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SIAM REVIEW ? 1982 Society for Industrial and Applied Mathematics 
Vol. 24, No. 4, October 1982 0036-1445/82/2404-0004 $01.00/0 

UNDERSTANDING THE QR ALGORITHM* 

DAVID S. WATKINSt 

Abstract. The QR algorithm is currently the most popular method for finding all eigenvalues of a full 
matrix. While QR is now well understood by specialists in eigenvalue computations, this understanding is not 
being conveyed effectively to the mathematical public. Many accounts present Wilkinson's 1965 convergence 
proof. Others establish some of the connections between the QR algorithm, the power method and inverse 
iteration. Usually much emphasis is (rightly) placed on the refinements, such as shifts of origin, which are 
required to make the algorithm competitive. But practically all accounts fail to explain the basic meaning of QR 
iterations. As a consequence, the QR algorithm is widely thought to be difficult to understand. The purpose of 
this paper is to try to convince the reader that the opposite is true. In fact, the QR algorithm is neither more nor 
less than a clever implementation of simultaneous iteration, which is itself a natural, easily understood extension 
of the power method. This point of view deserves pre-eminence because it shows exactly what QR iterations are 
and evokes a clear geometric picture of the QR process. Furthermore, it provides a framework within which the 
rapid convergence associated with shifts of origin may be explained. No reference to inverse iteration is 
necessary. Inverse iteration has not, however, been banished from the paper-one section is devoted to an 
explanation of the interplay between inverse iteration, direct iteration and the QR algorithm. The key result of 
that section is a duality theorem which shows that whenever direct iteration takes place, inverse iteration 
automatically takes place at the same time. 

1. Introduction. The QR algorithm is currently the most popular method for 
calculating the complete set of eigenvalues of a full (i.e., small) matrix. A descendant of 
Rutishauser's (1955), (1958) LR algorithm, it was discovered independently by Francis 
(1961), (1962) and Kublanovskaya (1961). The basic algorithm is as follows: Given a 
matrix A whose eigenvalues are desired, let Ao = A. Then, given Ami-, find unitary Qm 
and upper triangular Rm such that Ami I = QmRm. Finally, define Am = Rm Qm. Thus 

Am_ = QmRm, Am = RmQm. 

One's first reaction on seeing this procedure is likely to be, "What does this have to 
do with eigenvalues?" or "What do these manipulations accomplish?" Most accounts 
answer these questions by presenting Wilkinson's (1965, p. 517) proof that, under suitable 
conditions, the sequence of (unitarily similar) matrices Am converges to upper triangular 
form. That proof has its merits. For one, it is relatively brief and elementary. Also, it was 
the best available in the sixties. Unfortunately, it does not show what goes on in a QR 
iteration-the reader is shown that the method works, but is left wondering why. This 
author believes that the best way to explain what QR iterations are is to first introduce 
and discuss simultaneous iteration, an easily understood, multivector generalization of the 
power method, then show that the QR algorithm is just a clever way to do simultaneous 
iteration. 

The connection between QR and simultaneous iteration has long been known. In 
fact, even before QR had come into being, Bauer (1958) showed that the LR algorithm is 
equivalent to a form of simultaneous iteration. The books of Faddeev and Faddeeva 
(1963) (LR case only), Householder (1964) and Wilkinson (1965, p. 608) all noted the 
connection, but no one seems to have appreciated at that time the appealing geometric 
picture of the QR algorithm which it evokes. The early convergence proofs made heavy 
use of determinants and were opaque and unwieldy. For an example see Wilkinson (1965, 
pp. 489-492). Wilkinson's (1965, p. 517) proof was a vast improvement, but still it did not 
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428 DAVID S. WATKINS 

reveal the meaning of QR iterations. Evidently the geometric point of view was first 
appreciated by Buurema (1970) and Parlett and Poole (1973). A decade has passed since 
those works appeared, yet the approach which they advocated is still not as widely 
understood as it deserves to be. This paper attempts to rectify that. 

Among those specialists who understand the relationship between QR and simulta- 
neous iteration there seems to be some reluctance to emphasize it. There is much more 
interest in the connection between QR and inverse iteration (i.e. the inverse power 
method), since this connection may be used to explain the rapid convergence of the shifted 
QR algorithm. The general feeling seems to be that this connection, rather than that with 
simultaneous iteration, should be regarded as primary, since the QR algorithm would be 
of no practical value if it' did not converge swiftly. In response to that attitude we have 
adopted an approach in which the rapid convergence of the shifted QR algorithm is 
explained entirely within the context of simultaneous iteration, with no reference 
whatsoever to inverse iteration. 

Another reason simultaneous iteration is not often connected with the QR algorithm 
is that, in its explicit form, simultaneous iteration is usually used only to find the few 
largest eigenvalues of large sparse matrices (c.f. Rutishauser (1969), (1970), Clint and 
Jennings (1970), (1971), Parlett (1980)), whereas QR is used mainly for small, full 
matrices. Thus, it appears that the classes of problems to which the two methods may be 
applied are nearly disjoint. This makes it easy to forget that QR is actually a form of 
simultaneous iteration. 

The section contents are as follows. Section 2 introduces the power method and 
simultaneous iteration. Section 3 covers the QR algorithm. Inverse iteration has not been 
banished completely from the paper. An account of the beautiful relationship between it 
and QR is given in ?4. Section 5 briefly discusses the related LR or LU and Cholesky 
algorithms and their connection with both simultaneous iteration and the QR algorithm. 

The various implementations of QR-explicit and implicit QR, doubly shifted QR, 
rational QR, etc.-have not been covered. These have been documented in standard 
sources such as Wilkinson (1965), the Handbook of Wilkinson and Reinsch (1971), and 
the EISPACK Guide of Smith et al. (1976). Good implementations have long been 
available, much more widely available, in fact, than good explanations. 

Notation. C' denotes the space of n-tuples of complex numbers, and || 112 denotes the 
Euclidean norm on Cn. Given a set of vectors ql, q2, - - - , qk E Cn, (ql, q2, * * * , qk ) will 
denote the subspace of C' spanned by q1, q2, * * * , qk. Given a complex matrix M, the 
conjugate transpose of M will be denoted by M*. Our object of study throughout this 
paper is a complex n x n matrix A with eigenvalues XA, X2, X n *, Xn. The eigenvalues will 
always be ordered so that IXI I _ I 21 . _ I Xn. A may be real, in which case most of 
the algorithms discussed here may be carried out entirely in real arithmetic. 

2. Direct iteration. 
Basic power method. The basic (direct) power method consists of choosing a vector v 

and applying A to it repeatedly to form the sequence 

v,Av,A2v,A3v, . . .. 

In practice one must rescale the vector at each step in order to avoid an eventual overflow 
or underflow, and to be able to judge whether the sequence is converging. Assuming a 
reasonable scaling strategy, the sequence of iterates will usually converge to an eigenvec- 
tor of A. It is not hard to see why. Suppose A has eigenvalues XI, X2, X * *, Xn with 
IXI I, IX21 _ . . . _ I X,, 1. We will assume for ease of exposition that A is simple; that is, A 
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UNDERSTANDING THE QR ALGORITHM 429 

has n linearly independent eigenvectors vl, v2, - - *, vn. This assumption is not critical, 
whereas the assumption I Xl I > I X21 is. We will order vl, v2, -. *, vn so that vi corresponds 
to Xi. The starting vector v may be expressed uniquely as a linear combination of v1, v2, 
* * * ,Vn, 

V = Cl VI + C2V2 + ***+ CnVn- 

Applying A repeatedly we get 

Amv = cl X7v, + c2 XTv2 + * * * + c m = 1, 2, 3, 

Since XI dominates the other eigenvalues, the component in the direction of v, becomes 
relatively greater than the other components as m increases. If XA were known in advance, 
one could rescale at each step by dividing by it to get 

Amv/(XI )m = c1v 1 + c2(X2/X1 )mv2 + ?+ Cn(n(/X )m, 

which clearly converges to the eigenvector cl vI, provided that cl is nonzero. Convergence 
is linear, with ratio of successive errors approximately X2/X1 1. This scaling strategy is 
unavailable in real problems, but the exact choice of scaling strategy is unimportant. The 
eigenvector is determined only up to a constant multiple: the direction is important, not 
the length. 

The condition cl - 0 is equivalent to the condition v % (v2, * * *, v"), where (v2, 
, vn) denotes the subspace spanned by v2, * * * , vn. Any proper subspace is a very 

small subset (of measure zero, nowhere dense) of Cn. Therefore it is highly probable that a 
v chosen at random will not lie in (v2,. . . , vn). 

Subspace iteration. The eigenvector vI is merely a representative of the eigenspace 
(vl), which is the real object of interest. Likewise, in the sequence v, Av, A2v, A3v, . . *, 
each of the iterates Amv may be viewed as a representative of the space (Amv) which it 
spans. Rescaling a vector amounts to replacing one representative by a new representative 
of the same one-dimensional space. Thus the power method may be viewed as a process of 
iteration on subspaces: First a one-dimensional starting space S = (v) is chosen. Then 
iterates 

(2.1) S,AS,A2S,A3S. . . 

are formed. This sequence converges linearly to the eigenspace T = (v, ) in the sense that 
the angle between AtS and T converges to zero. 

More generally one can choose a subspace S of any dimension, k, and form the 
sequence (2.1). It is not surprising that this sequence will generally converge to the 
invariant subspace spanned by the k leading eigenvectors. We will continue to assume 
that A is simple, with eigenvector basis v,, v2, * . , vn. Let 

T= (v1, . . ., Vi), U= (Vk+l, . . . , Vn) 

and assume that IXkI> IXk+ I . Both T and U are invariant under A, and are called 
dominant and co-dominant spaces, respectively. We shall see that the sequence (2.1) 
almost always converges to T. 

In order to discuss convergence of subspaces we define a metric on the set of 
k-dimensional'subspaces of Cn. A reasonable definition is 

d(S, T) = sup inf 1s -t 12 
sES tEET 

11S112= 1 
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430 DAVID S. WATKINS 

where 2| - 11, denotes the Euclidean norm. The main result on convergence of subspace 
iteration is 

THEOREM 2.1. Let T and U be the dominant and co-dominant spaces defined above, 
and let S be a k-dimensional subspace of C' such that S n U = (0). Then there exists a 
constant C such that 

d(AmS, T) _ CIXk+l/XkIm 

for all m. Thus AtS T linearly with ratio I X /k I| 
We have opted to phrase Theorem 2.1 in terms of a metric because it is the easiest 

course-the metric can be defined in one line. A more natural notion is that of angle. The 
relative orientation of two k-dimensional subspaces is described by k canonical angles. 
The metric d(S, T) is just the sine of the largest canonical angle between S and T. For 
more on angles see Bjork and Golub (1973), Davis and Kahan (1970) and earlier 
references cited therein, and Stewart (1 973b), (1977). 

It is easy to argue the plausibility of Theorem 2.1. Let v be any nonzero vector in S. 
We will show that the iterates Amv lie (relatively) closer and closer to T as m increases. 
v may be expressed uniquely in the form 

v = cl vI + c2v2 + + CkVk (component in T) 

+ ck+lvk+l + + Cnvn (component in U) 

in which v has been expressed as a sum of a component in T and a component in U. Since 
v / U, at least one of the coefficients cl, - * , ck must be nonzero. Now 

AmV/(Xk)m = Cl(XI/Xk)mVl + - + Ck- (ck-lX/Xk)YVk-l + CkVk 

+ Ck+l(Xk+I/Xk) Vk+I + - - - + Cnf(Xn/Xk))Vnf. 

Note that the nonzero coefficients of the component in T increase, or at least do not 
decrease, as m increases. At the same time the coefficients of the component in U tend to 
zero linearly with rate I Xk+ l /Xk I or better. Thus each sequence (Amv) converges to T at the 
stated rate, and consequently the limit of (AtS) lies in T. The limit cannot be a proper 
subspace of T because it has dimension k. 

For a proof of Theorem 2.1 see Parlett and Poole (1973). Their treatment of the 
subject completely dispenses with the notions of metric and angle on the grounds that in 
the finite-dimensional setting any two reasonable notions of convergence are equivalent. 
The theorem still holds if A is not simple, except that the constant C must be replaced by a 
polynomial C(m) if the eigenvalue Xk+l is deficient. Parlett and Poole have also covered 
the case Xk = Xk+ I1 In that case convergence is too slow to be of any practical value. 

The assumption S n U = (0) corresponds to the assumption cl ? 0 in the basic power 
method. It is important to realize that this assumption will be satisfied by virtually any 
subspaces S and U whose dimensions sum to n. This is most easily seen by analogy with 
the situation in R3. There any two two-dimensional subspaces must intersect nontrivially 
because the sum of their dimensions exceeds three. By contrast, a two-dimensional 
subspace is not required to intersect nontrivially with a one-dimensional subspace, and it 
is obvious that it almost certainly will not. By the same token, since the sum of the 
dimensions of S and U does not exceed n, they are not required to intersect nontrivially, 
and they almost certainly will not. 

Invariant subspaces are of interest to eigenvalue hunters partly because they allow 
one to reduce the problem. Indeed, let Q = [Ql Q2] be a unitary matrix whose first k 
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columns (Ql) form an orthonormal basis for the invariant subspace T. Then 

Q*AQI Q*AQ2 All Al2 
(2.2) Q*AQ= =Q*AQ, Q2*AQ2 [ 0 A2j 

where Q2*AQ1 = 0 because T is invariant. Thus the eigenvalue problem for A has been 
divided into two smaller eigenvalue problems for All and A22. The eigenvalues of A,, are 
exactly those of A IT In the case k = 1, A,, is 1 x 1, and its single entry is the eigenvalue 
XI. 

In practice one never exactly attains an invariant subspace. Instead one has a 
subspace AtS such that d(AmS, T) is small. Let P = [PI P2] be a unitary matrix whose 
first k columns (PI) span AtS, and let 

B1, B12 
P*AP = I 

B21 B22] 

One would expect that, as AtS - T, B21 must converge to zero at the same rate. Indeed, it 
is not hard to show that this is so. The converse is true as well but harder to prove: if 
B21 - 0, the linear span of the columns of P1 approaches an invariant subspace of A at the 
same rate. See Stewart (1971), (1973b). In what follows it will become clear that these 
results are crucial to the convergence theory of the QR algorithm. 

Simultaneous iteration is a practical means of carrying out subspace iteration. Since 
iteration on an entire subspace cannot be done in practice, one must instead choose a basis 
for S and iterate on the basis vectors simultaneously. Let S be a k-dimensional subspace of 
Cn such that S n U = (0). Then S contains no null vectors of A, since all null vectors lie in 
U. From the discussion of Theorem 2.1 it is evident that AtS n U = (0) for all m, and 
therefore AtS contains no null vectors. Let qo, * , qo be a basis of S. Then A (q?), * 
A (q?) span AS. They are linearly independent as well, because S contains no null vectors, 
and they therefore form a basis for S. Likewise Am(q?), . . ., A'(q?j) form a basis for 
AtS, m = 2, 3, 4 - . Thus, in theory at least, one can simply iterate on a basis of S to 
get bases for AS, A2S, A3S, * - - . There are two reasons why it is not advisable to do this 
in practice: 1. The vectors will have to be rescaled in order to avoid overflow or underflow. 
2. Each of the sequences q?, A (q?), A2(q?), . . . independently converges to the dominant 
subspace (v, ). It follows that for m large the vectors Am(q?), . . ., An(q?j) all point in 
nearly the same direction. That is, the basis is ill-conditioned. Ill-conditioned bases can be 
avoided by replacing the basis gotten at each step by a well-conditioned basis for the same 
subspace. Probably the most effective way to do this is to orthonormalize. Thus, the 
following simultaneous iteration procedure is recommended: 1) Given q7, , q'n, an 
orthonormal basis of AtS, calculate A(qn), . . . , A(qn). 2) Orthonormalize A(q7), 

A(qkm) from left to right to get qn . , qkt l, an orthonormal basis of At+ 'S. 
Simultaneous iteration has the agreeable property of iterating on lower-dimensional 

subspaces at no extra cost. Let Si = (qo . . . q9) i = 1, . . k. Then ASi = (A(q ), 
A (q?)) = (ql . . . q,') for all i, since the orthonormalization procedure preserves 

these subspaces. In general AnSi = (qn . . . qm), i = 1, . . *, k. Thus simultaneous 
iteration seeks not only an invariant subspace of dimension k, but also subspaces of 
dimensions 1, 2, . . . k - 1 as well. 

Now consider what happens when simultaneous iteration is applied to a complete set 
of orthonormal vectors q?, qo . * * , qo. For k = 1, 2. . . n - 1 let Sk= (q * qk ) 

Tk = (Vl, . . . , V), Uk = (Vk+l . . . , Vn), and assume Sk n Uk = (0) and IXkI > IXk+I |. 
Then AtSk - Tk linearly as m oc. In terms of bases this means that qn, * * , qn will 
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432 DAVID S. WATKINS 

converge (modulo factors of unit modulus) to an orthonormal basis q1, q2, . * qn such 
that for each k, the first k vectors span the invariant subspace Tk. If we let Qm denote the 
unitary matrix whose columns are q7, * , qn , then the sequence of matrices 
Am=Q*AQ Qm converges to the block triangular form (2.2). But this holds for all k 
simultaneously, so the limiting form is upper triangular. The limiting main diagonal 
entries are X1, X2, * , Xn,, in order. If some of the eigenvalues are equal in modulus, say 
Ii+ I I = II =. Xi+j 1, then the limit will be block triangular with a j x j block in 
rows and columns i + 1 through i + j. Of course the eigenvalues of the block are Xi+1, 

. . Xi+j. 
The conditions Sk n Uk = (0) will be satisfied by practically any starting basis. If any 

of these conditions should be violated, the eigenvalues will still emerge on the main 
diagonal, but not in descending order (cf. Wilkinson (1965)). But this possibility is so 
remote that it is hardly worth thinking about, especially considering that a special 
relationship of the form Sk n Uk ? (0) will probably be destroyed by roundoff error in an 
actual computation. Furthermore, as we shall see, the subspace conditions are always 
satisfied by the QR algorithm on unreduced Hessenberg matrices. 

The rate of convergence to Tk is I Xk+ I /Xk 1, which will often be intolerably slow. To see 
how convergence might be accelerated, suppose we are able to find a number a which is a 
very good approximation to Xn. If we replace A by the shifted matrix A - cI, the 
convergence rates will change to (Xk+I - a)/(Xk - a)I, k = 1, . ., n - 1. If aF is close 
enough to X\n that I Xn - a I << I Xn_ I - a 1, convergence to the subspace Tn- I will be extremely 
fast. (If a happens to exactly equal Xn, convergence will take place in one iteration.) Better 
yet, suppose we are able to find a sequence of shifts am such that am - n Xn and on the mth 
step we replace A by A - amI. Then convergence to Tn-l will be better than linear. The 
outward evidence of convergence to Tn_l is the convergence (up to a factor of unit 
modulus) of the last vector qn, which is then orthogonal to Tn_. Once this vector has 
converged, it can be dropped from the iterations, which can then be continued with A 
restricted to the subspace Tn_1. The shifts can then be chosen to approximate Xn-1, the 
smallest eigenvalue of the restricted operator, causing rapid convergence to Tn-2. 
Continuing in this manner we can determine the eigenvalues in rapid succession. 

We caution the reader that shifted simultaneous iteration, in the form just described, 
is numerically unstable because of the mode of deflation (deflation by restriction). A 
stable implementation is the QR algorithm, which employs deflation by similarity 
transformations. We shall see that the QR algorithm provides convenient sequences of 
shifts which converge to the eigenvalues quadratically. 

Early references to simultaneous iteration are Bauer (1957), (1958) and Wilkinson 
(1965). The explicit formulations of simultaneous iteration alluded to in the introduction 
are actually much more sophisticated than the simple algorithm discussed in this section. 
All employ some form of Rayleigh-Ritz procedure to accelerate convergence to the 
eigenvalues. The reader is referred to Jennings (1967), Clint and Jennings (1970), 
(1971), Rutishauser (1969), (1970), Stewart (1969), (1976), and Parlett (1980). 

3. The QR algorithm. The QR algorithm is based on the QR decomposition. 
THEOREM 3.1. Let A be a complex n x n matrix. Then there exist a unitary matrix Q 

and an upper triangular matrix R such that A = QR. If A is nonsingular, then R may be 
chosen so that all of its main diagonal entries are positive. In that case Q and R are 
uniquely determined. 

For a proof see, for example, Stewart (1973a). Not only do Q and R exist, but they 
can be constructed by a stable algorithm at a cost of about 2n3/3 multiplications. The QR 
decomposition is just a matrix realization of the Gram-Schmidt orthonormalization 
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process. Indeed, suppose A is nonsingular, let a,, a2, - - *, an denote the columns of A, 
and let ql, q2, - , qn denote the columns of Q. Then a1 = q, r, 1, a2 = q, rl2 + q2r22, and in 
general 

ak = ql rlk + q2r2k + ***+ qkrkk, rkk > ?, k = 1, 2, * * n. 

It follows that (a,) = (q1 ), (a, a2) = (ql, q2), and in general 

(a1,a2,- ,ak) = (ql,q2, qk), k= 1,2,- ,n. 

That is, the columns of Q orthonormalize the columns of A. 
In what follows we will assume that A is nonsingular, and thereby guarantee the 

uniqueness of all QR decompositions. The reader should not infer that the singular case is 
pathological. On the contrary, if A is singular, the zero eigenvalue will be disposed of in 
one iteration. This was already suggested by our discussion of simultaneous iteration. We 
will say more on this topic later in connection with Hessenberg matrices. 

With the aid of the QR decomposition, we may express simultaneous iteration in 
matrix form as follows: Let Qm be the matrix whose columns are q7, q2', * * , qn', as in the 
previous section. If we let Dm+I = AQm, then the columns of Dm+i are Aq, Aq2, . . 

Aqnm. These may be orthonormalized by a QR decomposition Dm+i = Qn+ IRm+. To 
summarize, 

(3.1) Dm+I = AQm9 Dm+i = Qm+IRm+I. 

One way to check for convergence after m steps is to perform the similarity transforma- 
tion 

(3.2) Am= O*AQm 

and check whether Am is nearly upper triangular. 
Suppose we start iterating with Q0 = I. That is, we start with the basis el, e2, * * en 

of standard unit vectors. Then D, = A and A = D, = Q, RI. Letting Q, = Q, we have 

(3.3) A = Q1R1. 

If after one step we already wish to begin to monitor our convergence, we may do so by 
examining Al = Q ,'AQ1. Since Q *A = RI by (3.3), A, may be gotten by 

(3.4) Al = R Q,. 

Finding that A, is not upper triangular, we take another step. But now we have two 
matrices, A and Al, which may be viewed as realizations of the same linear operator in 
two different coordinate systems. We can continue to operate on A, calculating D2 = AQi 
and D2 = Q2R2, or we can perform the equivalent operations on Al. A vector which is 
represented by v in the A coordinate system is represented by Ql v in the Al system. 
Therefore the vectors q1, * * *, q in the A system become el, . . . , en in the AI system. 
Thus the equation D2 = AQO is equivalent to AI = AI Is and the QR decomposition 

D2= Q2R2 

is equivalent to a QR decomposition of Al: 

Al = Q2R2. 

We have used the same symbol R2 in both QR decompositions because it is the same 
matrix in both cases. This can be seen by noting that the equations D2 = AQ, = Q,AI and 
A, = Q2R2 may be combined to yield a second QR decomposition of D2: D2 = (Ql Q2)R2. 
From the uniqueness of the QR decomposition we find that R2 is the same in both, and 
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furthermore Q2 = Ql Q2. If we opt to operate with A1 instead of A, we can check for 
convergence by calculating A2 = Q'*A1 Q2 = R2Q2. The equation Q2 = Ql Q2 guarantees 
that this A2 is the same as the one given by (3.2). We can continue this process to produce 
a sequence of matrices Am, where 

(3.5) A__1 = QnRmn Am = RnQm 

This is the QR algorithm, and as we have just seen, it is equivalent to simultaneous 
iteration. The Am produced by (3.5) are the same as those given by (3.2). The Rm of (3.5) 
are the same as those of (3.1), and the Qm of (3.5) are related to the Qm of (3.1 ) by 

(3.6) Qm = Ql Q2 . . . Qmn 

Qm is the coordinate change at the mth step, whereas Qm is the accumulated change of 
coordinates after m steps. 

We have established the equivalence of simultaneous iteration and the QR algorithm 
by looking at the process one step at a time. Another way is to examine the cumulative 
effect of m steps. In this approach, Qm, Rm and Am are defined by (3.5), with AO = A, and 
Qm is defined by (3.6). If, in addition, Rm is defined by R_ = R_R, 1 . . . RI, then 

A = Q1R1 =Olkl, 

A2 = Q, RI QI RI = QI Q2R2RI = 02k2g 

A3 = Q, RI Q, RI Q, RI = Ql Q2R2Q2R2R1 = Ql Q2Q3R3R2RI = Q3R3 

Clearly one could show by induction that 

(3.7) Am = QmRm, m = 1, 2, . . 

This equation has appeared repeatedly in the literature, and it has long been known to be 
central to the analysis of the QR algorithm. Unfortunately, in spite of its frequent 
appearance, its meaning is almost never explained. Equation (3.7) shows that Qm and Rm 
are the QR factors of Am. Recalling that the QR decomposition is an orthonormalization 
process, we conclude that, for all k, the first k columns of Qm form an orthonormal basis 
for the space spanned by the first k columns of An. But what are the columns of Ant? The 
ith column of An is just Anei. Thus 

(Anel, . . Amek) = (qn qn) k= i1, . . - sn m = 1, 2, 

That is, the columns of Qm are just the result of m steps of simultaneous iteration, starting 
from the standard basis vectors e1, e2, * , en 

Having established that QR is just simultaneous iteration starting with e1, e2, - * 
en, we can conclude that the sequence Am produced by QR converges to triangular (or at 
least block triangular) form, provided that the subspace conditions 

(3.8) (el, e2, . - -, ek) n (Vk+1, - - - , vn) = (0), k = 1, * * *, n - 1, 

are satisfied. The reader can easily verify that (3.8) is equivalent to the condition which is 
usually given-namely, that all leading principal minors of V- 'should be nonzero, where 
V is the matrix whose columns are the eigenvectors vl, - * * , vn. It is the author's opinion 
that the geometric condition (3.8) is more illuminating than the equivalent condition on 
the minors of V-'. 

Refinements. The basic QR algorithm is too inefficient to be an effective tool, but 
two refinements suffice to make it competitive. 1) A preliminary reduction to Hessenberg 
form radically decreases the cost of each QR step. 2) The use of shifts of origin drastically 
reduces the total number of QR steps required to attain convergence. 
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Hessenbergform. A square matrix B is said to be in upper Hessenbergform if bi1 = 0 
whenever i > j + 1. This means that B is nearly upper triangular, having all zeros in the 
lower triangle, except on the subdiagonal. Given any n x n matrix A, there exists an upper 
Hessenberg matrix B which is unitarily similar to A, which may be constructed from A at 
a cost of some 5n3/3 multiplications. (See e.g. Stewart (1 973a).) If A is Hermitian, then B 
is tridiagonal and may be constructed in about 2n3/3 multiplications. (See Parlett 
(1980).) Hessenberg form is important to the QR algorithm because 1. it is preserved 
under QR iterations, and 2. the cost of a QR iteration for a Hessenberg matrix is 0(n2) 
multiplications instead of 0(n3). (To see that Hessenberg form is preserved, deduce from 
(3.5) that Am = RmAmn R-', and note that upper Hessenberg form is preserved upon pre- 
or postmultiplication by an upper triangular matrix.) For Hermitian matrices tridiagonal 
form is preserved, and the cost of a QR iteration is 0(n) multiplications. 

An upper Hessenberg matrix B is in unreduced upper Hessenberg form if all of its 
subdiagonal entries are nonzero. If B is not unreduced, its eigenvalue problem may 
immediately be reduced to smaller eigenvalue problems involving unreduced upper 
Hessenberg matrices. Parlett (1968) has shown that for unreduced upper Hessenberg 
matrices the subspace relations (3.8) are always satisfied. The argument runs as follows: 
Given a nonzero v C (e,, * * * , ek ), the special form of B guarantees that v, Bv, B2v, _ . * , 
Bn-kv are linearly independent. Thus the smallest invariant subspace containing v has 
dimension at least n - k + 1. Therefore v cannot lie in the (n - k)-dimensional invariant 
subspace (Vk+l, * * * , v"). It follows that the unshifted QR algorithm, started with an 
unreduced upper Hessenberg matrix, will always converge. 

The same property guarantees that the QR algorithm will deal satisfactorily with 
singular matrices. Suppose B is a singular, unreduced, upper Hessenberg matrix, and 
consider a single QR step. Since the first n - 1 columns of B are linearly independent, the 
same must be true of R in the decomposition B = QR. Therefore rkk - 0, k = 1, * 
n - 1. But the singularity of B requires that at least one rkk be zero. We conclude that 
rnn = 0. Therefore the iterate B1 = RQ has all zeros in the last row. That is, a zero 
eigenvalue has emerged. Future iterations may be applied to the deflated matrix gotten by 
deleting the last row and column of B,. 

Hessenberg form makes testing for convergence easy. The subdiagonal block of 
dimension (n - k) x k has only one nonzero entry, which, in Am, we will denote by a()k) I,k 

This one number gives an indication of the distance of (q7, * * , qn) from (v1, * * 
vk ).If I Xk I > I Xk+ I1, then a(n)k ), 0 linearly, with ratio I Xk+ I/k l| as m - . Once a(k),k iS 
negligible, we can consider that the invariant subspace has been attained and reduce the 
problem. 

Shifts of origin. As convergence approaches, the entry anm) will approach the 
eigenvalue X,n, assuming I Xn- I > Xi. Convergence is linear with ratio XInlxn- I|. If anm) is 
sufficiently close to X,n, the ratio | (An- am))/(Xn - annm)) I will be substantially smaller 
than I Xn/Xn-I 1. This suggests that we replace Am by the shifted matrix Am - 0mI, where 
am = a(m), to arrive at the shifted QR algorithm: 

Am_Il-m- II= QmRmn Am= RmQm + Cm-r I m = 0, 1,2, 

(In practice the shift may be restored after each iteration, as indicated here, or 
accumulated.) It is clear that convergence to X,n will be better than linear because the 
convergence ratio I (Xn - am)/(Xn- I - am) I tends to zero as am - Xn. The positive feedback 
between the improving convergence ratio and the converging shifts results in quadratic 
(or better) convergence. Once X,n has been found, the problem can be deflated, and 
attention can be turned to Xn- 1 - 
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As we have presented it here, it appears that shifting should not begin until 
convergence is well under way. In fact it was discovered long ago that shifting may 
effectively be done right from the first iteration. The only consequence is that the 
eigenvalues no longer come out in order; typically the larger ones come out first. It was 
also found by Wilkinson (1965) that a better choice than am = a(') is to take am to be that 
eigenvalue of 

Can- l,n- I a n- l,n 

a(m) a(m) an', n - n J 
which is closer to annm) (In the real case, if this submatrix has complex conjugate 
eigenvalues, a double QR step using this complex conjugate pair of shifts is taken. See, for 
example, Stewart (1973a).) 

Returning to the unshifted algorithm, we note that as we approach convergence we 
have estimates not only of X,A but of all other eigenvalues as well. Thus, we could choose a 
shift to approximate any one of them. However, it would be inappropriate to approximate 
any eigenvalue other than Xn, as this would alter the ordering of the eigenvalues and cause 
them to attempt to converge in a new order. All of the progress toward convergence would 
be undone. It follows that in the general case in which shifting is done at each step, the 
shifts should always be determined by information from the lower right-hand corner of 
the matrix. That is, they should attempt to approximate whichever eigenvalue is due to 
emerge next at that corner of the matrix. In this way the ordering which emerges will be 
preserved, and therefore reinforced, throughout the iterations. 

4. Inverse iteration and duality in the QR algorithm. 
Inverse iteration. If A -' exists, it has eigenvalues (Xn) -', (X1)-, * * * , (X)-' with 

eigenvectors vn, vn, . * , v,. If also I XA_ I I > I X,, |, then the sequence 

v,A-'v,A-2v,A-3v, . . . 

will converge (if appropriately rescaled) to a multiple of v., provided that cn, = 0. The 
convergence is linear with ratio of successive errors roughly I Xn/lXn I I. More generally, if a 
is any non-eigenvalue, one can shift A by a and form (A - aI)-', whose eigenvalues are 
(X1 - 0j', (X2 - j-1, * * * , (Xn - 0)-. Suppose a is a good approximation to some Xi, 
good enough that I Xi - a I << I Xj - a I for all j = i. Then the iterates 

v, (A - aI)-'v, (A -_ I)-2v, (A - aI)-3v, 

(properly rescaled) will converge to a multiple of the eigenvector vi, provided that ci f 0. 
Convergence is linear with ratio of successive errors given by r = max (I (Xi - a)/ 
(Xj - a) I). Since r << 1, convergence is fast. 

Clearly A' or (A - oI)-' may be applied to subspaces as well, with results 
analogous to those of ?2. 

Rayleigh quotient iteration is a variant of inverse iteration in which a different shift 
is used at each step. Suppose that after m steps we have the vector vm, which approximates 
the eigenvector vi. Then the Rayleigh quotient 

,mr= (vm*Avm)l(vm*vm) 

is a good approximation to the corresponding eigenvalue Xi. If it is a good enough 
approximation,.,then I Xi - omr I will be much smaller than IXj - mr I for all j = i. We can 
then apply one step of inverse iteration to A - amI to get vm , a much better approxima- 
tion to vi. The new Rayleigh quotient c,m+I will then be much closer to Xi. Ostrowski 
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(1958), (1959) established that (local) convergence is quadratic in general and cubic in 
the Hermitian case. The global convergence question is difficult because a different shift 
is used at each step. Kahan (Parlett and Kahan (1968)) showed that in the Hermitian 
case convergence takes place for almost all starting vectors. (The proof is also given in 
Parlett (1980).) The cases for which convergence does not occur are unstable under 
roundoff error, so in practice convergence is global. Parlett (1974) generalized the result 
to normal matrices. Chen (1977) showed some of the difficulties which occur in the 
nonnormal case. 

Duality in the QR algorithm. The following duality theorem provides the link 
between the QR algorithm and inverse iteration. It shows that whenever direct (subspace) 
iteration takes place, inverse (subspace) iteration also takes place automatically. 

THEOREM 4.1. Suppose A is nonsingular, and let S and S' be orthogonal, 
complementary subspaces of Cn. Then, for all integers m, A'S and (A*)-mS' are also 
orthogonal complements. 

Proof. Let x, y E C". Then (x, y) = (Ax, (A*)-'y), etc. C1 
Thus the sequences 

S, AS, A2S,... 

S, (A*)-'S, (A*)2S, .. 

are equivalent in that they yield orthogonal complements. That is, subspace iteration by A 
on S is equivalent to subspace iteration by (A*)-1 on S'. How is this reflected in the QR 
algorithm? The starting subspaces for QR are (e, . . . , ek), k = 1, * * . , n, so it must be 
that iteration by (A*)-' is also tacitly taking place on the subspaces (ek+I, I * , e"). Let 
qlt * * *, qm be as in ??2 and 3. Then since 

(qm ...q") =- (Amel, . . . . Amek) k= i1, . . * ,n=1 

it follows from Theorem 4.1 that 

(4.1) (q . . , qm') = ((A*)-mek+?I * (A*)-m e 

These equations can also be derived from the basic equations of the QR algorithm, (3.5) 
and (3.7). Taking conjugate transposes and inverting each of these equations we get 

(4.2) (A-,)-' = QmLm, (A*)-' LmQm 

(4.3) (A* )m = OmLm 

where Lm = (Rm)' and Lm = (Ri)'- = LmLmi * * * 
L,. Lm and Lm are lower triangular. 

Equations (4.2) show that the QR algorithm on A is equivalent to a QL algorithm on 
(A*)-'. The QL algorithm is based on the QL decomposition, for which there is a theorem 
analogous to Theorem 3.1. The QL decomposition is also an orthonormalization proce- 
dure, but with the last column orthonormalized first. That is, if B = QL, then (bn) = (qn), 
(bn 1, bn) = (qn- I qn), and so on. Just as (3.7) connects the QR algorithm with simulta- 
neous iteration by A, (4.3) establishes the connection with simultaneous iteration by 
(A*)-'. Specifically, the equations (4.1) follow immediately. 

Now consider the case k = n - 1 in (4.1). Since (qm) = ((A*)-men), the last column 
of Qm represents the effect of inverse iteration by A*, with starting vector en. Therefore qmn 
should converge to the eigenvector of A* corresponding to its smallest eigenvalue Xn. 
Convergence can be accelerated by subtracting a shift -m which approximates Xen. A 
reasonable choice of shift is the Rayleigh quotient, 

a' = (qm) *A * (qm) 
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Then 

am = (qm *A* (qm) = (qnm)*A (qml) = a(m) 
by (3.2). Thus the Rayleigh quotient is just the shift suggested originally in ?3. 

From the almost global convergence of Rayleigh quotient iteration it follows that the 
shifted QR algorithm for Hermitian matrices almost always converges. If the Wilkinson 
shift (introduced in ?3) is used, convergence always takes place. See Wilkinson (1968) or 
Parlett (1980). In the non-Hermitian case, shifted QR is thought to converge almost 
always, but no proof has been found. A proof of (almost) global convergence of Rayleigh 
quotient iteration is required. 

5. Variants. The QR algorithm was preceded by the LR or LU algorithm of 
Rutishauser (1955), (1958). The LU algorithm, as we shall call it, is based on successive 
LU decompositions, where L is lower triangular with 1's on the main diagonal and U is 
upper triangular. Thus, the unshifted algorithm has the form 

(5.1) Bmi = LmUm, Bm = UmLm, 

where Bo = A. Not every matrix has an LU decomposition, so this procedure cannot 
always be carried out. We will not concern ourselves with that. If A is Hermitian and 
positive definite one can use the Cholesky decomposition A = GG*, where G is lower 
triangular with positive main diagonal entries. From (5.1) we have 

(5.2) Bm= L-'Bm-Lm=UmBm-IU-' 
from which 

(5.3) Bm = LIQ ALm = UmAU(,J 
where Lm = LI L2 . . . Lm and Urm = um Um- l. . . U1. Also, in analogy with (3.7), 

(5.4) Am = Lm UM. 
Like the QR decomposition, the LU decomposition is a normalization procedure. If 
A = LU, then the columns of A and L are related by (al, * * , ak ) = (l, . . ,l k ), k = 1, 
* * *,n. This follows from the fact that U is upper triangular. (Since L is also triangular, 
the rows of A and U satisfy a similar relationship.) The columns of L are not orthonormal. 
Instead they are normalized so that the ith column has i - 1 initial zeroes followed by a 
one. This can be thought of as a cheap alternative to orthonormalization. 

From (5.4) one sees that Lm and Urm are the LU factors of Atm. Thus 

(Ame*, Amek) = ( .M * ,), m = 1, 2, . . *, 

where 1m, * * , Im are the columns of Lm. This shows that the first k columns of Lm span 
the space gotten by m steps of subspace iteration on (el, , ek, which is the same 
space as is spanned by the first k columns of Qm in the QR algorithm. This equality of 
subspaces was recognized early and later reemphasized by Parlett and Poole (1973). 
However, equality of the underlying subspaces does not imply that the two algorithms 
give the same results. The major focus of the algorithms is not on subspaces, but on 
sequences of matrices AO. A1, A2, . . . and Bo. B1, B2, * . . The two methods generate 
different sequences: 

Am = Q*AQm, Bm = L-'ALM. 

The difference in these two sequences is dramatized by the fact (cf. Wilkinson (1965, p. 
545)) that if the Cholesky variant is used, then B2m = Am. That is, one QR step equals two 
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Cholesky LU steps. In the general case the relationship is not so clear, but practice has 
shown that QR usually converges faster than LU. In addition, the unitary matrices Qm are 
amenable to analysis, whereas the Lm are not so convenient analytically. The entries of Lm 
and Lm' may grow with m, as may the entries of Bm. As a consequence, convergence of Bm 
to triangular form cannot be deduced from convergence of the subspaces. By contrast the 
entries of Qm and Qm are bounded by 1, those of Am are bounded by the spectral norm of A, 
and convergence of the subspaces implies convergence of Am to triangular form. 
Nevertheless, a recent paper of Dax and Kaniel (1981) suggests that the LU algorithm 
may not yet be dead. 

Acknowledgment. The author thanks Beresford Parlett for making many helpful 
suggestions and providing historical perspective which the author could not possibly 
possess. 
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