now, exponentiate

to get the stated result.

14. Integrate both sides to get, using the fundamental theorem of calculus,

ue2t = −e−t + C, u(t) = −e−3t + Ce−2t.

The initial condition u(0) = 3 gives C = 4.

16. The equation is u′/u = −at. Integrating and solving for u gives

u(t) = Ce−at2/2 = 100e−(0.2)t2/2,

which is easily plotted (a bell-shaped type curve). The maximum can be

found by setting u′(t) = 0.

18. If u is the thickness, then u′ = a/u, u(0) = 0.05. Separate variables to get

udu = adt. Integrating and solving for u gives u(t) =
√

2at+ C. Use the

initial condition to determine C = 0.0025. Then use u(4) = 0.075 to get a.

This gives the formula for the thickness at any time t, in particular, t = 10.

20. (a) Separate variables to get du/u = p(t)dt. Integrate to get

ln |u| =

∫ t

0

p(s)ds+ C1,

or
u = Ce

R
t

0
p(s)ds.

(b) Solve the problem separately on each subinterval, and require equality

(continuity) at t = 1.
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Section 1.6

2. (a) Setting (1 − x)
(
1 − e−2x

)
= 0 gives x = 1, x = 0. There are two

equilibria. (c) Setting 3u/(1 + u2) = 0 gives the quadratic equation u2 −
3u+ 1 = 0, which has two roots u = 3/2 ±

√
52.

4. Settting N ′ = f(N) = rN
(
1 − (N/K)θ

)
= 0 gives equilibria N = 0 and

N = K. To check stability, we find

fN (N) = rN

(
− θ

K

(
N

K

)θ−1
)

+ r

(
1 −

(
N

K

)θ
)
.

Therefore fN (0) = r > 0 and fN(K) = −rθ < 0. Thus N = 0 is unstable

and N = K is stable.

8. Let L be the length and m = ρL3 be the mass, where ρ is the density. Then

the rate of change of mass m is

(ρL3)′ = αL2 − βL3 or 3ρL2L′ = αL2 − βL3.

Dividing by 3ρL2,

L′ = a− bL, a =
α

3ρ
, b =

β

3ρ
.

The equilibrium, or limiting length, is L∞ = a/b. If L(0) = 0, then L(t)

increases and approaches L∞, as a phase line would show. It is clearly

stable. To solve, separate variables to get

dL

bL− a
= −dt, or

1

b
ln |bL− a| = −t+ C.

Solving for L,

L(t) =
a

b

(
1 + e−bt

)
.

This is a good model for growth, and many plants and animals follow this

pattern.

12. Setting R′ = f(R) = −rR ln(R/k) = 0 gives R = k. Notice that the

equation is not defined at R = 0, so R = 0 is not technically an equilibrium.

(However, R′ → 0 as R → 0.) To check stability, note that fR(k) = −a < 0,

and therefore R = k is stable. To solve, we separate variables and integrate

to get ∫
dR

R ln(R/k)
= −at+ C.

Using the substitution w = ln(R/k), dw = (1/R)dR, we get
∫
dw

w
= −at+ C or w = Ce−at.
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Then,
R(t) = k exp

(
Ce−at

)
.

14. We have I ′ = aSI or I ′ = aI(N − I). This is basically the same form

as the logistic equation. The equilibria are I = 0 and I = N , the entire

population; I = N is stable, so everyone eventually gets the disease. I = 0

is unstable. The number of infectives increases gradually up to the limit

I = N .

16. Separate variables and write the equation as

dv

1 − b2v2
= gdt, b2 =

a

mg
.

The denominator on the left factors into (1 − bv)(1 + bv); therefore we

perform a partial fraction expansion and find

1

(1 − bv)(1 + bv)
=

1/2

1 − bv
− 1/2

1 + bv
.

Now we have
1

2

∫ (
dv

1 − bv
− dv

1 + bv

)
= gt+ C.

Carrying out the integrations on the left, we find

ln |(1 − bv)(1 + bv)| = −2bgt+ C.

Applying the condition v(0) = 0, we get C = 0. Then

|1 − b2v2| = e−2bgt,

from which the solution can be found.

Section 1.7

2. (b) We have u′ = f(u) = u3(3 − u) = 0 when u = 0 and u = 3; these

are the equilibria. A plot of f(u) versus u instantly leads to the phase line

and the issue of stability. To analytically check stability, we have fu(u) =

−u3+3u2(3−u), so fu(0) = 0, which must be checked further, and fu(3) =

−27 < 0, so u = 3 is stable. Regarding u = 0, note that fu(u) > 0 for u in

a small neighborhood of u = 0, u 6= 0, so u = 0 is unstable.

(f) Setting u′ = f(u) = −(1+u)(u2−4) = 0 we get equilibria u = −1,−2, 2.

Now, fu(u) = −2u(1 + u) − (u2 − 4). Then fu(−1) > 0, and u = −1 is

unstable; fu(−2) < 0, so u = −2 is stable; fu(2) < 0, so u = 2 is stable.

4. Clearly, x = 0 is the only equilibrium, and f(x) = x/(x2 + 1) > 0 if x > 0,

and f(x) < 0 if x < 0. Therefore, x = 0 is unstable. (Or, you could use the

instability condition fx(0) > 0.)
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8. For u′ = u3 − u + h, we find equilibria graphically by setting h = u − u3 =

u(1 − u2) and plotting h versus u. The bifurcation diagram is found by

rotating the graph to obtain the plot of u versus h. Note that fu(u) =

3u2 − 1; the stability of each segment of the bifurcation diagram may be

found using the stability conditions.

10. Because x′ = f(x) = ax2 − 1, the equilibria are given by x = ±1/
√
a.

There are only equilibria when a > 0. To check stability, fx(x) = 2ax,

so fx(1/
√
a) = 2a/

√
a > 0; thus the upper branch is unstable. Similarly,

fx(−1/
√
a) = −2a/

√
a < 0, so the lower branch is stable.

12. We can write N ′ = f(N) = (h+1)[(h−1)N +1]. Assume h 6= 0; otherwise,

every constant solution is an equilibrium. We have equilibria N = 1/(1−h),

which plots on a bifurcation diagram (N versus h) as two hyperbolas with

vertical asymptote h = 1. Note that fN(N) = h2 − 1. Then, if h > 1 or

h < −1, we have fN (1/(1 − h)) > 0 and we have stability; if 0 < h < 1,

then fN (1/(1 − h)) < 0, which gives stability.

Section 1.8.1

2. The equation is 100C′ = (0.0002)(0.5)− 0.5C, with C(0) = 0. The equilib-

rium is found by setting C′ = 0, or C = 0.0002. It is stable. We can rewrite

the DE as C′ = 10−6−0.005C. By separating variables, we find the general

solution

C(t) = Ae−0.005t + 0.0002.

We have C(0) = 0, so A = −0.0002.

4. The initial value problem is 1000C′ = −2C, C(0) = 5/1000 = 0.005. This is

the decay equation with solution

C(t) = 0.005e−0.002t.

6. The equilibrium C∗ = (−q +
√
q2 + 4kqV Cin)/2kV is stable.

8. The initial value problem is C′ = −rC, C(0) = C0. The solution is C(t) =

C0e
−rt. Therefore, C0 = 0.9C0e

−rT . Therefore, the residence time is T =

−(ln 0.9)/r.

10. (b) Set the equations equal to zero and solve for S and P . (c) With values

from part (b), maximize aV Pe.

Section 1.8.2

2. The equation is Rq′ + (1/C)q = E. Write this in separated form as

Rdq

q − CE
= − 1

C
dt.
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Integrating,

R ln |q − CE| = − 1

C
t+K1.

Exponentiate to get

|q − CE| = Ke−t/RC , K = K1/R.

Thus
q = CE +Ke−t/RC .

Using q(0) = q0 gives K = q0 − CE, and hence the solution to the initial

value problem.

4. LCV ′′
c +RCV ′

c + Vc = E(t).

6. Substitute q = A cosωt into Lq′′ + (1/C)q = 0 to get ω = 1/
√
LC, A

arbitrary.

CHAPTER 2

Section 2.1

2. The integrating factor is et. Multiplying by this the equation becomes

(etu)′ = e2t. Integrating gives

etu =
1

2
e2t + C or u(t) =

1

2
et + Ce−t.

4. The integrating factor is et2 . Multiplying the equation by this factor gives

(uet2)′ = 1. Integrating,

uet2 = t+ C or u(t) = te−t2 + Ce−t2 .

6. For example, in Exercise 4 the homogeneous solution is uh(t) = Ce−t2 and

the particular solution is up(t) = te−t2 .

8. The integrating factor is

e
R
(−1/t)dt = e− ln t =

1

t
.

Multiplying by 1/t gives (R/t)′ = e−t, or R/t = e−t + C. Thus R(t) =

te−t + Ct. The limit as t→ 0 is zero.

10. The general solution is

V (t) =

(
3

∫
tetdt+ C

)
e−t.

The integral can be carried out using integration by parts.
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12. The integrating factor is exp(−t2). Therefore, (u exp(−t2))′ = exp(−t2).
Integrating gives

ue−t2 =

∫ t

0

e−s2

ds+ C =

√
π

2
erf(t) + C.

Multiplying by exp(t2) gives u(t).

14. The integrating factor is e−pt. The general solution is

u(t) = ept

∫ t

t0

q(s)e−psds+ u0e
pt.

16. The quantities S, M , and A are in dollars, and a and r are in units of “per

month”. Setting S′ = 0 in the equation gives

−aS + rA
M − S

M
= 0 or S =

rA

a+ rA/M
.

18. The initial value problem simplifies to

T ′ + 3T = 27 + 30 cos 2πt.

The integrating factor is exp 3t and we obtain, after multiplying by exp 3t

and integrating,

T (t) = 9 + 3e−3t

∫
e3t cos(2πt) dt+ Ce−3t.

The integral can be done using integration by parts, or using software.

20. We break up the differential equation over two intervals:

S′ = −bS + rA, 0 < t < T, b ≡ a+
rA

M
,

and
S′ = −aS, t > T.

The initial condition S(0) = S0 applies to the first equation; the initial

condition for the second equation is the value S(T ) obtained from solving

the first equation. The solution to the first equation is

S(t) =

(
S0 −

rA

b

)
e−bt +

rA

b
, 0 ≤ t ≤ T.

and therefore

S(T ) =

(
S0 −

rA

b

)
e−bT +

rA

b
.

The solution to the equation in t > T is S(t) = Ce−at. So, S(T ) = Ce−aT .

Therefore,
S(t) = S(T )e−a(t−T ), t ≥ T,

where S(T ) is given above.
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22. The DE for S(t) is

S′ = −E + I

P
S + I.

(a) The long-time solution is the equilibrium Se = PI/(E + I). (b) The

equation is first order and linear, so the solution is

S(t) =

(
S0 −

PI

E + I

)
e−(E+I)t/P +

PI

E + I
.

(c) Compare the equilibria for two different values of E, one for the large

island and one for the small island.

24. Letting y = u1−n we have y′ = (1 − n)u−nu′. So, the DE becomes

un

1 − n
y′ = a(t)u + g(t)un.

Multiplying (1 − n)u−n gives the stated result.

26. The logistic equation is

u′ = ru− r

K
u2,

which is a Bernoulli equation. Make the transformation y = u1−2 = 1/u.

So, y′ = (−1/u2)u′. The DE becomes

y′ = −ry +
r

K
,

having solution

y = Ce−rt +
1

K
.

Therefore, u(t) = 1/(Ce−rt + 1/K). Use u(0) = u0 to obtain C. Finally,

u(t) =
Ku0

(K − u0)e−rt + u0
.

28. The integrating factor is eP (t) where

P (t) =

∫ t

0

e−s/s ds.

Multiplying the DE by eP (t) and integrating gives

u(t) = e−P (t)

∫ t

0

seP (s)ds+ Ce−P (t).

Using u(0) = 1 gives, because P (0) = 0, the arbitrary constant C = 1.
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30. The larva equation, linear and first order, has solution

L(t) = Ce−(µ0+µ)t +
λ

µ0 + µ
, C = − λ

µ0 + µ
.

Substituting into the M equation gives

M ′ + δM =
µλ

µ0 + µ

(
1 − e−(µ0+µ)t

)
.

This is first order and linear with integrating factor exp(δt), and it can be

solved by the standard method.

Section 2.2.1

2. The Picard iteration scheme is un+1(t) = 1+
∫ t

0 (s−un(s))ds, u0(t) = 1. We

get u1(t) = 1 − t+ t2/2 + · · · , and so on.

Section 2.2.3

2. Separating variables gives du/u = cos t dt. Integrating and applying the

initial condition gives the exact solution u(t) = esin(t). The Euler method

gives

un+1 = un + h(un + cos(nh)), n = 0, 1, 2, . . . .

with u0 = 1.

Step Size h exact 0.4 0.2 0.1 0.05

u(20) 2.4917 0.3203 0.9387 1.5386 1.9595

Error 0 2.1714 1.5530 0.9531 0.5322

4. The solution is u(t) = u0e
−rt, and the Euler algorithm is un+1 = (1−hr)un,

having solution un = (1−hr)nu0. If 1−hr < 0 then we will get oscillations

from the Euler method. To prevent that, take h > 1/r.

10. Add

u(t+ h) = u(t) + u′(t)h+
1

2
u′′(t)h2 + C1h

3

and

u(t− h) = u(t) − u′(t)h+
1

2
u′′(t)h2 + C2h

3

to get

u(t+ h) + u(t− h) = 2u(t) + u′′(t) + Ch3,

or

u′′(t) =
u(t+ h) − u(t) + u(t− h)

h2
+ Ch3.
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12. Integrating both sides of the differential equation gives, as in the text,

u(tn+1) = u(tn) +

∫ tn+1

tn

f(t, u(t))dt.

CHAPTER 3

Section 3.1

2. The potential energy and conservation of energy law are (with y = x′)

V (x) = −
∫

−x2dx =
1

3
x3 or

1

2
y2 +

1

3
x3 = E.

Setting x(0) = 1 and y(0) = 0 gives E = 1/3. Then

y = ±
√

2

3

√
1 − x3.

4. From Exercise 2, replacing y by dx/dt and separating variables,

dx√
1 − x3

= ±
√

2

3
dt.

Integrating from x = 1 to x and t = 0 to t,

∫ x

0

dz√
1 − z3

dz = −
√

2

3
t,

because the velocity is negative. This gives x implicitly as a function of t.

6. Solving the conservation law

1

2
my2 + V (x) = E

for y, replacing y by dx/dt, and then separating variables gives

±
√
m

2

∫
dx√

E − V (x)
dx = t+ C.

8. (a) If y = x′, then y′ = −(2/t)y. Separating variables and integrating gives

y = C/t2. Then
dx

dt
=
C

t2
⇒ x =

C1

t
+ C2.

(b) Using y = x′ and x′′ = y dy/dx we get

y
dy

dx
= xy.
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Therefore y = 0 or dy/dx = x, giving y = (1/2)x2 + C. Now, replace y by

dx/dt, separate variables and integrate to get x = x(t).

(e) Setting y = x′ the equation becomes ty′ + y = 4t, which is a first-order

linear equation. Solve to get y=2t+C/t. Thus, x = t2 + c ln t+ C2.

10. We have F (x) = −dV/dx = −2(x+1)(x−2)(2x−1). (b) The conservation

law is y2 + (x + 1)2(x − 2)2 = E, or y = ±
√
E − (x + 1)2(x− 2)2. One

easily sketches these curves for different values of E. (c) When y > 0 we

have x′ > 0 and x is increasing in time; when y < 0 we have x′ < 0 and

x is decreasing in time. (d) When x = 0 and y = 3 we get E = 13. The

maximum x-value occurs when y = 0, or 13 − (x+ 1)2(x − 2)2 = 0.

Section 3.2

2. (a) The characteristic equation is λ2−4λ+4 = 0, giving λ = 2, 2. Therefore

u(t) = ae2t + bte2t.

The initial conditions give a = 1 and b = −2.

(e) The characteristic equation is λ2 − 2λ = 0, giving λ = 0, 2. Therefore

u(t) = a+ be2t.

The initial conditions give a = 0 and b = 1.

4. The characteristic equation is λ2 + (1/8)λ+ 1 = 0, giving

λ =
1

2

(
− 1

16
± i

√
255

256

)
.

Thus,

u(t) = e−t/16

(
A cos

√
255

256
t+B sin

√
255

256
t

)
.

6. The characteristic equation is Lλ2 + λ+ 1 = 0, giving

λ =
1

2L

(
−1 ±

√
1 − 4L

)
.

Therefore, if L ≤ 1/4, the eigenvalues are negative and real, giving decay;

if L > 1
4 , the eigenvalues are complex with negative real parts, representing

a decaying oscillation.

8. If λ = 4,−6, then the characteristic equation factors into (λ−4)(λ+6) = 0.

So, the differential equation is u′′ + 2u′ − 24u = 0.

10. If λ = ±4i, then λ2 +16 = 0, giving the differential equation u′′ +16u = 0.
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12. u(0) = 3 and u′(0) = −2.

Section 3.3.1

2. (a) The characteristic polynomial for the homogeneous equation is λ2+7 = 0,

giving λ = ±
√

7. The two independent solutions are cos
√

7t and sin
√

7t.

Therefore, the particular solution has the form up(t) = (a+ bt)e3t. Calcu-

lating u′′p(t) and substituting into the differential equation gives equations

16a+ 6b = 0, 16b = 0. Thus b = 1/16 and a = −3/128.

(f) We have u′ + u = 4e−t. The homogeneous equation is u′ + u = 0, so

uh(t) = Ce−t. A guess for the particular solution is up = Ae−t, but that

duplicates the homogenous solution. Therefore, up = Ate−t. Taking u′p and

substituting up and u′p into the differential equation gives A = 4. Therefore

u(t) = Ce−t + 4te−t.

4. The characteristic equation is Lλ2 − 3λ + 40 = 0 with roots λ = 8, −5.

The homogeneous solution is therefore uh = c1e
8t + c2e

−5t. A particular

solution has the form up = Ae−t. Substituting into the DE gives A = 2.

The general solution is

u(t) = c1e
8t + c2e

−5t + 2e−t.

The initial conditions give c1 = −8/13, c2 = −18/13.

8. The homogeneous solution is uh(t) = c1 cos
√

2/5t+ c2 sin
√

2/5t. The par-

ticular solution is up = 5. Then,

u(t) = c1 cos
√

2/5t+ c2 sin
√

2/5t+ 5.

The initial conditions give c1 = 10, c2 = 4
√

5/2.

10. The initial value problem is

q′′ + 8q′ + 25q = 55, q(0) = 5, q′(0) = 0.

The eigenvalues are λ = −4±3i, giving qh(t) = e−4t(c1 cos
√

3t+c2 sin
√

3t).

The particular solution is up = 11/5. Therefore, q(t) = qh(t)+qp(t). Setting

q(0) = 5 gives c1 = 14/5; setting q′(0) = 0 gives c2 = 56/(5
√

3).

Section 3.3.2

4. The equation is

Lq′′ =
1

C
q = V0 sinβt.

The homogeneous solutions are cos
√

1/LC t and sin
√

1/LC t. Resonance

occurs when
√

1/LC = β, or L = 1/Cβ.
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6. The characteristic equation is λ2+0.01λ+4 = 0 with roots λ = −1/200±iβ,

where β = 1.9999. Thus the homogeneous solution is

uh(t) = exp(t/200)(c1 cosβt+ c2 sinβt)

. The particular solution up has the form up = a cos 2t + b sin 2t. Substi-

tuting into the differential equation gives a = 0 and b = 50. Therefore the

general solution is

u(t) = et/200(c1 cosβt+ c2 sinβt) + 50 cos 2t.

Applying the initial conditions gives c1 = −50 and c2 = 1/4β = 0.125.

Section 3.4

2. β = 1.

4. Let u =
∑

k=0 akt
k and substitute into the differential equation to get

u(t) =
∑

k=2

k(k − 1)akt
k−2 +

∑

k=0

akt
k.

Replacing k − 2 by k in the first sum gives

u(t) =
∑

k=0

(k + 2)(k + 1)ak+2t
k +

∑

k=0

akt
k.

Setting the coefficients equal to zero gives the recursion relation

ak+2 =
1

(k + 2)(k + 1)
ak, k = 0, 1, 2, ...

Computing all the coefficients recursively in terms of a0 and a1 gives

a2n =
1

(2n)!
a0, a2n+1 =

1

(2n+ 1)!
a1.

Thus,

a0

∑

n=0

1

(2n)!
t2n + a1

∑

n=0

1

((2n+ 1)!
t2n+1 = a0 cos t+ a1 sin t.

6. Let u =
∑

k=0 akt
k and substitute into the differential equation to get

u(t) =
∑

k=2

k(k − 1)akt
k−2 +

∑

k=2

k(k − 1)akt
k +

∑

k=0

akt
k = 0.

Shifting indices in the first series gives

u(t) =
∑

k=0

(k + 2)(k + 1)ak+2t
k +

∑

k=2

k(k − 1)akt
k +

∑

k=0

akt
k = 0.
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The recursion is

(k + 2)(k + 1)ak+2 + (k(k − 1) + 1)ak = 0.

Calculating the first few coefficients in terms of a0 and a1 gives

u(t) = a0

(
1 − 1

2
t2 − 3

4!
t4 + · · ·

)
+ a1

(
1 − 1

3!
t3 − 3

5!!
t5 + · · ·

)
.

8. Set n = 0 in the equation to get u′′− 2tu′ = 0, which obviously has solution

u(t) = H0(t) = a ·1. Setting n = 1 in the equation gives u′′−2tu′+2u = 0.

Try a linear solution u = a + bt and substitute to get a = 0, b arbitrary.

So u(t) = H1(t) = bt. When n = 2, the equation is u′′ − 2tu′ + 4u = 0;

try u = at2 + bt+ c, and substitute to get b = 0 and a = c. Thus, u(t) =

H2(t) = a(t2 + 1). Continue this process.

10. Let u = tv. Then u′ = tv′ + v and u′′ = tv′′ + 2v′. Therefore, the equation

for v reduces to v′′− v′ = 0, having one solution v = et. Therefore, another

solution is given by u = tet.

12. The first part is straightforward. Next, solve the z equation. Separating

variables gives
dz

z
=

−2y′ − py

y
dt = −2

y′

y
dt− pdt.

Integrate both sides to get

ln z = −2 ln y −
∫
p dt+ C, or z = C

−
∫
p dt

y2
.

14. Take the derivative of the Wronskian expression W = u1u
′
2 −u′1u2 and use

the fact that u1 and u2 are solutions to the differential equation to show

W ′ = −p(t)W. Solving gives W (t) = W (0) exp(−
∫
p(t)dt), which is always

of one sign.

16. The given Riccati equation can be transformed into the Cauchy–Euler

equation u′ − (3/t)u′ = 0.

18. (a) tp(t) = t · t−1 = 1, and t2q(t) = t2(1−k2)/t2) = t2−k2, which are both

power series about t = 0.

Section 3.5

2. u(x) = −(1/6)x3 + (1/240)x4 + (100/3)x. The rate that heat leaves the

right end is −Ku′(20) per unit area.

4. There are no nontrivial solutions when λ ≤ 0. There are nontrivial solutions

un(x) = sinnπx when λn = n2π2, n = 1, 2, 3, ....
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6. Integrate the steady-state heat equation from 0 to L and use the fundamental

theorem of calculus. This expression states: the rate that heat flows in at

x = 0 minus the rate it flows out at x = L equals the net rate that heat is

generated in the bar.

8. λ = −1 − n2π2, n = 1, 2, . . ..

10. Hint: This is a Cauchy–Euler equation. Consider three cases where the

values of λ give characteristic roots that are real and unequal, real and

equal, and complex.

Section 3.6

2. The characteristic equation is λ4 +λ2−4λ−4 = 0. It is easy to guess a root

λ = −1, so λ+1 is a factor. Dividing out this factor, we find the remaining

factor is λ2 − 4. So, λ = −1, 2,−2. Therefore, u(t) = ae−t + be2t+ ce−2t.

4. We have u′′′ + 2u′′ − 5u′ − u = 0. Letting u′ = v, v′ = u′′ = w, we get

w′ = −u+ 5v − 2w. In summary, the system is

u′ = v, v′ = w, w′ = −u+ 5v − 2w.

Section 3.7

2. u(t) = (1
2 − sin t)−1, −7π/6 < t < π/6.

4. Let u =
∑

k=0 akt
k and substitute into the differential equation to get, after

shifting the indices,

u(t) = a2 +
∑

k=0

(k + 3)(k + 2)ak+3t
k+1 +

∑

k=0

(k + 1)ak+1t
k+1 +

∑

k=0

akt
k+1.

Then a2 = 0 and the recursion is

(k + 3)(k + 2)ak+3 = −(k + 1)ak+1 − ak, k = 0, 1, 2, ....

Additional coefficients can be calculated recursively in terms of a0 and a1.

6. r(t) = −kt+ r0.

8. The characteristic polynomial is (λ − 2)(λ + 1) = 0, and the homogeneous

solution set is u1 = e−t, u2 = e2t. The Wronskian is W (t) = 3et. Therefore,

a particular solution is

up(t) = −1

3
e−t

∫
et cosh t dt+

1

3
e2t

∫
e−2t cosh t dt.

These integrals may be easily calculated by replacing cosh t = (et +e−t)/2.
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10. Let u = lnu, y′ = u′/u. Then the equation simplifies to y′ = 4t − 2/t.

Integrating, y(t) = 2t2 − 2 ln t+ C. Therefore, u(t) = ey(t).

12. u(t) = t− 3t ln t+ 2t2.

CHAPTER 4

Section 4.1

2. Write

U(s) =

∫ t

0

sin(at)e−stdt

and integrate by parts twice. Problem 4 gives an easier method.

4. We know (sin at)′′ = −a2 sin at. Therefore,

L(sin at) = − 1

a2
L((sin at)′′)

= − 1

a2
[(s2L(sin at) − a sin 0 − a cos 0]

= − 1

a2
[(s2L(sin at) − a].

Solving for L(sin at) gives

L(sin at) =
a

s2 + a2
.

6. We have

L(sin t) =
1

s2 + 1
, L(sin(t− π/2)) = L(− cos t) =

−s
s2 + 1

,

and L(hπ/2(t) sin(t− π/2)) = e−pis/2(1/(s2 + 1)).

8. Use, for example,

cosh t = (et + e−t)/2.

So, L(cosh t) = (1/2)( 1
s−1 + 1

s+1 ).

10. We have

L(e−3 + 4 sinkt) =
1

s+ 3
+

4k

s2 + k2
, L(e−3t sin 2t) =

2

(s+ 3)2 + k2
.

12. By definition,

L(u(at)) =

∫ ∞

0

u(at)e−stdt =

∫ ∞

0

u(r)e−(s/a)rd(r/a) =
1

a
U(s/a).
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14. The function exp(t2) grows too fast as t gets large, and so is not of expo-

nential order; the integral diverges.

16. We have

L(f(t)) = L
( ∞∑

n=0

(−1)nhn(t)

)
=

∞∑

n=0

(−1)ne−ns =
1

1 + e−s
.

18. Taking the derivative of formula for the Laplace transform,

U ′(s) =
d

dt

∫ ∞

0

u(t)e−stdt =

∫ ∞

0

u(t)(−t)e−stdt = −tU(s) = −L(tu(t))

Take the inverse transform to get the other formula.

20. Use induction.

22. L(t2h1(t)) = e−sL((t + 1)2) = e−sL(t2 + 2t+ 1).

Section 4.2

2. (a) L(e−6tt4) = 4!/(s+ 6)5.

4. (a) Taking the transform of the differential equation and solving for U(s)

gives

U(s) =
1

s+ 5
+

1

s(s+ 5)
e−2s.

(h) Taking the transform of the differential equation and solving for U(s)

gives

U(s) =
3

(s2 + 9)2
,

giving

u(t) =
1

18
sin(3t) − 1

6
t cos(3t).

6. Taking the transform of each equation, we get sX(x) = a + 2X(s) − Y (s)

and sY (s) = X(s). Then,

sX(s) = a+ 2X(s)− 1

s
X(s), or X(s) =

as

(s− 1)2
.

By partial fractions,

as

(s− 1)2
=

a

s− 1
+

a

(s− 1)2
.

The first term on the right inverts to aet and the second term on the right

inverts to atet. Thus,

x(t) = aet + atet, y(t) = atet.



372 D. Solutions and Hints to Selected Exercises

Section 4.3

2. We have

t ⋆ t2 =

∫ t

0

(t− τ)τ2dτ = t

∫ t

0

(τ2 − τ3) = t(t3/3 − t4)4.

4. L(1 · et) = 1/(s− 1), but L(1) · L(et) = s/(s− 1).

6. (u ⋆ v)(t) =
∫ t

0
u(t− τ)v(τ)dτ = −

∫ 0

t
u(r)v(t− r))dr = (v ⋆ u)(t), where we

made the substitution r = t− τ , dr = −dτ .

10. Taking the transform, s2U(s) − sU(s) = F (s). Therefore,

U(s) =
1

s(s− 1)
F (s).

But,

L−1

(
1

s(s− 1)

)
= −1 + e−t.

Thus,

u(t) = (−1 + e−t) ∗ f(t) =

∫ t

0

(−1 + et−τ )f(τ)dτ.

12. Taking the transform, while using convolution on the integral, gives U(s) =

F (s) +K(s)U(s), which yields U(s) = F (s)/(1 −K(s)). Here, K(s) is the

transform of k(t).

14. Taking the transform,

F (s) =
1√
π
U(s)L

(
1√
t

)
=

1√
π
U(s)

Γ(1/2)

s1/2
.

Then U(s) = F (s)s1/2, and

u(t) = f(t) ∗ L1−(s1/2)(t) = f(t) ∗ t−3/2 1

Γ(−1/2)
.

Section 4.4

2. We have

L(t2h3(t)) = e−3sL((t+ 3)2) = e−3sL(t2 + 6t+ 9)

= e−3s

(
2

s3
+

6

s2
+

9

s

)
.

4. U(s) = (1/s)(3 − e−2s + 4e−πs − 6e−7s).
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6. Solving for U(s), we get

U(s) =
s

(s2 + 4)2
− s

(s2 + 4)2
e−2πs.

Using the table,

u(t) =
1

4
t sin 2t− 1

4
(t− 2π) sin(2(t− 2π))h2π(t).

Note sin(2(t− 2π)) = sin(4t).

8. The differential equation is

q′′ + q = t+ (9 − t)h9(t).

Taking transforms and using the zero initial conditions, we get

U(s) =
1

s2 + 1

(
1

s2
− 1

s2
e−9s

)
.

By convolution,

L−1

(
1

s2(s2 + 1)

)
= t ∗ sin t =

∫ t

0

τ sin(t− τ)dτ.

Similarly, by the switching theorem,

L−1

(
1

s2(s2 + 1)
e−9s

)
=

∫ t−9

0

τ sin(t− 9 − τ)dτ.

10. Taking the transform of the differential equation and solving for U(s) gives

U(s) =
s

s2 + π2
+

π2

s(s2 + π2)
− π2

s(s2 + π2)
e−s.

The first term inverts to cosπt, and the second term inverts to 1 − cosπt

(by convolution), and the third term inverts to 1 − cos(π(t− 1))h1(t).

12. We have f(t) = 1 − 2ha(t) + 2h2a(t) − 2h3a(t) − · · · . Therefore,

L(f(t)) =
1

s

(
2 − 2e−as + 2e−2as − 2e−3as + · · ·

)
− 1

s

=
2

s

∑

n=0

(−1)ne−ans − 1

s

=
2

s

1

1 + e−as
− 1

s
.

Use the fact that that tanhx = sinhx/ coshx; then

1

s
tanh

(as
2

)
=

1

s

1 − e−as

1 + e−as
.
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Section 4.5

2. Solving for the transform,

U(s) =
1

s+ 3
+

1

s+ 3
e−s +

1

s(s+ 3)
e−4s.

Therefore,

u(t) = e−3t + e−3(t−1)h1(t) +
1

3

(
1 − e−3(t−4)

)
h4(t).

4. Solving for the transform

U(s) =
1

s2 + 1
e−2s.

Therefore
u(t) = sin(t− 2)h2(t).

6. Solving for the transform

U(s) =
1

s2 + 4
e−2s − 1

s2 + 4
e−5s.

Therefore

u(t) =
1

2
sin(2(t− 2))h2(t) −

1

2
sin(2(t− 5))h5(t).

8. The transformed equation is

U(s) =
1

s2 + 1

(
1 + e−πs + e−2πs + e−3πs + e−4πs + · · ·

)
=

1

s2 + 1

1

1 − esπ
.

Therefore, from the table of transforms,

u(t) = L−1

(
1

s2 + 1

1

1 − esπ

)
=

∞∑

0

sin(t− nπ)hnπ(t).

Note sin(t− nπ) = (−1)n sin t.

CHAPTER 5

Section 5.1

2. We have x(t) = 2 exp(t), y(t) = −3 exp(t), and x′(t) = 2 exp(t), y′(t) =

−3 exp(t). Substituting into the differential equation shows we have a so-

lution. Also, dividing, y/x = −3/2, so the orbit lies on the straight line

with slope −3/2, in the fourth quadrant. Also, x(0) = 2, y(0) = −3 and

x(t), y(t) → 0 as t→ −∞, x(t), y(t) → ∞ as t→ +∞. The tangent vector

along the orbit is (x′(t), y′(t)) = (2 exp(t),−3 exp(t)).
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4. Taking the derivative of the second equation and substituting from the first

gives y′′+7y′+6y = 0. The characteristic equation has roots, or eigenvalues,

−1 and −6. Therefore, y(t) = c1e
−t + c2e

−6t, and thus x(t) =
∫
y(t)dt =

−c1e−t − (1/6)c2e
−6t. The initial conditions give c1 = −24/5, c2 = 24/5.

As t → −∞, (x(t), y(t)) → (0, 0). Because e−t dominates as e−6t for large

t, the orbit enters the origin tangent to the line

y

x
=

c1e
−t

−c1e−t
= −1.

Section 5.3

2. (a) The right sides of the DEs are proportional, so there are infinitely many

equilibria consisting of the entire line y = −3x. (b) Dividing the two equa-

tions we get dy/dx = − 1
2 , or parallel lines, y = − 1

2x+C, which the orbits

in terms of x and y. In terms of time, we note x′ > 0 when y > −3x,

and x′ < 0 when y < −3x; therefore, the orbits are going to the right as

t → +∞ along the parallel lines to the right of the line of equilibria, and

to the left on the other side of the line of equilibria. As t→ −∞ the orbits

approach the equilibria line.

4. The equations are x′ = −bx + ay, y′ = r + bx − (a + c)y. Setting both to

zero, we find a single equilibrium at x = ar/bc, y = r/c. The x nullcline,

where the vector field is vertical is the straight line y = y = bx/a, and

the y nullcline, where the vector field is horizontal, is the straight line

y = bx/(a+ c) + r/(a+ c); note that this line has a smaller slope than the

former. Finding the directions in the four regions bounded by the nullclines,

we see that all orbits approach the equilibrium as t → +∞. It has the

appearance of a nodal structure.

6. Assume the differential equations are

x′ = ax+ by, y′ = cx+ dy.

Substituting the solution x = e−t, y = 2e−t into the DEs gives

−1 = a+ 2b, −2 = c+ 2d.

Substituting the solution x = e−4t, y = −e−4t into the DEs gives

−4 = a− b, 4 = c− d.

So, we have four equations for a, b, c, and d. Solving gives a = −3, b = 1,

c = 2, d = −2.
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8. The straight-line orbits are

x(t) = c1e
−2t, y(t) = −3c1e

−2t,

and
x(t) = c2e

4t, y(t) = c2e
4t,

These are along straight lines y = −3x and y = x, respectively. The eigen-

values are real of opposite sign, so the origin is a saddle; the negative

eigenvalue −2 corresponds to the separatrix y = −3x, and the rays enter

the origin; the positive eigenvalue 4 corresponds to the separatrix y = x

and come out of the origin. To draw the saddle structure, note that as

t→ +∞, the terms with the positive eigenvalue 4 dominate, and the orbits

approach the line y = x.

10. We check when the eigenvalues are complex with positive real part. The

coefficient matrix is

A =

(
a a

−1 6

)
.

The trace is trA = a + 6 and the detA = 7a. So, a > −6 and a > 0; so,

a > 0. The discriminant is a2−16a+36, and we require a2−16a+36 < 0 to

have complex roots. The roots of this quadratic are a = 8±
√

28, which are

both positive. Because the parabola is concave up, we require 8 −
√

28 <

a < 8 +
√

28.

12. (b) The coefficient matrix is

A =

(
0 1

−12 −7

)
.

We have trA = −7 and detA = 12. The eigenvalues are λ = −3, −4, and

thus (0, 0) is a stable node.

(e) The coefficient matrix is

A =

(
2 5

0 −2

)
.

We have trA = 0 and detA = −2. Therefore, (0, 0) is a saddle.

(j) The coefficient matrix is

A =

(
α β

0 γ

)
.

We have trA = α+ γ > 0 and detA = αγ > 0. Now, the discriminant is

(α+ γ)2 − 4αγ = (α− γ)2 > 0.

Therefore the eigenvalues are real and (0, 0) is an unstable node.
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14. The equilibrium is

L0 =
λ

µ+ µ0
, M0 =

µ

δ
L0 =

µλ

δ(µ+ µ0)
.

The L nullcline is the vertical line L = λ/(µ + µ0) and the straight line

M = (µ/δ)L. Sketching the direction field shows that (L0,M0) is a stable

node.

Section 5.4

2. The equilibria are (1, 0) and (−1, 0); x′ = 0 on the y axis and y′ = 0 on the

parabola y = 1− x2. A sketch of the vector field easily reveals that (−1, 0)

is a saddle point. The point (1, 0) has a circular rotation to it and could be

a spiral or center.

4. The equilibria are (0, 0) and (1/2, 1). The x nullclines are x = 0, y = 1, and

the y nullclines are y = 0, x = 1/2. A sketch of the vector field reveals

(0, 0) is a stable node and (1/2, 1) is a saddle point.

6. The equilibrium (1,−1) clearly shows a saddle structure, and (−1,−1) ap-

pears to be an unstable spiral.

8. x′ = 0 when sin y = 0, or y = ±nπ; and, y′ = 0 when x = 0. Therefore,

there are infinitely many isolated equilibrium along the y axis, at (0,±nπ),

n = 0, 1, 2, ....

10. (a) We have x′ = (x+ y)(x− y), and y′ = x− y. Clearly x′ = y′ = 0 on the

line y = x. So, there is a continuum of equilibria. Dividing the equations,

we get
dx

dy
− x = y,

which is a first-order linear equation for x = x(y). An integrating factor is

e−y. Multiplying by the factor and integrating gives

x = ey

∫
ye−ydy + Cey = −(1 + y) + Cey.

(c) At t = 0, setting y = 0, x = 1/4 gives C = 5/4, and the orbit is

x = −(1 + y) + (5/4)ey. The orbit begins at (1/4, 0) and increases into the

positive xy plane as t→ ∞.

Section 5.5

4. Apply the SIR model. We have N = 500 and I(0) = 25. Then, S(0) = 475.

It takes 4 days to recover, so the recovery rate is r = 1
4 = 0.25. The

average time to get the infection is 1/aN = 2 days, so a = 0.001. From the
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equations, the number that escape infection is 93 and the maximum number

of infected at any one time is Im = 77 individuals, and the maximum occurs

when Sm = r/a = 250.

6. The equations are x′ = rx − axy − h, y′ = −my + bxy. The equilibrium is
(
m

b
,
r

a
− bh

am

)
.

The nonzero equilibrium for the Lotka–Volterra model (h = 0) is (m/b, r/a).

Therefore, harvesting the prey lowers the predator equilibrium!

8. We have x′ = rx − axy, y′ = −my + bxy −M . The equilibrium is
(
m

b
+
Ma

br
,
r

a

)
.

So, migration of the predator increases the prey equilibrium.

10. The equations are S′ = −aSI − vS, I ′ = aSI − rI. Note that S′ < 0, so

S is always decreasing; S′ = 0 only along S = 0. Note that I ′ = 0 along

S = r/a and I = 0. The origin (0, 0) is the only equilibrium in the first

quadrant. In this case, a sketch of the nullclines and vector field shows that

S(t), I(t) → (0, 0) as t → ∞. There are no susceptibles that escape the

disease.

12. Write x′ = x(1 − x − ay), y′ = y(c − cy − bx). The x nullclines are x = 0

and y = (1 − x)/a, and the y nullclines are y = 0 and y = 1 − (b/c)x.

The equilibria are (0, 1), (1, 0), and (0, 0). Note, by the conditions on the

constants, the nonzero nullclines do not intersect each other. It is straight-

forward to sketch the vector field; clearly, (1, 0) is a saddle, and (0, 1) is a

stable node. The origin is an unstable node. Note that the growth rate of

the y species is greater than its death rate, so the y species dominates, as

may be expected.

Section 5.6

2. For the system x′ = f(x, y), y′ = g(x, y) the modified Euler method may be

outlined as follows. Let tn = t0 + nh and xn and yn denote the approxi-

mations of x(tn) and y(tn), where h is the step size. Let x(t0) and y(t0) be

given; then, the predictor is the Euler formula,

x̃n+1 = xn + hf(xn, yn), ỹn+1 = yn + hg(xn, yn).

The corrector is

xn+1 = xn + 0.5h[f(xn, yn) + f(x̃n+1, ỹn+1)]

yn+1 = yn + 0.5h[g(xn, yn) + g(x̃n+1, ỹn+1)].
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CHAPTER 6

Section 6.2

1. det(A− λI) = λ2 − 5λ− 2.

2. x = 3/2, y = 1/6.

4. det(A− λI) = λ2 − 5λ− 2 = 0, so λ = 5
2 ± 1

2

√
33.

5. detA = 0 so A−1 does not exist.

6. If m = −5/3 then there are infinitely many solutions, and if m 6= −5/3, no

solution exists.

7. m = 1 makes the determinant zero.

8. Use expansion by minors.

10. det(A) = −2, so A is invertible and nonsingular.

11. x = a(2, 1, 2)T, where a is any real number.

12. Set c1(2,−3)T+c2(−4, 8)T = (0, 0)T to get 2c1−4c2 = 0 and −3c1+8c2 = 0.

This gives c1 = c2 = 0.

13. Pick t = 0 and t = π.

14. Set a linear combination of the vectors equation to the zero vector and find

coefficients c1, c2, c3.

16. r1(t) plots as an ellipse; r2(t) plots as the straight line y = 3x; r2(t) plots

as a curve approaching the origin along the direction (1, 1)T. Choose t = 0

to get c1 = c3 = 0, and then choose t = 1 to get c2 = 0.

Section 6.3

1. For A the eigenpairs are 3, (1, 1)T and 1, (2, 1)T. For B the eigenpairs are

0, (3,−2)T and −8, (1, 2)T. For C the eigenpairs are ±2i, (4, 1 ∓ i)T.

2. x = c1(1, 5)Te2t + c2(2,−4)Te−3t. The origin has saddle point structure.

3. The origin is a stable node.

4. (a) x = c1(−1, 1)T e−t + c2(2, 3)T e4t (saddle), (c) x = c1(−2, 3)T e−t +

c2(1, 2)T e6t (saddle), (d) x = c1(3.1)T e−4t + c2(−1, 2)T e−11t (stable node),

(f) x(t) = c1e
t(cos 2t− sin 2t) + c2e

t(cos 2t+ sin 2t), y(t) = 2c1e
t cos 2t+

2c2e
t sin 2t (unstable spiral), (h) x(t) = 3c1 cos 3t + 3c2 sin 3t, y(t) =

−c1 sin 3t+ c2 cos 3t (center).
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6. (a) Equilibria consist of the entire line x − 2y = 0. (b) The eigenvalues are

0 and 5; there is a linear orbit associated with 5, but not 0.

7. The eigenvalues are λ = 2 ±
√
a+ 1; a = −1 (unstable node), a < −1

(unstable spiral), a > −1 (saddle).

9. The eigenvalues are never purely imaginary, so cycles are impossible.

Section 6.4

2. The equations are V1x
′ = (q + r)c − qx − rx, V2y

′ = qx − qy. The steady

state is x = y = c. When fresh water enters the system, V1x
′ = −qx− rx,

V2y
′ = qx − qy. The eigenvalues are both negative (−q and −q − r), and

therefore the solution decays to zero. The origin is a stable node.

5. A fundamental matrix is

Φ(t) =

(
2e−4t −e−11t

3e−4t 2e−11t

)
.

The particular solution is xp = −( 9
42 ,

1
21 )Te−t.

6. detA = r2r3 > 0 and tr(A) = r1−r2−r3 < 0. So the origin is asymptotically

stable and both x and y approach zero. The eigenvalues are λ = 1
2 (tr(A)±

1
2

√
tr(A)2 − 4 detA).

7. In the equations in Problem 6, add D to the right side of the first (x′) equa-

tion. Over a long time the system will approach the equilibrium solution:

xe = D/(r1 + r2 + r1r3/r2), ye = (r1/r2)xe.

Section 6.5

1. The eigenpairs of A are 2, (1, 0, 0)T; 6, (6, 8, 0)T; −1, (1,−1, 7/2)T. The

eigenpairs of C are 2, (1, 0, 1)T; 0, (−1, 0, 1)T; 1, (1, 1, 0)T.

2(a). x = c1




1

1

−2



 e−2t + c2




3

−3

2



 e4t + c3




−1

1

0



 e2t.

2(b). x = c1




2

1

2



+c2




cos 0.2t

sin 0.2t

− cos 0.2t− sin 0.2t



+c3




− sin 0.2t

cos 0.2t

− cos 0.2t+ sin 0.2t



 .

2(d). x = c1




1

0

1


 e2t + c2




−1

0

1


+ c3




1

1

0


 et.

4. The eigenvalues are λ = 2, ρ± 1.
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CHAPTER 7

Section 7.1

1. y = C(ex − 1).

2. y2 − x2 − 4x = C.

3. Equilibria are (0, 0) (a saddle structure) and (2, 4) (stable node) and null-

clines: y = x2 and y = 2x.

4. a < 0 (no equilibria); a = 0 (origin is equilibrium); a > 0 (the equilibria are

(−√
a/2, 0) and (

√
a/2, 0), a stable node and a saddle).

6. (−1, 0) (stable spiral); (1, 0) (saddle).

8. (2, 4) (saddle); (0, 0) (stable node). The Jacobian matrix at the origin has a

zero eigenvalue.

10. tr(A) < 0, detA > 0. Thus the equilibrium is asymptotically stable.

12. The force is F = −1 + x2, and the system is x′ = y, y′ = −1 + x2.

The equilibrium (1, 0) is a saddle and (−1, 0) is a center. The latter is

determined by noting that the orbits are 1
2y

2 + x− 1
3x

3 = E.

13. (a) dH
dt = Hxx

′ +Hyy
′ = HxHy +Hy(−Hx) = 0. (c) The Jacobian matrix

at an equilibrium has zero trace. (e)

H =
1

2
y2 − x2

2
+
x3

3
.

14. (0, 0) is a center.

15. (c) The eigenvalues of the Jacobian matrix are never complex.

16. (0, 0), (0, 1
2 ), and (K, 0) are always equilibria. If K ≥ 1 or K ≤ 1

2 then no

other positive equilibria occur. If 1
2 < K ≤ 1 then there is an additional

positive equilibrium.

17. a = 1/8 (one equilibrium); a > 1/8, (no equilibria); 0 < a < 1/8 (two

equilibria).

19. The characteristic equation is λ2 = f ′(x0). The equilibrium is a saddle if

f ′(x0) > 0.

Section 7.2

2. There are no equilibrium, and therefore no cycles.



382 D. Solutions and Hints to Selected Exercises

3. fx + gy > 0 for all x, y, and therefore there are no cycles (by Dulac’s crite-

rion).

4. (1, 0) is always a saddle, and (0, 0) is unstable node if c > 2 and an unstable

spiral if c < 2.

6. (0, 0) is a saddle, (±1, 0) are stable spirals.

7. The equilibria are H = 0, P = φ/a and

H =
εφ

c
− a

b
, P =

c

εb
.

8. In polar coordinates, r′ = r(a−r2), θ′ = 1. For a ≤ 0 the origin is a stable

spiral. For a > 0 the origin is an unstable spiral with the appearance of a

limit cycle at r =
√
a.

9. The characteristic equation is λ2 + kλ + V ′′(x0) = 0 and has roots λ =
1
2 (−k ±

√
k2 − 4V ′′(x0)). These roots are never purely imaginary unless

k = 0.

10. Use Dulac’s criterion.

11. Equilibria at (0, 0), (1, 1, ), and (4, 4).
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advertising model, 79
age-dependent mortality, 83
AIDS, 46
Airy’s equation, 133
Allee effect, 55
Allee, W. C., 55
allometric growth, 45
amplitude, 115
analytic solution, 17
antiderivative, 24
approximate solution, 17
asymptotic stability, 52
asymptotic stability, global, 52
asymptotic stability, local, 52
attractor, 49, 51, 284
augmented array, 262
autonomous, 11
autonomous equation, 22, 47, 51
autonomous equations, 157

basin of attraction, 322
batch reactor, 68
beats, 133
Bernoulli equation, 84, 157
Bessel’s equation, 146
bifurcation, 60, 306
bifurcation diagram, 60
bifurcation parameter, 60
biogeography, 83

boundary condition, 148
boundary condition, flux, 149
boundary condition, insulated, 149
boundary value problem, 148
budworm outbreaks, 57

carbon dating, 8
Cauchy, A., 137
Cauchy–Euler equation, 135, 158
center, 280
change of variables method, 6
characteristic equation, 113, 154, 275
characteristic root, 113
chemostat, 66
coefficient matrix, 213
compartmental model, 203
competition model, 238
conservation of energy, 36, 106, 226
conservative force, 106
constant of integration, 24
constitutive relation, 34
continuously stirred tank reactor, 66
convolution, 178
cooperative model, 238
critical point, 269
critically damped, 117
cycles, 201

damped spring–mass equation, 35
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damped spring-mass equation, 117
delta function, 187
determinant, 213, 257
difference quotient, 99
differential equation, 2
digestion model, 68
dimensionless model, 53
dimensions, 30
direction field, 20
Duffing equation, 249
Dulac’s criterion, 317
dynamical equation, 31

eigenfunction, 150
eigenpair, 274
eigenvalue, 113, 274
eigenvalue problem, 274
eigenvalues of an operator, 150
eigenvector, 274
eigenvector, generalized, 281
electrical circuit, 69
electromotive force (emf), 69
epidemic model, 239
equation of motion, 31
equilibrium, 201
equilibrium solution, 32, 49, 51, 224,

269, 284
erf function, 27
error function, 27
error, in a numerical algorithm, 95
error, local, 96
Euler method, 90, 246
Euler’s formula, 115
Euler, L., 90, 137
exact equation, 85
exponential order, 165

finite difference method, 90
fixed point iteration, 87
forcing term, 74
Fourier’s law, 148
Frobenius method, 140
fundamental matrix, 287
Fundamental Theorem of Calculus, 23

gamma function, 170
general solution, 13, 271
Gompertz model, 58
gradient system, 314
Green’s theorem, 317
growth rate, per capita, 5
growth–decay model, 39

Hamiltonian system, 313

harvesting, 59
harvesting model, 243
heat conduction equation, 148
heat loss coefficient, 6
Heaviside function, 164
Hermite’s equation, 144
Heun’s method, 94
higher-order equations, 153
HIV infection, 330
Holling functional response, 237
Holling, C., 237
homogeneous differential equation, 45,

158
homogeneous equation, 74
Hooke’s law, 34
hyperbolic functions, 119

implicit numerical method, 93
impulse, 185
independent solutions, 112
indicial equation, 135
initial condition, xviii, 13
initial value problem, 13, 112, 196, 224
integral equation, 29
integrating factor, 74
integration by parts, 166
interval of existence, 15, 16
isocline, 20
isolated equilibrium, 51, 224, 269, 284

Jacobian matrix, 301
Jung, C., 31

Kirchhoff’s law, 69

Laplace transform, 162
Laplace transform, inverse, 165
Laplace transforms, Table of, 191
limit cycle, 304
linear equation, 11
linear equation of first order, 73
linear independence of vectors, 264
linearization, 300
logistic model, 48
Lotka, A., 232
Lotka–Volterra equations, 232

MacArthur–Wilson model, 83
malaria, 307
Malthus model, 4
Malthus, T., 4
mathematical model, 29
matrix, 254
matrix inverse, 257
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matrix minor, 257
mechanical-electrical analogy, 111
Michaelis–Menten kinetics, 68
modified Euler method, 94, 247
multiplicity, 154

natural frequency, 116
Newton’s law of cooling, 6
Newton’s law of gravity, 111
Newton’s second law, 31, 104
Newton, I., xvii, 31
node, asymptotically stable, 277, 284
node, degenerate, 281
node, starlike, 282
node, unstable, 277, 284
nonautonomous, 11
nonhomogeneous equation, 74, 121
nonlinear equation, 11
nonsingular matrix, 257
nullcline, 20, 225, 233, 283
numerical solution, 17

Ohm’s law, 70
one-parameter family, 13
orbit, 107, 194, 223, 268
orbit, linear, 270, 274
order, 3
order of a numerical method, 90
overdamped, 117

parameter, 3
partial fraction expansion, 172
particular solution, 13
pendulum equation, 36
period, 116
periodic orbits, 201
perturbation, 52
phase, 115
phase diagram, 107, 197, 224
phase line, 49, 51
phase plane, 107, 194, 268
phase shift, 116
Picard iteration, 86
Picard, E., 86
piecewise continuous, 165
Poincaré, H., 320
Poincaré–Bendixson Theorem, 320
potential energy, 106, 225
power series method, 138
predator–prey model, 232
predictor–corrector method, 94
pure time equation, 24, 157

qualitative method, 17

RC circuit, 71
RCL circuit, 70
RCL circuit equation, 71
reduction of order, 141
refuge model, 243
regular singular point, 140
repeller, 49, 51, 284
resonance, 125, 130, 131
Riccati equation, 145
Rosenzweig–MacArthur model, 238
Routh–Hurewitz criteria, 295
row reduction, 261
Runge–Kutta method, 247
– second order, 94

saddle point, 200, 272, 279, 284
schistosomiasis, 322
semistable, 52
separation of variables, 38, 40, 157
separatrix, 200, 229, 272
SI model, 58
singular matrix, 257
sink, 284
SIR model, 239
SIS model, 59, 243
slope field, 20
solution, 4
– complementary, 77
– homogeneous, 77
– particular, 77
solution, explicit, 41
solution, general, 112, 153
solution, implicit, 41
solution, numerical, 90
solution, singular, 45
source, 284
spiral, asymptotically stable, 279, 284
spiral, unstable, 279, 284
spring constant, 34
spring-mass equation, 35
stability analysis, local, 253, 299, 306
stability, global, 229
stability, local, 229
stable, 206
stable, asymptotically, 229
stable, neutrally, 229, 284
steady-state response, 76, 127
steady-state solution, 32
step size, 90
stepsize, 246
stiffness, spring, 34
structural instability, 100
structure theorem, 78
superposition, 271
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survivorship, 47, 83

technology transfer, 82
thermal conductivity, 148
time domain, 162
time scale, 53
time series, 1, 268
trace, 213, 275
transform domain, 162
transient response, 76, 127
tumor growth model, 58

underdamped, 117

undetermined coefficients, 122, 158
units, 30
unstable, 52, 229

van der Pol equation, 248
variation of parameters, 143, 158, 288
vector field, 197
Verhulst, P., 48
voltage drop, 69
Volterra, V., 232

Wronskian, 143
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