Chapter 1

Generalities

The present chapter serves as an introduction. The first section contains several
historical comments, while the second one is dedicated to a general presentation
of the discipline. The third section reviews the most representative differential
equations which can be solved by elementary methods. In the fourth section we
gathered several mathematical models which illustrate the applicative power of
the discipline. The fifth section is dedicated to some integral inequalities which
will prove useful later, while the last sixth section contains several exercises and

problems (whose proofs can be found at the end of the book).

1.1 Brief History

1.1.1 The Birth of the Discipline

The name of “equatio differentialis’ has been used for the first time in 1676
by Gottfried Wilhelm von Leibniz in order to designate the determination
of a function to satisfy together with one or more of its derivatives a given
relation. This concept arose as a necessity to handle into a unitary and
abstract frame a wide variety of problems in Mathematical Analysis and
Mathematical Modelling formulated (and some of them even solved) by the
middle of the XVII century. One of the first problems belonging to the
domain of differential equations is the so-called problem of inverse tangents
consisting in the determination of a plane curve by knowing the properties
of its tangent at any point of it. The first who has tried to reduce this
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problem to quadratures ! was Isaac Barrow? (1630-1677) who, using a ge-
ometric procedure invented by himself (in fact a substitute of the method
of separation of variables), has solved several problems of this sort. In 1687
Sir Isaac Newton has integrated a linear differential equation and, in 1694,
Jean Bernoulli (1667-1748) has used the integrand factor method in order
to solve some n'"-order linear differential equations. In 1693 Leibniz has
employed the substitution y = tx in order to solve homogeneous equations,
and, in 1697, Jean Bernoulli has succeeded to integrate the homonymous
equation in the particular case of constant coeflicients. Eighteen years
later, Jacopo Riccati (1676-1754) has presented a procedure of reduction
of the order of a second-order differential equation containing only one of
the variables and has begun a systematic study of the equation which in-
herited his name. In 1760 Leonhard Euler (1707-1783) has observed that,
whenever a particular solution of the Riccati equation is known, the latter
can be reduced, by means of a substitution, to a linear equation. More
than this, he has remarked that, if one knows two particular solutions of
the same equation, its solving reduces to a single quadrature. By the sys-
tematic study of this kind of equation, Euler was one of the first important
forerunners of this discipline. It is the merit of Jean le Rond D’Alembert
(1717-1783) to have had observed that an n*M-order differential equation
is equivalent to a system of n first-order differential equations. In 1775
Joseph Louis de Lagrange (1736—1813) has introduced the variation of con-
stants method, which, as we can deduce from a letter to Daniel Bernoulli
(1700-1782) in 1739, was been already invented by Euler. The equations
of the form Pdx + Qdy + Rdz = 0 were for a long time considered absurd
whenever the left-hand side was not an exact differential, although they
were studied by Newton. It was Gaspard Monge (1746-1816) who, in 1787,
has given their geometric interpretation and has rehabilitated them in the
mathematical world. The notion of singular solution was introduced in 1715
by Brook Taylor (1685-1731) and was studied in 1736 by Alexis Clairaut
(1713-1765). However, it is the merit of Lagrange who, in 1801, has defined
the concept of singular solution in its nowadays acceptation, making a net

1By quadrature we mean the method of reducing a given problem to the computation
of an integral, defined or not. The name comes from the homonymous procedure, known
from the early times of Greek Geometry, which consists in finding the area of a plane
figure by constructing, only by means of the ruler and compass, of a square with the
same area.

2Professor of Sir Isaac Newton (1642-1727), Isaac Barrow is considered one of the
forerunners of the Differential Calculus independently invented by two brilliant mathe-
maticians: his former student and Gottfried Wilhelm von Leibniz (1646-1716).



Brief History 3

distinction between this kind of solution and that of particular solution.
The scientists have realized soon that many classes of differential equations
cannot be solved explicitly and therefore they have been led to develop a
wide variety of approximating methods, one more effective than another.
Newton’ statement, in the treatise on fluzional equations written in 1671
but published in 1736, that: all differential equations can be solved by using
power series with undetermined coefficients, has had a deep influence on
the mathematical thinking of the XVIII*" century. So, in 1768, Euler has
imaged such kind of approximation methods based on the development of
the solution in power series. It is interesting to notice that, during this
research process, Euler has defined the cylindric functions which have been
baptized subsequently by the name of whom has succeeded to use them
very efficiently: the astronomer Friedrich Wilhelm Bessel (1784-1846). We
emphasize that, at this stage, the mathematicians have not questioned on
the convergence of the power series used, and even less on the existence of
the “solution to be approximated”.

1.1.2 Major Themes

In all what follows we confine ourselves to a very brief presentation of the
most important steps in the study of the initial-value problem, called also
Cauchy problem. This consists in the determination of a solution x, of a
differential equation =’ = f(¢,x), which for a preassigned value a of the
argument takes a preassigned value &, i.e. x(a) = £ We deliberately do
not touch upon some other problems, as for instance the boundary-value
problems, very important in fact, but which do not belong to the proposed
topic of this book.

As we have already mentioned, the mathematicians have realized soon
that many differential equations can not be solved explicitly. This situation
has faced them several major, but quite difficult problems which have had
to be solved. A problem of this kind consists in finding general sufficient
conditions on the data of an initial-value problem in order that this have
at least one solution. The first who has established a notable result in this
respect was the Baron Augustin Cauchy® who, in 1820, has employed the
polygonal lines method in order to prove the local existence for the initial-
value problem associated to a differential equation whose right-hand side

3French mathematician (1789-1857). He is the founder of Complex Analysis and the
author of the first modern course in Mathematical Analysis (1821). He has observed the
link between convergent and fundamental sequences of real numbers.
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is of class C'. The method, improved in 1876 by Rudolf Otto Sigismund
Lipschitz (1832-1903), has been definitively imposed in 1890 in its most
general and natural frame by Giuseppe Peano*. This explains why, in many
monographs, this is referred to as the Cauchy—Lipschitz—Peano’s method.

As in other cases, rather frequent in mathematics, in the domain of
differential equations, the method of proof has preceded and finally has
eclipsed the result to whose proof has had a decisive role. So, as we have
already mentioned, the method of power series, one of the most in vogue
among the equationists of both XVII and XVIII centuries, has become soon
the favorite approach in the approximation of the solutions of certain initial-
value problems. This method has circumvented its class of applicability
(that class for which the right-hand side is an analytic function) only at the
middle of the XIX century, almost at the same time with the development
of the modern Complex Function Theory. This might explain why, the first
rigorous existence result concerning analytic solutions for an initial-value
problem has referred to a class of differential equations in the complex field
C and not, as we could expect, in the real field R. More precisely, in 1842,
Cauchy, reanalyzing in a critical manner Newton’ statement referring to
the possibility of solving all differential equations in R by means of power
series, has placed this problem within its most natural frame (for the time
being): the Theory of Complex Functions of Several Complex Variables. In
this context, in order to prove the convergence of the power series whose
partial sum defines the approximate solution for an initial-value problem,
he was led to invent the so-called method of majorant series. This method
consists in the construction of a convergent series with positive terms, with
the property that its general term is a majorant for the absolute value of
the general term of the approximate solution’ series. Such a series is called
a majorant for the initial one. The method has been refined by Ernst
Lindel6ff who, in 1896, has proposed a majorant series, better than that
one used by Cauchy, and who has shown that the very subtle arguments
of Cauchy, based on the Theory of Complex Functions of Several Complex
Variables, are also at hand in the real field, and more than this, even by
using simpler arguments.

Another important step concerning the approximation of the solutions
of an initial-value problem is due to Emile Picard (1856-1941) who, in 1890,

4Ttalian mathematician (1858-1932) with notable contributions in Mathematical
Logic. He has formulated the axiomatic system of natural numbers and the Axiom
of Choice. However, his excessive formalism was very often a real brake in the process
of understanding his contributions.



Brief History 5

in a paper mainly dedicated to partial differential equations, has introduced
the method of successive approximations. This method, who has became
well-known very soon, has its roots in Newton’s method of tangents, and has
constituted the starting point for several fundamental results in Functional
Analysis as Banach’s fixed point theorem.

In the very same period was born the so-called Qualitative Theory of
Differential Equations by the fundamental contributions of Henri Poincaré.?
As we have already noticed, the main preoccupation of the equationists of
the XVII and XVIII centuries was to find efficient methods, either to solve
explicitly a given initial-value problem, or at least to approximate its solu-
tions as accurate as possible. Unfortunately, none of these objectives were
realizable, and for that reason, they have been soon abandoned. Without
any doubt, it is the great merit of Poincaré for being the first who has caught
the fact that, in all these cases in which the quantitative arguments are not
efficient, one can however obtain crucial information on a solution which
can be neither expressed explicitly, nor approximated accurately.® More
precisely, he put the problem of finding, at a first stage, of the “allure” of
the curve, associated with the solution in question, leaving aside any con-
tinuous transformation which could modify it. For instance, in Poincaré’s
acceptation, the two curves in R? illustrated in Figure 1.1.1 (a) and (b) can
be identified modulo “allure”, while the other two, i.e. (¢) and (d) in the
same Figure 1.1.1, can not. At the same time it was the birthday of the
modern Theory of Stability. The fundamental contributions of Poincaré, of
James Clerk Maxwell” to the study of the planets’ motions, but especially

5French mathematician (1854-1912), the initiator of the Dynamical System Theory
(an abstract version of the Theory of Differential Equations which is mainly concerned
with the qualitative aspects of solutions) and that of Algebraic Topology. In Les méthodes
nouvelles de la mécanique celéste, Volumes I, II, ITI, Gauthier-Villars, 1892-1893—-1899,
enunciates and applies several stability results to the study of the planets’ motions.

6In his address to the International Congress of Mathematicians in 1908, Poincaré
said: “In the past an equation was only considered to be solved when one had expressed
the solutions with the aid of a finite number of known functions; but this is hardly possible
one time in one hundred. What we can always do, or rather what we should always try
to do, is to solve the qualitative problem so to speak, that is to try to find the general
form of the curve representing the unknown function.” (M. W. Hirsch’s translation.)

"British physicist and mathematician (1831-1879) who has succeeded to unify the
general theories referring the electricity and magnetism establishing the general laws of
electromagnetism on whose basis he has predicted the existence of the electromagnetic
field. This prediction has been confirmed later by the experiments of Heinrich Hertz
(1857-1894). At the same time, he was the first who has applied the general concepts
and results of stability in the study of the evolution of the rings of Saturn.
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those of Alexsandr Mihailovici Lyapunov®, have emerged into a tremendous
stream of a new theory of great practical interest. A similar moment, from
the viewpoint of its importance for the Stability Theory, will come only
after seven decades, with the first results of Vasile M. Popov concerning
the stability of the automatic controlled systems.

@ (b)
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(© (d)

Figure 1.1.1

The last years of the XIX century were, for sure, the most prolific from
the viewpoint of Differential Equations. In those golden times there have
been proved the fundamental results concerning: the local existence of at
least one solution (Peano 1890), the approximation of the solutions (Picard
1890), the analyticity of the solutions as functions of parameters (Poincaré
1890), the simple or asymptotic stability of solutions (Lyapunov 1892),
(Poincaré 1892), the uniqueness of the solution of a given initial-value
problem (William Fogg Osgood 1898). Also in the last two decades of
the XIX century, Poincaré has outlined the concept of dynamical system
in its nowadays meaning and has begun a systematic study of one of the
most important and, at the same time most fascinating problems belong-
ing to the Qualitative Theory of Differential Equations: the classification
of the solutions according to their intrinsic topological properties. These
referential moments have been the starting points of two new mathemati-
cal disciplines: the Dynamical System Theory and the Algebraic Topology
which have developed by their own even from the first years of the XX

8Russian mathematician (1857-1918) who, in his doctoral thesis defended in 1892,
has defined the main concepts of stability as known nowadays. He also has introduced
two fundamental methods of study of the stability problems.
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century. It should be also mentioned that, starting from an astrophysical
problem he has raised in 1885, again Poincaré was the founder of a new
discipline: Bifurcation Theory. Among the most representatives contribu-
tors are: Lyapunov, Erhald Schmidt, Mark Alexsandrovici Krasnoselski,
David H. Sattinger and by Paul Rabinowitz, to list only a few. Also in
the last decade of the XIX century, another fundamental result referring
to the differentiability of the solution with respect to the initial data has
been discovered. Namely, in 1896, Ivar Bendixon has proved the above
mentioned result for the scalar differential equation, in 1897 Peano has ex-
tended it to the case of a system of differential equations, but it was the
merit of Thomas H. Gronwall who, in 1919, using the homonymous integral
inequality he has proved just to this aim, has given the most elegant proof
and, therefore the most frequently used by now.

The beginning of the XX century was been deeply influenced by
Poincaré’s innovating ideas. Namely, in 1920, Garret David Birkhoff has
rigorously founded the Dynamical System Theory. At this point, one should
mention that the subsequent fundamental contributions are due mainly
to Andrej Nikolaevich Kolmogorov?, Vladimir Igorevich Arnold, Jiirgen
Kurt Moser, Joseph Pierre LaSalle (1916-1983), Morris W. Hirsch, Stephen
Smale and George Sell. A special mention in this respect deserves the so-
called KAM Theory, i.e. Kolmogorov—Arnold-Moser Theory. Coming back
to the third decade of the XX century, at that time, a very important
step was made toward a functional approach for such kind of problems.
Birkhoff, together with Oliver Dimon Kellogg were the first who, in 1922,
have used fixed point topological arguments in order to prove some existence
and uniqueness results for certain classes of differential equations. These
topological methods were initiated by Luitzen Egbertus Jan Brouwer!?,
extended and generalized subsequently by Solomon Lefschetz (1984-1972),
and refined in 1934 by Jean Leray and Juliusz Schauder who have expressed
them into a very general abstract and elegant form, known nowadays un-
der the name of Leray—Schauder Topological Degree. Renato Cacciopoli
was the first who, in 1930, has employed the Contraction Principle as a
method of proof for an existence and uniqueness theorem. However, it is

9Russian mathematician (1903-1987). He is the founder of the modern Probability
Theory. He has remarkable contributions in Dynamical System Theory with application
to Hamiltonian systems.

0Dutch mathematician and philosopher (1881-1966). He is one of the founders of the
Intuitionists School. His famous fixed point theorem says that every continuous function
f, from a nonempty convexr compact set K C R™ into K, has at least one fized point
z €K, ie f(zx)=ux.
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the merit of Stefan Banach who, even earlier, i.e. in 1922, has given its
general abstract form known, as a result under the name of Banach’s fized
point theorem, and as a method of proof under the name of the method of
successive approxrimations.

Concerning the qualitative properties of solutions the mathematicians
have focused their attention on the study of the so-called ergodic behavior
beginning with Birkhoff (1931) and continuing with John von Neumann'!
(1932), Kosaku Yosida (1938), Yosida and Shizuo Kakutani (1938), etc.
Due mainly to their applications in Chemistry, Electricity and Biology,
the existence and properties of the so-called limit cycles, whose study was
initiated also by Poincaré (1881), became another subject of great interest.
Motivated by the study of self-sustained oscillations in nonlinear electric
circuits, the theory of limit cycles grew up rapidly since the 1920s and
1930s with the contributions of G. Duffing, M. H. Dulac, B. Van der Pol
and A. A. Andronov. Notable contributions in this topic (especially to
the study of some specific classes of quadratic systems) are mostly due to
Chinese, Russian and Ukralnean mathematicians as N. N. Bautin, A. N.
Sharkovskij, S.-L. Shi, S. I. Yashenko, Y. C. Ye, and others.

In this period Erich Kamke has established the classical theorem on
the continuous dependence of the solution of an initial-value problem on
the data and on the parameters, theorem extended in 1957 by Jaroslav
Kurzweil. Also Kamke, following Paul Montel, Enrico Bompiani, Leonida
Tonelli and Oscar Perron, has introduced the so-called comparison method
in order to obtain sharp uniqueness results. This method proved useful
in the study of some stability problems and, surprisingly, as subsequently
observed by Felix E. Browder, even in the proof of existence theorems.

Concerning the concept of solution, the new type of integral defined in
1904 by Henri Lebesgue, has offered the possibility to extend the classical
theory of differential equations based on the Riemann (in fact Cauchy)
integral to another theory resting heavily upon the Lebesgue integral. This
major step was made in 1918 by Constantin Carathéodory. Subsequent
extensions, based on another type of integral, more general than that of
Lebesgue, and known as the Kurzweil-Henstock integral, have been initiated
in 1957 by Kurzweil.

With the same idea in mind, i.e. to enlarge the class of candidates
to the title of solution, but from a completely different perspective, a new

1 American mathematician born in Budapest (1903-1957). He is the creator of the
Game Theory and has notable contributions in Functional Analysis and in Information
Theory.
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discipline was born: the Theory of Distributions initiated in 1936 by Serghei
Sobolev and definitely founded in 1950-1951 by Laurent Schwartz. Initially
thought as a theory exclusively useful in the linear case, the Theory of
Distributions has proved its efficiency in the study of various nonlinear
problems as well.

Other types of generalized solutions on which to rebuild an effective
theory, especially in the nonlinear case, the so-called wiscosity solutions,
were introduced in 1950 by Eberhard Hopf and subsequently studied by
Olga Oleinik and Paul Lax (1957), Stanislav Kruzkov (1970), Michael G.
Crandall and Pierre-Louis Lions (1983) and Daniel Téataru (1990), among
others. Notable results on the uniqueness problem, very important but at
the same time extremely difficult in this context, have been obtained in
1987 by Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions.

Since 1950, with the publication of the famous counter-example due to
Jean Dieudonné, one has realized that, on some infinite dimensional spaces,
12 only the continuity of the right-hand side is not enough
to ensure the local existence for an initial-value problem. This strange,
but not unexpected situation, was been completely elucidated in 1975 by
Alexsandr Nicolaevici Godunov, who has proved that, for every infinite

as for instance ¢g

dimensional Banach space X there exist a continuous function f: X — X
and £ € X such that the Cauchy problem x' = f(x), x(0) = £ has no local
solution. Maybe from these reasons, starting with the end of the fifties, one
has observed a growing interest in the study of the local existence problem
in infinite dimensional Banach spaces and of some qualitative problems. In
this respect we mention the results of Constantin Corduneanu and Aristide
Halanay.

The development of a functional calculus based on the Theory of Func-
tions of a Complex Variable taking values into a Banach algebra was accom-
plished in parallel with the study of the “Abstract Theory of Differential
Equations”. So, in 1935, Nelson Dunford has introduced the curvilinear
integral of an analytic function with values in a Banach algebra and has
proved a Cauchy type representation formula for the exponential as a func-
tion of an operator. In 1948, Einar Hille and Ko6saku Yosida, starting from
the study of some partial differential equations, has introduced and studied
independently an abstract class of linear differential equations, with possi-
ble discontinuous right hand-side, and have proved the famous generation
theorem concerning Cy-semigroups, known as the Hille—Yosida Theorem.

12We recall that cg is the space of all real sequences approaching 0 as n tends to co.
Endowed with the sup norm this is an infinite dimensional real Banach space.
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The necessary and sufficient condition expressed in this theorem has been
extended in 1967 to the fully nonlinear case, but only in a Hilbert space
frame, by Yukio Komura, while the sufficiency part, by far the most in-
teresting, has been proved in the general Banach space frame in 1971 by
Michael G. Crandall and Thomas M. Liggett. This result'? is known as the
Crandall-Liggett Generation Theorem, while the formula established in the
proof as the Exponential Formula.

In parallel with the extension of the differential equations’ framework
to infinite dimensional spaces via the already mentioned contributions, but
also through those of Philippe Bénilan (1940-2000), Haim Brezis, Toshio
Kato, Jaques—Louis Lions (1928-2001), Amnon Pazy, one has reconsidered
the study of some problems of major interest in this new and fairly general
context. So, in 1979, Ciprian Foiag and Roger Temam have obtained one of
the first deepest results concerning the existence of the inertial manifolds
and have estimated the dimension of such manifolds in the case of the
Navier—Stokes system in fluid dynamics. Results of this kind essentially
state that, some infinite-dimensional systems have, for large values of the
time variable, a “finite-dimensional-type” behavior.

The systematic study of optimal control problems in R", initiated in the
fifties by Lev Pontriaghin (1908-1988), Revaz Valerianovici Gamkrélidze
and Vladimir Grigorievici Boltianski, has been continued in the sixties and
seventies by: Lamberto Cesari, Richard Bellman, Rudolf Emil Kalman,
Wendell Helms Fleming, Jaques—Louis Lions, Hector O. Fattorini, among
others. We notice that Lions was the first who has extended this theory to
the framework of linear differential equations in infinite-dimensional spaces
in order to handle control problems governed by partial differential equa-
tions as well. Notable results in this direction, but in the fully nonlinear
case, have been obtained subsequently by Viorel Barbu.

We conclude these brief historical considerations which reflect rather a
subjective viewpoint of the author and which are far from being complete'?,
by emphasizing that the Theory of Differential Equations is a continuously
growing discipline, whose by now classical results are very often extended
and generalized in order to handle new cases suggested by practice and even
who is permanently enriched by completely new results having no direct

13A simplified version of this fundamental result is presented in Section 3.4 of this
book.

4 The interested reader willing to get additional information concerning the evolution
of this discipline is referred to [Wieleitner (1964)], [Hirsch (1984)] and [Piccinini et al.
(1984)].
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correspondence within its classical counterpart. For this reason, all those
interested in mathematical research may found in this domain a wealth
of various open problems waiting to be solved, or even more, they may
formulate and solve by themselves new and interesting problems.

1.2 Introduction

Differential Equations and Systems. Differential Fquations have their
roots as a “by its own” discipline in the natural interest of scientists to
predict, as accurate as possible, the future evolution of a certain physical,
biological, chemical, sociological, etc. system. It is easy to realize that, in
order to get a fairly acceptable prediction close enough to the reality, we
need fairly precise data on the present state of the system, as well as, sound
knowledge on the law(s) according to which the instantaneous state of the
system affects its instantaneous rate of change. Mathematical Modelling is
that discipline which comes into play at this point, offering the scientist
the description of such laws in a mathematical language, laws which, in
many specific situations, take the form of differential equations, or even of
systems of differential equations.

The goal of the present section is to define the concept of differential
equation, as well as that of system of differential equations, and to give a
brief review of the main problems to be studied in this book.

Roughly speaking, a scalar differential equation represents a functional
dependence relationship between the values of a real valued function, called
unknown function, some, but at least one of its ordinary (partial) derivatives
up to a given order n, and the independent variable(s).

The highest order of differentiation of the unknown function involved in
the equation is called the order of the equation.

A differential equation whose unknown function depends on one real
variable is called ordinary differential equation, while a differential equa-
tion whose unknown function depends on two, or more, real independent
variables is called a partial differential equation. For instance the equation

2"+ =sint,
whose unknown function x depends on one real variable ¢, is an ordinary
differential equation of second order, while the equation

&u Ju

920y Ty
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whose unknown function u depends on two independent real variables x
and y, is a third-order partial differential equation.

In the present book we will focus our attention mainly on the study of
ordinary differential equations which from now on, whenever no confusion
may occur, we simply refer to as differential equations. However, we will
touch upon on passing some problems referring to a special class of par-
tial differential equations whose most appropriate and natural approach is
offered by the ordinary differential equations’ frame.

The general form of an n'*-order scalar differential equation with the
unknown function x is

F(t,z,2,...,z™) =0, (&)

where F is a function defined on a subset D(F) in R"*2 and taking values
in R, which is not constant with respect to the last variable.

Under usual regularity assumptions on the function F' (required by the
applicability of the Implicit Functions Theorem), (€) may be rewritten as

™ = f(t,z, 2, ... Y, (N)

where f is a function defined on a subset D(f) in R"™! with values
in R, which explicitly defines (™) (at least locally) as a function of
t,z,2’, ..., 2"V, by means of the relation F(t,z,2',...,2(™) = 0. An
equation of the form (N) is called n**-order scalar differential equation in
normal form. With few exceptions, in all what follows, we will focus our
attention on the study of first-order differential equations in normal form,
i.e. on the study of differential equations of the form

x = f(tvx)a (O)

where f is a function defined on D(f) C R? taking values in R.
By analogy, if g : D(g) — R™ is a given function, g = (g1, 92,---,9n),
where D(g) is included in R x R™, we may define a system of n first-order

differential equations with n unknown functions: y1, s, ..., Yn, as a system
of the form
/
Yi = gi(t,y1, 92, -+, Yn) 3
{z’:m,...,n, (8)

which, in its turn, represents the componentwise expression of a first-order
vector differential equation

y = g(t,y). V)
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By means of the transformations!®

y=(y1, Y2, yn) = (x,2/,... x(»"1D)
_ (7)
g(tvy)_(y27y3a"'7yna f(tvylvy%"'ayn))v

(N) can be equivalently rewritten as system of n scalar differential equations
with n unknown functions:

Y1 = Y2
Yy = Y3
Yn—1=Yn

y;z = f(t7y1’y27"'7yn>7

or, in other words, as a first-order vector differential equation (V), with g
defined by (7). This way, the study of the equation (N) reduces to the
study of an equation of the type (V) or, equivalently, to the study of a
first-order differential system. This explains why, in all what follows, we
will merely study the equation (V), noticing only, whenever necessary, how
to transcribe the results referring to (V) in terms of (N) by means of the
transformations (7).

We notice that, when the function g in (V) does not depend explicitly
on t, the equation (V) is called autonomous. Under similar circumstances,
the system (8) is called autonomous. For instance, the equation

y =2y
is autonomous, while the equation
y =2+t

is not. We emphasize however that every non-autonomous equation of the
form (V) may be equivalently rewritten as an autonomous one:

2 = h(z), (V)

where the unknown function z has an extra-component (than y). More
precisely, setting z = (z1,292,...,2n41) = (t,¥1,¥2,...,Yn) and defining
h:D(g) Cc R"*! — R+ by

h(z) = (1791(21,227---7Zn+1)a e 7gn(21722a .. -,Zn+1))

15 Transformations proposed by Jean Le Rond D’Alembert.
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for each z € D(g), we observe that (V') represents the equivalent writing
of (V). So, the first-order scalar differential equation y’ = 2y + t may be
rewritten as a first-order vector differential equation in R2, of the form
z' = h(z), where z = (z1,22) = (t,y) and h(z) = (1,222 + 21). Similar
considerations are in effect for the differential system (8) too.

Type of Solutions. As defined by now, somehow descriptive and far from
being rigorous, the concept of differential equation is ambiguous because
we have not specified what is the sense in which the equality (€) should be
understood!®. Namely, let us observe from the very beginning that anyone
of the two formal equalities (€), or (N) may be thought as being satisfied
in at least one of the next three particular meanings described below:

(i) for every t in the domain I, of the unknown function x;
(ii) for every t in I, \ E, with E an exceptional set (finite, countable,
negligible, etc.);
(iii) in a generalized sense which might have nothing to do with the
usual point-wise equality.

It becomes now clear that a crucial problem arising at this stage is
that of how to define the concept of solution for (&) by specifying what
is the precise meaning of the equality (£). It should be noted that any
construction of a rigorous theory of Differential Equations is very sensitive
on the manner in which we solve this starting problem. The following
examples are of some help in order to understand the importance, and to
evaluate the exact “dimension” of this challenge.

Example 1.2.1 Let us consider the so-called eikonal equation
|2'] = 1. (1.2.1)

It is easy to see that the only C' functions, z : R — R, satisfying (1.2.1)
for each t € R are of the form z(t) = t+¢, or z(t) = —t + ¢, with ¢ € R and
conversely. On the other hand, if we ask that (1.2.1) be satisfied for each
t € R, with the possible exception of those points in a finite subset, besides
the functions specified above, we may easily see that any function having
the graph as in Figure 1.2.1 is a solution of (1.2.1) in this new acceptation.

161n fact, we indicated only a formal relation which could define a predicate (the
differential equation) but we did not specify the domain on which it acts (it is defined).
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Figure 1.2.1

Example 1.2.2 Now, let us consider the differential equation

where h : I — R is a given function. It is obvious that if & is continuous,
then z is of class C, while if h is discontinuous, the equation above cannot
have C solutions defined on the whole interval I.

These examples emphasize the importance of the class of functions in
which we agree to accept the candidates to the title of solution. So, if this
class is too narrow, the chance to have ensured the existence of at least one
solution is very small, while, if this class is too broad, this chance, which
is obviously increasing, is drastically counterbalanced by the price paid by
the lack of several regularity properties of solutions. Therefore, the concept
of solution for a differential equation has to be defined having in mind a
compromise, namely that on one hand to let have at least one solution and,
on the other one, each solution to let have sufficient regularity properties in
order to be of some use in practice. From the examples previously analyzed,
it is easy to see that the definition of this concept should take into account
firstly the regularity properties of the function F'. Throughout, we shall
say that an interval is nontrivial if it has nonempty interior. So, assuming
that F is of class C™, it is natural to adopt:

Definition 1.2.1 A solution of the n'"-order scalar differential equation
(&) is a function z : I, — R of class C™ on the nontrivial interval I, which
satisfies (t,z(t),z'(t),...,z(™(t)) € D(F) and

F(t,z(t),2'(t),...2™(#) =0

for each t € I,.
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Definition 1.2.2 A solution of the n*"-order scalar differential equation
in the normal form (N) is a function = : I, — R of class C™ on the nontrivial
interval I, which satisfies (¢, x(t),2’(t),...,z™ Y(t)) € D(f) and

2 () = f(t, x(t),2'(t), ... 2" D(1))
for each t € I,..

Definition 1.2.3 A solution of the system of first-order differential equa-
tions (8) is an n-tuple of functions (y1,y2,...,ys) : I, — R™ of class C' on
the nontrivial interval I, which satisfies (¢,y1(t),y2(t),...,yn(t)) € D(g)
and y;(t) = gi(t,y1(t), y2(t), ..., yn(t)), t = 1,2,...,n, for each t € I,. The
trajectory corresponding to the solution y is the set 7(y) = {y(t); t € I }.

The trajectory corresponding to a given solution y = (y1,y2) of a dif-
ferential system in R? is illustrated in Figure 1.2.2 (a), while the graph of
the solution in Figure 1.2.2 (b).

A

Figure 1.2.2

Definition 1.2.4 A solution of the first-order vector differential equation
(V) is a function y : I, — R™ of class C' on the nontrivial interval I, which
satisfies (¢,y(t)) € D(g) and y/'(t) = g(t, y(t)) for each t € L,. The trajectory
corresponding to the solution y is the set 7(y) = {y(¢); t € I }.

Let us observe that the problem of finding the antiderivatives of a contin-
uous function h on a given interval I may be embedded into a first-order
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differential equation of the form x’ = h for which, from the set of solutions
given by Definition 1.2.1, we keep only those defined on I, the “maximal
domain” of the function h.

Definition 1.2.5 A family {z(-,¢) : I, = R; ¢ = (c1,¢2,...,¢,) € R}
of functions, implicitly defined by a relation of the form

G(t,z,c1,¢9,...,¢n) =0, (9)

where G : D(G) C R""2 — R, is a function of class C™ with respect to
the first two variables, with the property that, by eliminating the constants
c1,Co,...,Cy from the system

% [G(-yz("),c1,¢2,...,¢0)] () =0

d2

@ [G(vx()v C1,C2, ... 7Cn)] (t) =0
:dn

dtin [G<7x()7 C1,C2; ... 7Cn)] (t) =0

and substituting these in (G) one gets exactly (&), is called the general
integral, or the general solution of (&).

Usually, we identify the general solution by its relation of definition
saying that (G) is the general solution, or the general integral of (€).

Example 1.2.3 The general integral of the second-order differential
equation

'’ 4+ a’x =0,
with a > 0, is {z(-, c1,¢2); (c1,c2) € R?}, where
x(t,c1,c0) = c1sinat 4 co cosat

for t € I, .'7. Indeed, it is easy to see that the equation is obtained by
eliminating the constants ¢y, co from the system

(x — ¢y sinat — cocosat) =0
(x — ¢y sinat — ey cosat)” = 0.

17We mention that, in this case, the general integral contains also functions defined
on the whole set R, i.e. for which [ . =R.
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In this case, G : R* — R is defined by
G(t,x,c1,¢0) = x — ¢y sinat — ¢o cos at
for each (t,z,c1,co) € R, and (§) may be equivalently rewritten as
x = ¢y sinat + co cos at,

relation which defines explicitly the general integral. As we shall see later,
in many other specific cases too, in which from (§) one can get the explicit
form of xz as a function of ¢,¢q,ca, ..., ¢y, the general integral of (€) can
be expressed in an explicit form as (¢, ¢1,¢2,...,¢n) = H(t,c1,¢2,...,¢n),
with H : D(H) C R"*! — R a function of class C™.

Problems to be Studied. Next, we shall list several problems which we
shall approach in the study of the equation (V). We begin by noticing that
the main problem we are going to treat is the so-called Cauchy problem, or
initial value problem associated to (V). More precisely, given (a, &) € D(g),
the Cauchy problem for (V) with data a and £ consists in finding of a
particular solution y : I, — R™ of (V), with a € I, and satistying the initial
condition y(a) = £. Customarily a is called the initial time, while £ the
initial state.

In the study of this problem we shall encounter the following subprob-
lems of obvious importance: (1) the existence problem which consists in
finding reasonable sufficient conditions on the function g so that, for each
(a,€) € D(g), the Cauchy problem for the equation (V), with a and &
as data, have at least one solution'®; (2) the uniqueness problem which
consists in finding sufficient conditions on the function g so that, for each
(a,€) € D(g), the Cauchy problem for the equation (V), with a and ¢ as
data, have at most one solution defined on a given interval containing a;
(3) the problem of continuation of the solutions; (4) the problem of the
behavior of the non-continuable solution at the end(s) of the maximal in-
terval of definition; (5) the problem of approximation of a given solution;
(6) the problem of continuous dependence of the solution on both the initial

18In many circumstances, in the process of establishing a mathematical model, one
deliberately ignores the contribution of certain “parameters” whose influence on the
evolution of the system in question is considered irrelevant. For this reason, almost all
mathematical models are not at all identical copies of the reality and, accordingly, a first
problem of great importance we face in this context (problem which is superfluous in the
case of the real phenomenon) is that of the consistency of the model. But this consists
in showing that the model in question has at least one solution.
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datum ¢ and the right-hand side g; (7) the problem of differentiability of
the solution with respect to the initial datum &; (8) the problem of getting
additional information in the particular case in which ¢ : I x R" — R™ and,
for each t € I, g(¢t,) is a linear function; (9) the study of the behavior of
the solutions as t approaches +o0.

1.3 Elementary Equations

The goal of this section is to collect several types of differential equations
whose general solutions can be found by means of a finite number of integra-
tion procedures. Since the integration of real functions of one real variable
is also called quadrature, these equations are known under the name of
equations solved by quadratures.

1.3.1 Egquations with Separable Variables

An equation of the form

= f(t)g(x), (1.3.1)

where f: I — R and ¢ : J — R are two continuous functions with g(y) # 0
for each y € J, is called with separable variables.

Theorem 1.3.1 Let I and J be two nontrivial intervals in R and let
f:I—->Randg:J — R be two continuous functions with g(y) # 0 for
each y € J. Then, the general solution of the equation (1.3.1) is given by

z(t)=G™! ( t: f(s) ds> (1.3.2)

for each t € Dom(x), where ty is a fixed point in 1, and G : J — R is defined

by
Y odr
Gly) = /5 e

Proof. Since g does not vanish on J and is continuous, it preserves con-
stant sign on J. Changing the sign of the function f if necessary, we may
assume that g(y) > 0 for each y € J. Then, the function G is well-defined
and strictly increasing on J.

for each y € J, with £ € J.
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We begin by observing that the function z defined by means of the
relation (1.3.2) is a solution of the equation (1.3.1) which satisfies z(to) = &.
Namely,

/!

v =[o ([ seas)] :(y(G1<;tf®ﬁk))f@)=90dﬂ)ﬂw

for each ¢ in the domain of the function x. In addition, from the definition
of G, it follows that z(tg) = &.

To complete the proof it suffices to show that every solution of the
equation (1.3.1) is of the form (1.3.2). To this aim, let  : Dom(z) — J
be a solution of the equation (1.3.1) and let us observe that this may be

equivalently rewritten as

P
gy 10

for each t € Dom(z). Integrating this equality both sides over [tg,t], we

get
[, ety = [ e

for each ¢t € Dom(x). Consequently we have

Ga(t) = [ f(s)ds,

to

where G is defined as above with £ = z(t9). Recalling that G is strictly
increasing on J, we conclude that it is invertible from its range G(J) into
J. From this remark and the last equality we deduce (1.3.2). O

1.3.2 Linear Equations
A linear equation is an equation of the form
' = a(t)z + b(t), (1.3.3)

where a,b : [ — R are continuous functions on I. If b = 0 on I the equation
is called linear and homogeneous, otherwise linear and non-homogeneous.

Theorem 1.3.2 If a and b are continuous on 1 then the general solu-
tion of the equation (1.3.3) is given by the so-called variation of constants
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formula

(1) = exp (/tt als) ds) ¢+ /tt exp (/t o) dT) b(s)ds  (1.3.4)

for each t € Dom(x), where ty € Dom(z) is fized, £ € R and exp(y) = e¥
for each y € R.

Proof. A simple computational argument shows that = defined by (1.3.4)
is a solution of (1.3.3) which satisfies x(¢y) = £. So, we have merely to show
that each solution of (1.3.3) is of the form (1.3.4) on its interval of definition.
To this aim, let z : Iy — R be a solution of the equation (1.3.3), where I,
is a nontrivial interval included in I. Fix ¢y € Iy and multiply both sides in
(1.3.3) (with t substituted by s) by

exp (— /t o) dT)

where s € [y. After some obvious rearrangements, we obtain

£ (o - | ) -t - [ 1)

for each s € [j. Integrating this equality both sides between ty and ¢ € I,
multiplying the equality thus obtained by

exp ( /t t al(7) dT) ,

we deduce (1.3.4), and this completes the proof. a

Remark 1.3.1 From (1.3.4) it follows that every solution of (1.3.3) may
be continued as a solution of the same equation to the whole interval I.

1.3.3 Homogeneous Equations

A homogeneous equation is an equation of the form

o' =h (;) : (1.3.5)

where h : I — R is continuous and h(r) # r for each r € L.
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Theorem 1.3.3 Ifh:1 — R is continuous and h(r) # r for each r €1,
then the general solution of (1.3.5) is given by

x(t) = tu(t)
for t # 0, where u is the general solution of the equation with separable
variables

!
u =

(h(u) — u).

Proof. We have merely to express ' by means of u and to impose the
condition that = be a solution of the equation (1.3.5). O

S

An important class of differential equations which can be reduced to
homogeneous equations is

t+b
g = STt Ot o (1.3.6)
a91T + agat + by

where a;; and b;, 7,5 = 1,2 are constants and
a%1+a%2+b% >O
a%l + 0,32 + b% > O
According to the compatibility of the linear algebraic system

{a11x+a12t+b1 =0 (AS)

a1 + a22t + b2 = 0,

we distinguish between three different cases. More precisely we have:
Case 1. If the system (AS8) has a unique solution (£, 7) then, by means of
the change of variables

r=y+E
t=s+n,

(1.3.6) can be equivalently rewritten under the form of the homogeneous
equation below

Yy
. allg + aiz
y =g
a21g + ao2

Case II. If the system (AS8) has infinitely many solutions, then there exists
A # 0 such that

(@11, a12,b1) = A (@21, a22,b2)
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and therefore (1.3.6) reduces to =’ = A;
Case III. If the system (AS) is incompatible then there exists A # 0 such
that

{ (a11,a12) = A (a2, a)
(a11,a12,b01) # A(az21, a2z, ba)

and, by means of the substitution y = as1x + agst the equation reduces to
an equation with separable variables.

1.3.4 Bernoulli Equations

An equation of the form
' = a(t)xr + b(t)z, (1.3.7)

where a,b : I — R are non-identically zero continuous functions which are
not proportional on I, and o € R\ {0, 1}, is called Bernoulli equation.

Remark 1.3.2 The restrictions imposed on the data a, b and « can be
explained by the simple observations that: if @ = 0 then (1.3.7) is with
separable variables; if there exists A € R such that a(t) = A\b(t) for each
t €1, (1.3.7) is with separable variables too; if b = 0 then (1.3.7) is linear
and homogeneous; if & = 0 then (1.3.7) is linear; if & = 1 then (1.3.7) is
linear and homogeneous.

Theorem 1.3.4 Ifa,b:1 — R are continuous and non-identically zero
on I and o € R\ {0,1} then z is a positive solution of the equation (1.3.7)
if and only if the function y, defined by

y(t) = ' 7(¢) (1.3.8)

for each t € Dom(z), is a positive solution of the linear non-homogeneous
equation

y = (1—a)alt)y+ (1 — a)b(t). (1.3.9)

Proof. Let x be a positive solution of the equation (1.3.7). Expressing
2’ as a function of y and y’ and using the fact that x is a solution of (1.3.7)
we deduce that y is a positive solution of (1.3.9). A similar argument shows
that if y is a positive solution of the equation (1.3.9), then x given by (1.3.8)
is, in its turn, a positive solution of (1.3.7), and the proof is complete. [
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1.3.5 Riccati Equations

An equation of the form
x' = a(t)z + b(t)x? + c(t), (1.3.10)

where a,b,c: I — R are continuous, with b and ¢ non-identically zero on I
is called Riccati Equation.

By definition we have excluded the cases b = 0 when (1.3.10) is a linear
equation and ¢ = 0 when (1.3.10) is a Bernoulli equation with o = 2.

Remark 1.3.3 In general, there are no effective methods of solving a
given Riccati equation, excepting the fortunate case when we dispose of an
a priori given particular solution. The next theorem refers exactly to this
particular but important case.

Theorem 1.3.5 Let a,b,c : I — R be continuous with b and ¢ non-
identically zero on 1. If p : J — R is a solution of (1.3.10), then the general
solution of (1.3.10) on J is given by

z(t) = y(t) + (1),
where y is the general solution of the Bernoulli equation
y' = (a(t) +20(t)e(t)y + b(t)y*.

Proof. One verifies by direct computation that x = y+ ¢ is a solution of
the equation (1.3.10) if and only if y = & — ¢ is a solution of the Bernoulli
equation above. O

1.3.6 Exact Differential Equations

Let D be a nonempty and open subset in R? and let g,k : D — R be two
functions of class C! on D, with h(t,z) # 0 on D. An equation of the form

,g(tx)
7 = ) (1.3.11)

is called ezact if there exists a function of class C%, F : D — R, such that

oF

E (ta 17) = —g(t,ﬂj)

>

(1.3.12)
oF
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The condition above shows that —g(t, z) dt+ h(t, ) dz is the differential
dF of the function F' calculated at (¢,z) € D.

Theorem 1.3.6  If (1.3.11) is an exact equation, then its general solution
is implicitly given by

F(t,z) =c, (1.3.13)
where F : D — R satisfies (1.3.12), and ¢ ranges over F(D).

Proof. 1If (1.3.11) is an exact differential equation then z is one of its
solutions if and only if

—g(t,z(t)) dt + h(t,z(t)) dz(t) = 0

for t € Dom(x), equality which, by virtue of the fact that F satisfies
(1.3.12), is equivalent to

dF(t,z(t)) = 0

for each ¢t € Dom(z). Since this last equality is, in its turn, equivalent to
(1.3.13), the proof is complete. O

Theorem 1.3.7 If D is a simply connected domain, then a necessary and
sufficient condition in order that (1.3.11) be exact is

oh _0g
E (t,l’) - _g (t,l’),

for each (t,z) € D.
For the proof see Theorem 5 in [Nicolescu et al. (1971b)], p. 187.

1.3.7 Equations Reducible to Exact Differential Equations

In general if the system (1.3.12) has no solutions the method of finding
the general solution of (1.3.11) described above is no longer applicable.
There are however some specific cases in which, even though (1.3.12) has
no solutions, (1.3.11) can be reduced to an exact equation. We describe
in what follows such a method of reduction known under the name of the
integrant factor method. More precisely, if (1.3.11) is not exact, one looks
for a function p : D — R of class C! with p(¢,z) # 0 for each (t,z) € D
such that

—p(t,x)g(t,x) dt + p(t,x)h(t,x) dx
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be the differential of a function F' : D — R. Assuming that D is simply
connected, from Theorem 1.3.7, we know that a necessary and sufficient
condition in order that this happen is that

ap g

h(t,x)% (t,z) + g(t,x)% (t,z) + (&r (t,z) + % (t,a:)) p(t,x) =0

for each (t,z) € D. This is a first-order partial differential equation with
the unknown function p. We shall study the possibility of solving such kind
of equations later on in Chapter 6. By then, let us observe that, if

ris (o 5 ) = 1)

does not depend on x, we can look for a solution p of the equation above
which does not depend on = too. This function p is a solution of the linear
homogeneous equation

p(t) = =F(B)p(t).
Analogously, if g(t,z) # 0 for (¢,2) € D and
1 (9 Oh
9(t,x) <6m &)+ 5 (tvx)) = k(z),

does not depend on ¢, we can look for a solution p of the equation above
which does not depend on t too.

1.3.8 Lagrange Equations
A differential equation of the non-normal form
z = tp(a’) + ()

in which ¢ and v are functions of class C* from R in R and ¢(r) # r for
each r € R, is called Lagrange Equation. This kind of differential equation
can be integrated by using the so-called parameter method. By this method
we can find only the solutions of class C? under the parametric form

{tﬂm

z=2z(p), peR.

More precisely, let = be a solution of class C? of the Lagrange equation.
Differentiating both sides of the equation, we get

./E/ — (p(x/) —|—t30/(l‘/) xl/ _'_w/(xl) x/l.
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Denoting by 2’ = p, we have 2" = p’ and consequently

dp _ o(p) —p

dt — te'(p) + ¢ (p)
Assuming now that p is invertible and denoting its inverse by t = ¢(p), the
above equation may be equivalently rewritten as

a __ db) , ¥k

dp  olp)—p  wlp)—p
But this is a linear differential equation which can be solved by the variation
of constants method. We will find then t = 6(p,c) for p € R, with ¢

constant, from where, using the initial equation, we deduce the parametric

equations of the general C? solution of the Lagrange Equation, i.e.

{t=9(p70)

x = 0(p,c)p(p) +¢(p), peR

1.3.9 Clairaut Equations

An equation of the form
x = ta' + ('),

where 1) : R — R is of class C? is called Clairaut equation. This can be
solved also by the parameter method. More precisely, let x be a solution of
class C? of the equation. Differentiating both sides the equation, we get

2(t+ /(@) = 0.

Denoting by z’ = p, the equation above is equivalent to p’(t + ¥'(p)) = 0.
If p" = 0 it follows that z(¢) = ct + d, with ¢,d € R, from where, imposing
the condition on z to satisfy the equation, we deduce the so-called general
solution of the Clairaut equation

x(t) = ct + ()

for t € R, where ¢ € R. Obviously, these equations represent a family of
straight lines. If ¢t + ¢'(p) = 0 we deduce

{t= —¢'(p)
T = —Pwl(p) + ¢(p)7 peE R?

system that defines a plane curve called the singular solution of the Clairaut
equation and which, is nothing but the envelope of the family of straight
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lines in the general solution. We recall that the envelope of a family of
straight lines is a curve with the property that the family of straight lines
coincides with the family of all tangents to the curve.

Remark 1.3.4 In general, Clairaut equation admits certain solutions
which are merely of class C'. Such a solution can be obtained by continuing
a particular arc of curve of the singular solution with those half-tangents at
the endpoints of the arc in such a way to get a C' curve. See the solutions
to Problems 1.11 and 1.12.

1.3.10 Higher-Order Differential Equations

In what follows we shall present two classes of n*P-order scalar differential
equations which, even though they can not be solved by quadratures, they
can be reduced to equations of order strictly less than n. Let us consider
for the beginning the incomplete n'"-order scalar differential equation

Ft,g® D ) =, (1.3.14)

where 0 < k < n and F : D(F) c R* %2 — R. By means of the
substitution y = z(*) this equation reduces to an (n — k)" -order scalar
differential equation with the unknown function y

F(t7 y7 y’? R 7y(n7k)) = O'

Let us assume for the moment that we are able to obtain the general solution
y=uy(t,c1,ca,...,cn_k) of the latter equation. In these circumstances, we
can obtain the general solution x(t,cy,ca,...,¢,) of the equation (1.3.14)
by integrating k-times the identity 2(*) = y. Namely, for a € R suitably
chosen, we have

1 K _
x(t,01,02,...,cn):m/ (t—s)’C 1y(s,01,62,...70n,k)d5

k
Z i—1
+ cnkaritZ )
i=1

where ¢p—k4+1,Cn—k+2,.-.,¢n € R are constants appeared in the iterated
integration process.
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Example 1.3.1 Find the general solution of the third-order scalar dif-
ferential equation

1
2" = —;x" +3t, t>0.
The substitution 2"/ = y leads to the non-homogeneous linear equation
, 1
Yy = —¥y+3t, t>0

whose general solution is y(t, ;) = t?+c; /t for t > 0. Integrating two times
the identity " = y we get x(t,c1,co,c3) = t*/12+ ¢1(t Int — t) + cat + c3.

A second class of higher-order differential equations which can be re-
duced to equations whose order is strictly less than the initial one is the
class of autonomous higher-order differential equations. So, let us consider
the autonomous nt"-order differential equation

F(z,2,...,2™) =0, (1.3.15)

where F: D(F) C R"*! — R. Let us denote by p = 2/, and let us express
p as a function of x. To this aim let us observe that

dp dp dx dp
T At dxdt dgc

2 = d dp d dp D,
dt da: ~ dx dsc

"

A
In this way, kfor each k =1,2,...,n, ) can be expressed as a function of
-1
P, gg, e (‘fz,c—l Substituting in (1.3.15) the derivatives of z as functions
n—1
of p, dw, cey j‘;n r we get an (n — 1)"-order differential equation.

Example 1.3.2 The second-order differential equation " + ¢ sinx = 0,
i.e. the pendulum equation, reduces by the method described above to the
first-order differential equation (with separable variables) pg—ﬁ = —9Isinw
whose unknown function is p = p(z).
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1.4 Some Mathematical Models

In this section we shall present several phenomena in Physics, Biology,
Chemistry, Demography whose evolutions can be described highly accurate
by means of some differential equations, or even systems of differential
equations. We begin with an example from Physics, became well-known due
to its use in archeology as a tool of dating old objects. We emphasize that,
in this example, as in many others that will follow, we shall substitute the
discrete mathematical model, which is the most realistic by a continuously
differentiable one, and this for pure mathematical reasons. More precisely,
in order to take advantage of the concepts and results of Mathematical
Analysis, we shall assume that every function which describes the evolution
in time of the state of the system: the number of individuals in a given
species, the number of molecules in a given substance, etc., is of class C!
on its interval of definition, even though, in reality, this takes values in a
very large but finite set. From a mathematical point of view this reduces to
the substitution of the discontinuous function z,, whose graph is illustrated
in Figure 1.4.1 as a union of segments which are parallel to the Ot axis, by
the function = whose graph is a curve of class C'. See Figure 1.4.1.

X s the graph of x.

T the graph of x

Figure 1.4.1



Some Mathematical Models 31

1.4.1 Radioactive Disintegration

In 1902 Ernest Rutherford Lord of Nelson'® and Sir Frederick Soddy?" have
formulated the law of radioactive disintegration saying that the instanta-
neous rate of disintegration of a given radioactive element is proportional
to the number of radioactive atoms existing at the time considered, and does
not depend on any other external factors. Therefore, denoting by z(t) the
number of non disintegrated atoms at the time ¢ and assuming that x is a
function of class C* on [0, +00), by virtue of the above mentioned law, we
deduce that

for every t > 0, where a > 0 is a constant, specific to the radioactive
element, called disintegration constant and which can be determined exper-
imentally with a sufficient degree of accuracy. This is a first-order linear
homogeneous differential equation, whose general solution is given by

z(t) = ce”* = z(0)e*

for ¢t > 0, with c € Ry.

1.4.2 The Carbon Dating Method

This method?! is essentially based on similar considerations. So, following
[Hubbard and West (1995)], Example 2.5.4, p. 85, we recall that living
organisms, besides the stable isotope C'2, contain a small amount of ra-
dioactive isotope C''* arising from cosmic ray bombardment. We notice that
C'* enters the living bodies during, and due to, some specific exchange pro-
cesses, such that the ration C1*/C1? is kept constant. If an organism dies,
these exchange processes stop, and the radioactive C''* begins to decrease
at a constant rate, whose approximate value (determined experimentally) is
1/8000, i.e. one part in 8000 per year. Consequently, if z:(¢) represents this
ratio C**/C12, after t years from the death, we conclude that the function

19British chemist and physicist born in New Zealand (1871-1937). Laureate of the
Nobel Prize for Chemistry in 1908, he has succeeded the first provoked transmutation
of one element into another: the Nitrogen into Oxygen by means of the alpha radiations
(1919). He has proposed the atomic model which inherited his name.

20British chemist (1877-1956). Laureate of the Nobel Prize for Chemistry in 1921.

21The carbon-14 method has been proposed around 1949 by Willard Libby.
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t — x(t) satisfies

1
8000

Consequently, if we know x(7T), we can find the number T, of years after
death, by means of

T = 8000 1In

To
z(T)’
where 7o is the constant ratio C1*/C'? in the living matter. For more
details on similar methods of dating see [Braun (1983)].

1.4.3 Equations of Motion

The equations of motion of n-point particles in the three-dimensional Eu-
clidean space are described by means of Newton second law saying that
“Force equals mass times acceleration”. Indeed, in this case, this funda-
mental law takes the following mathematical expression

mizy (t) = Fy(z;(t), i=1,2,...,n,

where z; is the Cartesian coordinate of the i*P-particle of mass m; and F}
is the force acting on that particle. According to what kind of forces are
involved: strong, weak, gravitational, or electromagnetic, we get various
equations of motion. The last two forces, i.e. occurring in gravitation and
electromagnetism, can be expressed in a rather simple manner in the case
when the velocities of the particles are considerably less than the speed of
light. In these cases, the F;’s are the gradients of newtonian and coulombic
potentials, i.e.

— (km;m; — eze;)
— 3 Al 1Cj5 )
2 oy =P
where k is the gravitational constant and e; is the charge of the i*"-particle.
For a more detailed discussion on this subject see [Thirring (1978)].

As concerns the case of only one particle moving in the one-dimensional

space, i.e. in a straight line, we mention:

1.4.4 The Harmonic Oscillator

Let us consider a particle of mass m that moves on a straight line under
the action of an elastic force. We denote by x(t) the abscissa of the particle
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at the time ¢ and by F'(x) the force exercised upon the particle in motion
situated at the point of abscissa x. Since the force is elastic, F'(z) = —kz
for each z € R, where k& > 0. On the other hand, the motion of the
particle should obey Newton’s Second Law which, in this specific case, takes
the form F'(z(t)) = ma(t), where a(t) is the acceleration of the particle
at the time t. But a(t) = 2”(t) and denoting by w? = k/m, from the
considerations above, it follows that x has to verify the second-order scalar
linear differential equation:

2 +w?r =0,

called the equation of the harmonic oscillator. As we have already seen in
Example 1.2.3, the general solution of this equation is

x(t,c1,c2) = ¢ sinwt + ¢o cos wt

for t € R.

1.4.5 The Mathematical Pendulum

Let us consider a pendulum of length ¢ and let us denote by s(¢) the length
of the arc curve described by the free extremity of the pendulum by the
time t. We have s(t) = £x(t), where z(t) is the measure expressed in radian
units of the angle between the pendulum at the time ¢ and the vertical axis
Oy. See Figure 1.4.2.

The force which acts upon the pendulum is F' = mg, where g is the
acceleration of gravitation. This force can be decomposed along two com-
ponents, one having the direction of the thread, and another one having
the direction of the tangent at the arc of circle described by the free end
of the pendulum. See Figure 1.4.2. The component having the direction
of the thread is counterbalanced by the resistance of the latter, so that the
motion takes place only under the action of the component —mg sin z(t).

But z should obey Newton’ Second Law, which in this case takes the
form of the second-order scalar differential equation mfx” = —mgsinz, or
equivalently

2+ %sinx =0,

nonlinear equation called the equation of the mathematical pendulum , or
the equation of the gravitational pendulum.



34 Generalities

X(t)

Figure 1.4.2

If we intend to study only the small oscillations, we can approximate
sinx by x and we obtain the equation of the small oscillations of the pen-
dulum

%x:O,

x//+
a second-order scalar linear differential equation. For this equation, which
is formally the same with that of the harmonic oscillator, we know the
general solution, i.e.

z(t,c1,c2) = 1 8in \/gt + ¢y cos \/gt

for t € R, where ¢1,co € R.

1.4.6 Two Demographic Models

A first demographic model describing the growth of the human population
was proposed in 1798 by Thomas Robert Malthus.?? We shall present here
a continuous variant of the model proposed by Malthus. More precisely,
if we denote by z(t) the population, i.e. the number of individuals of a
given species at the time ¢, and by y(¢) the subsistence, i.e. the resources
of living, according to Malthus’ Law: the instantaneous rate of change of
x at the time t is proportional with x(t), while the instantaneous rate of

22British economist (1766-1834). In his An essay on the principle of population as
it affects the future improvement of society (1798) he has enunciated the principle sti-
pulating that a population, which evolves freely increases in a geometric ratio, while
subsistence follows an arithmetic ratio growth. This principle, expressed as a discrete
mathematical model, has had a deep influence on the economical thinking even up to
the middle of the XX century.
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change of the subsistence is constant at any time. Then we have the fol-
lowing mathematical model expressed by means of a system of first-order
differential equations of the form

' = cx
y =k,
where ¢ and k are strictly positive constants. This system of uncoupled

equations (in the sense that each equation contains only one unknown func-
tion) can be solved explicitly. Its general solution is given by

{.T(t,f) = gect
y(t,m) =n+kt

for t > 0, where £ and 7 represent the population and respectively the
subsistence, at the time ¢ = 0. One may see that this model describes rather
well the real phenomenon only on very short intervals of time. For this
reason, some more refined and more realistic models have been proposed.
The aim was to take into consideration that, at any time, the number of
individuals of a given species can not exceed a certain critical value which
depends on the subsistence at that time. So, if we denote by h > 0 the
quantity of resources necessary to one individual to remain alive after the
time ¢, we may assume that x and y satisfy a system of the form

{xzcx(z—x)

y = k.

~

This system describes a more natural relationship between the subsistence
and the growth, or decay, of a given population. In certain models, as
for instance in that one proposed in 1835 by Verhulst, for simplicity, one
considers k = 0, which means that the subsistence is constant (y(t) = n for
each t € R). Thus, one obtains a first-order nonlinear differential equation
of the form

2 = cx(b— x),

for ¢ > 0, where b = n/h > 0. This equation, i.e. the Verhulst model,
known under the name of logistic equation, is with separable variables and
can be integrated. More precisely, the general solution is

b/.t€Cbt

T = 1+Iuecbt
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for ¢ > 0, where g > 0 is a constant. To this solution we have to add
the singular solution x = b, eliminated during the integration process. In
order to individualize a certain solution x from the general one we have to
determine the corresponding constant p. Usually this is done by imposing
the initial condition

2(0) = b

1+p

where £ represents the number of the individuals at the time ¢ = 0, number
which is assumed to be known. We deduce that the solution z(-, &) of the
logistic equation that satisfies the initial condition x(0, &) = £ is given by

3

bft’:’Cbt
tE) = ————
fL'( 75) b _|_ g(ecbt _ 1)
for each t > 0.
All the models described above can be put under the general form

¥ =d(t,x),

where d(t,x) represents the difference between the rate of birth and the
rate of mortality corresponding to the time ¢ and to a population x.

1.4.7 A Spatial Model in Ecology

Following [Neuhauser (2001)], we consider an infinite number of sites which
are linked by migration and we assume that all sites are equally accessible
and no explicit spatial distances between sites are taken into consideration.
We denote by x(t) the number of occupied sites and we assume that the
time is scaled so that the rate at which the sites become vacant equals 1.
Then, assuming that the colonization rate =’ is proportional to the product
of the number of occupied sites and the vacant sites, we get the so-called
Levins Model

¥ =X(l-2)—=x

which is formally equivalent to the logistic equation.

1.4.8 The Prey-Predator Model

Immediately after the First World War, in the Adriatic Sea area, a signifi-
cant decay of the fish population has been observed. This decay, at the first
glance in contradiction with the fact that almost all fishermen in the area,
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enrolled in the army, were in the impossibility to practice their usual job,
was a big surprise. Under these circumstances, it seems to be quite natural
to expect rather a growth instead of a decay of the fish population. In
his attempt to explain this strange phenomenon, Vito Volterra?® has pro-
posed a mathematical model describing the evolution of two species both
living within the same area, but which compete for surviving. Namely, in
[Volterra (1926)], he considered two species of animals living in the same
region, the first one having at disposal unlimited subsistence, species called
prey, and the second one, called predator, having as unique source of sub-
sistence the members of the first species. Think of the case of herbivores
versus carnivores. Denoting by x(t) and respectively by y(t) the population
of the prey species, and respectively of the predator one at the time ¢, and
assuming that both = and y are function of class C*', we deduce that x and
y have to satisfy the system of first-order nonlinear differential equations

' = (a— ky)x
{y, — (b ha)y, (1.4.1)

where a,b, k,h are positive constants. The first equation is nothing else
than the mathematical expression of the fact that the instantaneous rate
of growth of = at the time ¢ is proportional with the population of the prey
species at the time considered (z' = ax—...) while the instantaneous rate of
decay of x at the same time ¢ is proportional with the number of all possible
contacts between prey and predators at the same time ¢t (' = --- — kyx).
Analogously, the second equation expresses the fact that the instantaneous
rate of decay of y at the time t is proportional with the population of the
predator species at that time ¢ (y' = —by...) while the instantaneous rate
of growth of y at the same time ¢ is proportional with the number of all
possible contacts between prey and predators. It should be noticed that the
very same model was been proposed earlier by [Lotka (1925)] and therefore
the system (1.4.1) is known under the name of Lotka—Volterra System

As we shall see later on?*, each solution of the LotkaVolterra System
(1.4.1) with nonnegative initial data has nonnegative components as long
as it exists, while each solution with positive initial data is periodic (with
the principal period depending on the initial data). The trajectory of such
solution is illustrated in Figure 1.4.3 (a), while its graph in Figure 1.4.3

(b).

23Ttalian mathematician (1860-1940) with notable contributions in Functional Analy-
sis and in Applied Mathematics (especially in Physics and in Biology).
24See Problems 6.1, 6.3, 6.4 .
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@ (b)

Figure 1.4.3

For this reason the function ¢ — xz(t) + y(t), which represents the total
number of animals in both species at the time ¢, is periodic too, and thus
it has infinitely many local minima. Under these circumstances, it is not
difficult to realize that, the seemingly non-understandable decay of the fish
population in the Adriatic Sea was nothing else but a simple consequence
of the fact that the moment in question (the end of the First World War)
was quite close to a local minimum of the function above.

Finally, let us observe that the system above has two constant solutions
called (for obvious reasons) stationary solutions, or equilibria: (0,0) and
(b/h,a/k). The first one has the property that, there exist solutions of
the system, which start from initial points as close as we wish to (0,0),
but which do not remain close to (0,0) as ¢ tends to infinity. Indeed, if at
a certain moment the predator population is absent it remains absent for
all ¢, while the prey population evolves obeying the Malthus’ law. More
precisely, the solution starting from the initial point (£,0), with £ > 0, is
(z(t),y(t)) = (£e,0) for t > 0, and this obviously, moves off (0,0) as t
tends to infinity. For this reason we say that (0,0) is unstable with respect
to small perturbations in the initial data. We shall see later on that the
second stationary solution is stable with respect to small perturbations in
the initial data. Roughly speaking, this means that, all solutions having the
initial data close enough to (b/h, a/k) are defined on the whole half-axis and
remain close to the solution (b/h,a/k) on the whole domain of definition.
The precise definition of this concept will be formulated in Section 5.1. See
Definition 5.1.1.
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1.4.9 The Spreading of a Disease

In 1976 A. Lajmanovich and J. Yorke have proposed a model of the spread of
a disease which confers no immunity. Following [Hirsch (1984)], we present
a slight generalization of this model. We start with the description of a
very specific variant and then we shall approach the model in its whole
generality. More precisely, let us consider a disease who could affect a
given population and who confers no immunity. This means that anyone
who does not have the disease at a given time is susceptible to infect, even
though he or she has already been infected, but meanwhile recovered. Let
us denote by p the population which is assumed to be constant (assumption
which is plausible if, for instance, during the spreading of the disease there
are neither births, nor deaths) and by z the number of infected people in
the considered population. As we have already mentioned at the beginning
of this section, we may assume that x is a positive continuously differen-
tiable function of the time variable ¢. Consequently, p — = is a nonnegative
continuously differentiable function too. Obviously, for each t > 0, p — x(t)
represents the number of those susceptible to be infected at the time t.
Then, if we assume that, at any time ¢, the instantaneous rate of change of
the number of infected members is proportional to the number of all pos-
sible contacts between infected and non-infected members, number which
obviously equals z(t)(p — z(t)), we deduce that x must obey the following
nonlinear differential equation

' =ax(p — 1),

where a > 0 is constant. This is an equation with separable variables, of
the very same form as that described in the Verhulst’s model, and whose
general solution is given by

plueapt
1+ peart’

where 7 is a positive constant. To this general solution we have to add the
singular stationary solution x = p, eliminated in the integration process.
As in the case of the logistic equation, the solution z(-,£) of the equation
above, which satisfies the initial condition z(0,&) = &, is

pfeapt

z(t,§) = Pt (e —1)
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for each t > 0. It is of interest to note that, for each £ > 0, we have

lim x(t,&) = p,

t——+oo

relation which shows that, in the absence of any external intervention
(cure), a population which has at the initial moment a positive number
& > 0 of infected, tends to be entirely infected. The graph of z(-,&) is
illustrated in Figure 1.4.4.

Figure 1.4.4

We may now proceed to a more general case. More precisely, let us
consider that the population in question is divided into n disjoint classes
(on social criteria, for instance) each one having a constant number of
members. We denote by p; the cardinal of the class ¢ and by x; the number
of infected in the class i, ¢ = 1,2,...,n. Then, the number of susceptible
in the class ¢ is p; — x;. As above, from pure mathematical reasons, we
shall consider that x; is a positive continuously differentiable function of
the time variable . We denote by R; the rate of infection corresponding
to the class i and by C; the rate of recovering corresponding to the same
class i. For the sake of simplicity, we shall assume that R; depends only on
x = (x1,22,...,%,), while C; depends only on z;, i = 1,2,...,n. Finally,
it is fairly realistic to consider that % >0fori,j=1,2,...,n, relations
which express the fact that the rate of infection R; is increasing with respect
to each of its arguments z;, that represents the number of infected in the
class j.

Let us observe that all these assumptions lead to the mathematical
model described by the system of first-order nonlinear differential equations

x, = Ri(z) — Ci(x;) (i=1,2,...,n).

We mention that the model proposed by A. Lajmanovich and J. Yorke has
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the specific form
n
;= Zaij$j(pi — ;) —kiz; (i=1,2,...,n),
j=0

where a;; > 0 and k; > 0, for 4,7 = 1,2,...,n and was obtained via
analogous considerations as those used for the simplified model, i.e. to that
one corresponding to a single class.

For more details on models in both population dynamics and ecology
see [Neuhauser (2001)].

1.4.10 Lotka Model

In 1920 A. J. Lotka considered a chemical reaction mechanism described
by

A+ X B ox
X+Y 20y (1.4.2)
v 2, B,

where X and Y are intermediaries, ki, ko and k3 are the reaction rate
constants, and the concentrations of both the reactant A and the product
B are kept constant. See [Lotka (1920a)] and [Lotka (1920b)]. Noticing that
the signification of the first relation is that one molecule of A combines with
one molecule of X giving two molecules of X, the signification of the next
two relations becomes obvious.

Before obtaining the corresponding mathematical model of these reac-
tions, we recall for easy reference a fundamental law which governs chemical
reactions, i.e., the law of mass action. Namely this asserts that: the rate
of a chemical reaction is proportional to the active concentrations of the
reactants, i.e. only to that amounts of reactants that are taking part in
the reaction. For instance, for the irreversible reaction X +Y — A, if
and y denote the active concentrations of X and Y respectively, the law of
mass action says that ' = —kxy, where k > 0 is the rate constant of the
reaction. If one assumes that the reaction is reversible with rate constants

k1
of reaction k1 and k_q, i.e. X + Y: A, then the active concentrations x

k_
and y must satisfy @’ = —ky2y + k_1a. Finally, for the simplest irreversible
reaction X — C, the law of mass action implies that ' = —kx, while for
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k1
the reversible one X : C, says that 2’ = —k1z + k_1c.
k_
Now, coming back to (1.4.2), let us denote the concentrations of A, B,
X and Y by a, b, x and y respectively, and let us observe that, by virtue
of the law of mass action just mentioned, x and y must obey the kinetic
equations

— —
{z = kjax — kozy (1.4.3)

y' = —ksy + kaxy.

We emphasize that the system (1.4.3) is formally equivalent to the Lotka—
Volterra system (1.4.1), and thus all the considerations made for the latter
applies here as well. For this reason, in all what follows, we will refer to
either system (1.4.1) or (1.4.3) to as the Lotka—Volterra system, or to the
pray-predator system. For more details on this subject see [Murray (1977)],
pp- 136-141.

1.4.11 An Awutocatalytic Generation Model

Following [Nicolis (1995)], let us consider a tank containing a substance X
whose concentration at the time ¢ is denoted by x(t), and another one A
whose concentration a > 0 is kept constant, and let us assume that in the
tank take place the following reversible chemical reactions:

k_2

in which B is a residual product whose concentration at the time ¢ is b(t).2°

Here k; > 0, ¢« = 41,42 are the reaction rate constants of the four
reactions in question. The mathematical model describing the evolution of
this chemical system, obtained by means of the law of mass action is

2 =kiar —k_12%2 — kax + k_ob
b/ = ]{igx — k‘_gb.

25This model has been proposed in 1971 by Schlégl in order to describe some isothermal
autocatalytic chemical reactions. For more details on such kind of models the interested
reader is referred to [Nicolis (1995)].



Some Mathematical Models 43

If the second reaction does not take place, situation which is described
mathematically by ke = k_o = 0, then the system above reduces to

2 = kiax — k_12>.

Let us notice the remarkable similarity of the equation above with the
logistic equation in the Verhulst’s model as well with the equation describing
the spread of a disease.

1.4.12 An RLC Circuit Model

Following [Hirsch and Smale (1974)], pp. 211-214, let us consider an electric
circuit consisting of a resistance R, a coil L, and a capacitor C' in which the
sense of currents on each of the three portions of the circuit are illustrated
in Figure 1.4.5.

Figure 1.4.5

Let us denote by i(t) = (ir(t),i5(t),ic(t)) the state of the current in the
circuit at the time t. Here iR, i1, i¢c represent the currents on the portions
of the circuit containing the resistance R, the coil L and respectively the
capacitor C. Analogously, let v(t) = (vr(t),vLr(t),vc(t)) be the state of the
voltages in the circuit at the time ¢. Following Kirchhoff’ Laws, we deduce

{iR(t) =ir(t) = —ic(t)

while from the generalized Ohm’s Law g(ir(t)) = vg(t) for each ¢ > 0.
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Finally, from Faraday’s Law, we obtain

dip
Li =

a - r

d’Uc
eC _;

a C

for each t > 0, where £ > 0 and € > 0 are the inductance of L and
respectively the capacity of C. From these relations we observe that iy, and
ve satisfy the system of first-order nonlinear differential equations

i
L% =vo —g(ip)
d’Uc
eC — _
dt ‘

for ¢ > 0.

For simplicity, let us assume now that L = 1 and € = 1, and let us
denote by © = i1, and y = ve. Then the previously considered system can
be rewritten under the form

for t > 0. Assuming in addition that g is of class O, differentiating both
sides the first equation and using the second one in order to eliminate y,
we finally get

2" +g(x)r +2=0

for t > 0. This is the Liénard Equation. In the case in which g(z) = 23 —z
for each = € R, the equation above takes the form

2"+ Bz =12’ +2x=0

for t > 0 and it is known as the Van der Pol Equation. For a detailed study
of mathematical models describing the evolution of both current and voltage
in electrical circuits see also [Hirsch and Smale (1974)], Chapter 10. For
many other interesting mathematical models see [Braun (1983)].
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1.5 Integral Inequalities

In this section we include several inequalities very useful in proving the
boundedness of solutions of certain differential equations or systems. We
start with the following nonlinear integral inequality.

Lemma 1.5.1  (Bihari) Let = : [a,b] — Ry, k : [a,b] — Ry and
w: Ry — Ry be three continuous functions with w nondecreasing on Ry
and let m > 0. If

dﬂ§m+/k@wm®Ms

for each t € [a,b], then

uwg¢*<1}@ma

for each t € [a,b], where @ : Ry — R is defined by

D(u :/ —
W=, S
for each u € Ry.

Proof. Let us observe that it suffices to prove the lemma in the case in
which m > 0 because the case m = 0 can be obtained from the preceding
one by passing to the limit for m tending to 0. So, let m > 0, and let us
consider the function y : [a,b] — R% defined by

y(t) = m+/ k(s)w(z(s))ds

for each t € [a,b]. Obviously y is of class C' on [a,b]. In addition, since,
x(t) < y(t) for t € [a,b] and w is nondecreasing, it follows that
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for each s € [a,b]. Integrating both sides of the last inequality from a to
t, we obtain

Py(t)) < / k(s) ds

for each t € [a,b]. As @ is strictly increasing, it is invertible on its range,
which includes [0, +00), and has strictly increasing inverse. From the last

inequality we get
t
y(t) <ot </ k(s) ds) ,

relation which, along with z(t) < y(¢) for ¢t € [a,b], completes the proof..]
The next two consequences of Lemma 1.5.1 are useful in applications.

Lemma 1.5.2  (Gronwall) Let x : [a,b] — Ry and k : [a,b] — R be
two continuous functions and let m > 0. If

x(t) < m+/ k(s)xz(s)ds

for each t € [a,b], then

2(t) < mexp (/:k(s) ds)

Proof. Let us remark that, for each € > 0, we have

for each t € [a,b].

t

z(t) <m +/ k(s)(z(s) +¢)ds

a

for each t € [a,b]. Taking w: Ry — R¥, defined by w(r) = r + ¢ for each
r € Ry, from Lemma 1.5.1, we obtain

2(£) < (m + &) exp (/atk(s) ds) e

for each e > 0 and ¢ € [a, b]. Passing to the limit for € tending to 0 in this
inequality, we get the conclusion of the lemma. The proof is complete. O

Some generalizations of Gronwall’s Lemma 1.5.2 are stated in Section 6.
See Problems 1.16 and 1.17.
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Lemma 1.5.3  (Brezis) Let x : [a,b] — Ry and k : [a,b] — R4 be two
continuous functions and let m > 0. If

z2(t) <m? + 2/ k(s)x(s)ds

a

for each t € [a,b], then

for each t € [a,b].

Proof. As in the proof of Lemma 1.5.2, let us observe that, for each

e > 0, we have 22 (t) < m2+2fat k(s)\/22(s) + eds for each t € [a,b]. This

inequality and Lemma 1.5.1 with w : Ry — R, defined by w(r) = 2y/r +¢
2

for each r € Ry, yield 2?2 < (\/m2 +e+ f(f k(s) ds) —¢ for each € > 0

and t € [a,b]. We complete the proof by passing to the limit for € tending

to 0 in this inequality and by extracting the square root both sides in the
inequality thus obtained. O

For a generalization of Lemma 1.5.3, see Problem 1.18.

1.6 Exercises and Problems

Problem 1.1  Find a plane curve for which the ratio of the ordinate by the sub-
tangent®® equals the ratio of a given positive number k by the difference of the
ordinate by the abscissa.>” ([Halanay (1972)], p. 7)

Problem 1.2 Find a plane curve passing through the point (3,2) for which the
segment of any tangent line contained between the coordinate azes is divided in
half at the point of tangency. ([Demidovich (1973)], p. 329)

26We recall that the subtangent to a given curve of equation = x(t), t € [a,b] at a
point (¢, z(t)) equals z(t)/z’ (¢).

27This problem, considered to be the first in the domain of Differential Equations, has
been formulated by Debeaune and conveyed, in 1638, by Mersenne to Descartes. The
latter has realized not only the importance of the problem but also the impossibility to
solve it by known (at that time) methods.
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Exercise 1.1 Solve the following differential equations.

(1) 2’ cos? t cot x—l—tan tsin®x = 0. (2) to' =z + 2%

(3) tx'x =1 —t% (4) ' = (t+ )2

(5) 2’ = (8t + 2z +1)% (6) ' (4t + 6x —5) = —(2t + 3z + 1).
(7) 2/ (4t =22 +3) = —(2t —z). (8) 2'(t®’x —x) +ta> +t =0.

Problem 1.3 Find a plane curve passing through the point (1,2) whose segment
of the normal at any point of the curve lying between the coordinate azes is divided
in half by the current point. ([Demidovich (1973)], 2758, p. 330)

Problem 1.4  Find a plane curve whose subtangent is of constant length a.
([Demidovich (1973)], 2759, p. 330)

Problem 1.5  Find a plane curve in the first quadrant whose subtangent is twice
the abscissa of the point of tangency. ([Demidovich (1973)], 2760, p. 330)

Exercise 1.2 Solve the following differential equations.

2
4

)t = —(t+ ).
) 2txx’ = 1% + 2.
) ta’ —x-i-m
) 2

tex’ = 322 — ¢2.

t (
t (
2Vix — )z’ = —a. (6
(42 4 3ta + tH)2’ = —(z? + 3tz + 4¢%). (8

Problem 1.6  Find the equation of a curve that passes through the point (1,0)
and having the property that the segment cut off by the tangent line at any current
point P on the t-axis equals the length of the segment OP. ([Demidovich (1973)],
2779, p. 331)

Problem 1.7 Let f : Ry xRy — R be a continuous function for which there exists
a real number m such that f(At, \"x) = X" f(t, ) for each (t,xz) € Ry x Ry
and each A\ € Ry. Show that, by the substitution xz(t) = t™y(t), the differential
equation ©’ = f(t,x), called quasi-homogeneous, reduces to an equation with se-
parable variables. Prove that the differential equation ©' = z? — t% 1S quasi-

homogeneous and then solve it. ([Glavan et al. (1993)], p. 34)

Exercise 1.3 Solve the following differential equations.

te' = —2x 4 t*.

(x? — 3tH)2’ + 2tx = 0.
2txx’ = x® —t.

tr' = —2z(1 — tz).

t (2)
t (4)
te' = —x —tz®.  (6)
(2t — t2z)z’ = —z. (8)

Problem 1.8  Let z, x1, z2 be solutions of the linear equation =’ = a(t)x + b(t),
where a, b has continuous functions on 1. Prove that the ratio

(t) — x(t)
t

RO =20 =)
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is constant on 1. What is the geometrical meaning of this result?

Problem 1.9 Let z1, z2 be solutions of the Bernoulli equation ©’ = a(t)z+b(t)z?,
where a, b are continuous functions on 1. Prove that, if x1(t) # 0 and x2(t) # 0

on J C 1, then the function y, defined by y(t) = z;gg for each t € J, satisfies the

linear equation y' = b(t)[z1(t) — z2(¢)]y.

Problem 1.10  Let x, =1, x2, x3 be solutions of the Riccati equation
' = a(t)x + b(t)z® + c(t),

where a, b, ¢ are continuous functions on 1. Prove that the ratio

wa(t) —x(t)  x3(t) —x(t)
x2(t) —z1(t) " z3(t) — z1(t)

B(t) =

is constant on 1.

Exercise 1.4 Solve the following differential equations.

) (t+2x)2’ +t+2=0. (2) 2ta’ 4+ + 22 + 2t = 0.

) (3t — x¥)z’ — 2+ 3ta® —2=0. (4) Pz + 2> +t)2’ — 3 +ta> + = 0.
) (2% = 3t%)2’ 4 2tz = 0. (6) 2txa’ — (t +22) = 0.

) tz' — z(1+tz) = 0. (8) t(z® +Int)a’ + 2 =0.

Exercise 1.5  Solve the following differential equations.

(1) z= %ta:/—l—m'?’. (2) r=a +v1—a22
3)z=(1+a2)+a (4) z— %x’(% +2)
(5) z = ta' 4 z'°. (6) x =ta' + '

(N z=tz' +V1+2?2 (8) =tz + —.

Problem 1.11  Find a plane curve for which the distance of a given point to any
line tangent to this curve is constant. ([Demidovich (1973)], 2831, p. 340)

Problem 1.12  Find the curve for which the area of the triangle formed by a
tangent line at any point and by the coordinate azes is constant. ([Demidovich
(1973)], 2830, p. 340)

Problem 1.13  Prove that, for a heavy liquid rotating about the vertical symmetry
azis in a cylindric tank, the free surface is situated on a paraboloid of revolution.
([Demidovich (1973)], 2898, p. 344)

Problem 1.14  Find the relationship between the air pressure and the altitude if
it is known that the pressure is of 1kgf per lem? at the sea level and of 0.92kgf
per lem? at an altitude of 500m. ([Demidovich (1973)], 2899, p. 344)
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Problem 1.15  According to Hooke’s law an elastic band of length 1 increases in
length kKIF (k=constant) due to a tensile force F. By how much will the band
increase in length due to its weight W if it is suspended at one end? (The initial
length of the band is 1). ([Demidovich (1973)], 2900, p. 344)

Problem 1.16  (Bellman’s Inequality) Let x : [a,b] — R4, h: [a,b] — R and
k:[a,b] = Ry be three continuous functions. If

z(t) < h(t) +/ k(s)z(s)ds

for each t € [a,b], then

z(t) < h(t) + /at k(s) h(s)exp (/: k(T) dT) ds

for each t € [a,b].

Problem 1.17 Let xz : [a,b] = Ry, v:[a,b] > R and k : [a,b] — Ry be three
continuous functions and £ € R. If

z(t) < ¢ —|—/ [k(s) z(s) + v(s)] ds

for each t € [a,b], then

(1) < Eexp (/t k(s)ds) + /: o(s)exp (/ k(7) dT) ds

for each t € [a,b]. ([Halanay (1972)], p. 196)

Problem 1.18 Ifz:[a,b] = Ry and k: [a,b] — Ry are continuous and

2P (t) < mP +p/ k(s)zP ' (s)ds

for each t € [a,b], where m >0 and p > 1, then

z(t) <m+ /t k(s)ds

for each t € [a,b].

Problem 1.19  Let f : R — R be non-increasing and let x,y : [0,T] — R be two
functions of class C*. If 2’ (t) + f(z(t)) < y'(t) + f(y(t)) for each t € [0,T] and
z(0) < y(0) then x(t) < y(t) for each t € [0,T].



Chapter 2

The Cauchy Problem

This chapter is exclusively dedicated to the introduction and study of the funda-
mental concepts and results concerning the main topic of this book: the so-called
Cauchy problem, or the initial-value problem. In the first section we define the
Cauchy problem for a given differential equation and the basic concepts referring
to: local solution, saturated solution, global solution, etc. In the second section
we prove that a sufficient condition in order that a Cauchy problem have at least
one local solution is the continuity of the function f. In the third one we present
several specific situations in which every two solutions of a certain Cauchy pro-
blem coincide on the common part of their domains. The existence of saturated
solutions as well as of global solutions is studied in the fourth section. In the
fifth section we prove several results concerning the continuous dependence of
the saturated solutions on the initial data and on the parameters, while in the
sixth one we discuss the differentiability of saturated solutions with respect to
the data and to the parameters. The seventh section reconsiders all the problems
previously studied in the case of the n*®-order scalar differential equation. The
last section contains several exercises and problems illustrating the most delicate
aspects of the abstract theory.

2.1 General Presentation

Let I be a nontrivial interval in R, €2 a nonempty and open subset in R",
f:IxQ — R"™ a given function, a € I and & € Q.

The Cauchy problem, or the initial-value problem for a first-order diffe-
rential system with data D = (I, €, f, a, £) consists in finding a C''-function
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