
Walter Gautschi

Numerical Analysis
An Introduction

1997

Birkhauser
Boston Base1 Berlin

Walter Gautschi
Department of Computer Science
Purdue University
West Lafayette, IN 47907- 1398
USA

Library of Congress Cataloging-in-Publication Data

Gautschi, Walter.
Numerical analysis : an introduction / Walter Gautschi.

p. cm.
Includes bibliographical references (p. 451- 48 1).
ISBN 0-8176-3895-4 (alk. paper). -- ISBN 3-7643-3895-4 (Base1

alk. paper)
1. Numerical analysis. I. Title.

QA297.G35 1997
5 19.4--dc2 1 97- 186

CIP

Printed on acid-free paper Q

O 1997 Birkhauser Boston Birkhiitrser @
Copyright is not claimed for works of U.S. Government employees.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior permission of the copyright owner.

Permission to photocopy for internal or personal use of specific clients is granted by
Birkhauser Boston for libraries and other users registered with the Copyright Clearance Center
(CCC), provided that the base fee of $6.00 per copy, plus $0.20 per page is paid directly to
CCC, 222 Rosewood Drive, Danvers, MA 01923, U.S.A. Special requests should be
addressed directly to Birkhauser Boston, 675 Massachusetts Avenue, Cambridge, MA 021 39,
U.S.A.

ISBN 0-8 176-3895-4
ISBN 3-7643-3895-4
Typeset by the Author in L*T~X.
Cover design by Dutton & Sherman Design, New Haven, CT.
Printed and bound by Quinn-Woodbine, Woodbine, NJ.
Printed in the U.S.A.

9 8 7 6 5 4 3 2 1

CONTENTS

PREFACE xi

CHAPTER 0 . PROLOGUE 1
. 0.1. Overview 1

0.2. Numerical analysis software 3

. 0.3. Textbooks and monographs 4
0.4. Journals . 9

CHAPTER 1 . MACHINE ARITHMETIC AND RELATED MATTERS 10
. 1 . Real Numbers. Machine Numbers. and Rounding 11

. 1 .I . Real numbers 11
. 1.2. Machine numbers 12

. 1.3. Rounding 14
. . 2 Machine Arithmetic 16

. 2.1. A model of machine arithmetic 16
2.2. Error propagation in arithmetic operations; cancellation

. error 18
. 3 . The Condition of a Problem 21

. 3.1. Condition numbers 23
. 3.2. Examples 27

. 4 The Condition of an Algorithm 35
. 5 . Computer Solution of a Problem; Overall Error 37

Notes to Chapter 1 . 39
. Exercises and Machine Assignments to Chapter 1 42

CHAPTER 2 . APPROXIMATION AND INTERPOLATION 55
. 1 . Least Squares Approximation 59

. 1.1. Inner products 60
. 1.2. The normal equations 62

. 1.3. Least squares error; convergence 65

. 1.4. Examples of orthogonal systems 69

2 . Polynomial Interpolation . 74
2.1. Lagrange interpolation formula; interpolation operator . 76
2.2. Interpolation error . 79

Contents

2.3. Convergence . 82

2.4. Chebyshev polynomials and nodes 89

2.5. Barycentric formula . 94

2.6. Newton's formula . 96

2.7. Hermite interpolation . 101

2.8. Inverse interpolation . 104

3 . Approximation and Interpolation by Spline Functions 106

3.1. Interpolation by piecewise linear functions 107

3.2. A basis for S? (A) . 109

3.3. Least squares approximation 110

3.4. Interpolation by cubic splines 112

3.5. Minimality properties of cubic spline interpolants 115

Notes to Chapter 2 . 118

Exercises and Machine Assignments to Chapter 2 125

CHAPTER 3 . NUMERICAL DIFFERENTIATION
AND INTEGRATION 146

1 . Numerical Diflerentiation . 146

1.1. A general differentiation formula for unequally spaced
points . 146

1.2. Examples . 147

1.3. Numerical differentiation with perturbed data 150

2 . Numerical Integration . 152

2.1. The composite trapezoidal and Simpson's rules 152

2.2. (Weighted) Newton-Cotes and Gauss formulae 157

2.3. Properties of Gaussian quadrature rules 163

2.4. Some applications of the Gauss'quadrature rule 167

2.5. Approximation of linear functionals: method of interpo-
lation vs . method of undetermined coefficients 170

2.6. Peano representation of linear functionals 176

2.7. Extrapolation methods 179

Notes to Chapter 3 . 186

. Exercises and Machine Assignments to Chapter 3 191

Contents vii

CHAPTER 4 . NONLINEAR EQUATIONS 209
1 . Examples . 210

1.1. A transcendental equation 210
. 1.2. A two-point boundary value problem 211

1.3. A nonlinear integral equation 212
1.4. s-Orthogonal polynomials 213

2 . Iteration, Convergence, and Ef ic iency 214
. 3 . The Methods of Bisection and S turm Sequences 217

3.1. Bisection method . 217
3.2. Method of Sturm sequences 220

4 . Method of False Position . 222
5 . Secant Method . 225
6 . Newton's Method . 230
7 . Fixed Point Iteration . 235
8 . Algebraic Equations . 236

. . . . 8.1. Newton's method applied to an algebraic equation 237
8.2. An accelerated Newton method for equations with real

roots . 239
9 . Systems of Nonlinear Equations 240

9.1. Contraction mapping principle 241
9.2. Newton's method for systems of equations 242

Notes to Chapter 4 . 244
Exercises and Machine Assignments to Chapter 4 249

CHAPTER 5 . INITIAL VALUE PROBLEMS FOR ODES - ONE-
STEP METHODS 263

0.1. Examples . 263
0.2. Types of differential equations 266
0.3. Existence and uniqueness 270
0.4. Numerical methods . 270

1 . Local Description of One-Step Methods 272
2 . Examples of One-Step Methods 274

2.1. Euler's method . 274
2.2. Method of Taylor expansion 275
2.3. Improved Euler methods 276

...
vul Con tents

2.4. Second-order two-stage methods 278
2.5. Runge-Kutta methods . 280

3 . Global Description of One-Step Methods 282
3.1. Stability . 284
3.2. Convergence . 288
3.3. Asymptotics of global error 289

4 . Error Monitoring and Step Control 292
4.1. Estimation of global error 292
4.2. Truncation error estimates 294
4.3. Step control . 298

5 . Stiff Problems . 302
5.1. A-stability . 302
5.2. Pad6 approximation . 304
5.3. Examples of A-stable one-step methods 308
5.4. Regions of absolute stability 312

Notes to Chapter 5 . 313
Exercises and Machine Assignments to Chapter 5 320

CHAPTER 6 . INITIAL VALUE PROBLEMS FOR ODES . MULTI-
STEP METHODS 330
1 . Local Description of Multistep Methods 330

1.1. Explicit and implicit methods 330
1.2. Local accuracy . 332
1.3. Polynomial degree vs . order 337

2 . Examples of Multistep Methods 340
2.1. Adams-Bashforth method 340

. 2.2. Adams-Moulton method 344
. 2.3. Predictor-corrector methods 345

. 3 Global Description of Multistep Methods 349
. 3.1. Linear difference equations 349
. 3.2. Stability and root condition 353

3.3. Convergence . 357
. 3.4. Asymptotics of global error 359

3.5. Estimation of global error 363
. 4 . Analytic Theory of Order and Stability 366

Contents ix

. 4.1. Analytic characterization of order 367

. 4.2. Stable methods of maximum order 375
. 4.3. Applications 381

5 . Sti f l Problems . 385
. 5.1. A-stability 385

. 5.2. A(a)-stability 388
Notes to Chapter 6 . 389
Exercises and Machine Assignments to Chapter 6 393

CHAPTER 7 . TWO-POINT BOUNDARY VALUE PROBLEMS FOR
ODES 398

. 1 . Existence and Uniqueness 401
. 1.1. Examples 401

. 1.2. A scalar boundary value problem 403
. 1.3. General linear and nonlinear systems 409

. 2 . Initial Value Techniques 410
2.1. Shooting method for a scalar boundary value problem . . 410

. 2.2. Linear and nonlinear systems 413
. 2.3. Parallel shooting 418

. 3 . Finite Diflerence Methods 423
. 3.1. Linear second-order equations 423

. 3.2. Nonlinear second-order equations 428
. 4 . Variational Methods : 432

. 4.1. Variational formulation 432
. 4.2. The extremal problem 435

. 4.3. Approximate solution of the extremal problem 436
Notes to Chapter 7 . 439
Exercises and Machine Assignments to Chapter 7 442

References 451

Subject Index 482

PREFACE

The book is designed for use in a graduate program in Numerical Anal-
ysis that is structured so as to include a basic introductory course and
subsequent more specialized courses. The latter are envisaged to cover such
topics as .numerical linear algebra, the numerical solution of ordinary and
partial differential equations, and perhaps additional topics related to com-
plex analysis, to multidimensional analysis, in particular optimization, and
to functional analysis and related functional equations. Viewed in this con-
text, the first four chapters of our book could serve as a text for the basic
introductory course, and the remaining three chapters (which indeed are a t
a distinctly higher level) could provide a text for an advanced course on the
numerical solution of ordinary differential equations. In a sense, therefore,
the book breaks with tradition in that it does no longer attempt to deal with
all major topics of numerical mathematics. It is felt by the author that some
of the current subdisciplines, particularly those dealing with linear algebra
and partial differential equations, have developed into major fields of study
that have attained a degree of autonomy and identity that justifies their
treatment in separate books and separate courses on the graduate level.
The term "Numerical Analysisi' as used in this book, therefore, is to be
taken in the narrow sense of the numerical analogue of Mathematical Anal-
ysis, comprising such topics as machine arithmetic, the approximation of
functions, approximate differentiation and integration, and the approximate
solution of nonlinear equations and of ordinary differential equations.

What is being covered, on the other hand, is done so with a view toward
stressing basic principles and maintaining simplicity and student-friendliness
as far as possible. In this sense, the book is "An Introductionii. Topics that,
even though important and of current interest, require a level of technical-
ity that transcends the bounds of simplicity striven for, are referenced in
detailed bibliographic notes at the end of each chapter. It is hoped, in this
way, to place the material treated in proper context and to help, indeed
encourage, the reader to pursue advanced modern topics in more depth.

A significant feature of the book is the large collection of exercises that
are designed to help the student develop problem-solving skills, and to pro-
vide interesting extensions of topics treated in the text. Particular attention
is given to machine assignments, where the student is encouraged to imple-
ment numerical techniques on the computer and to make use of modern
software packages.

xii Preface

The author has taught the basic introductory course, and the advanced
course on ordinary differential equations regularly a t Purdue University for
the last 30 years or so. The former, typically, was offered both in the fall and
spring semesters, to a mixed audience consisting of graduate (and some good
undergraduate) students in mathematics, computer science, and engineer-
ing, while the latter was taught only in the fall, to a smaller but also mixed
audience. Written notes began to materialize in the 1970s, when the author
taught the basic course repeatedly in summer courses on Mathematics held
in Perugia, Italy. Indeed, for some time, these notes existed only in the Ital-
ian language. Over the years, they were progressively expanded, updated,
and transposed into English, and along with that, notes for the advanced
course were developed. This, briefly, is how the present book evolved.

A long gestation period such as this, of course, is not without dangers,
the most notable one being a tendency for the material to become dated.
The author tried to counteract this by constantly updating and revising the
notes, adding newer developments when deemed appropriate. There are,
however, benefits as well: over time, one develops a sense for what is likely to
stand the test of time and what may only be of temporary interest, and one
selects and deletes accordingly. Another benefit is the steady accumulation
of exercises and the opportunity to have them tested on a large and diverse
student population.

The purpose of academic teaching, in the author's view, is twofold: to
transmit knowledge, and, perhaps more important, to kindle interest and
even enthusiasm in the student. Accordingly, the author did not strive for
comprehensiveness - even within the boundaries delineated - but rather
tried to concentrate on what is essential, interesting and intellectually pleas-
ing, and teachable. In line with this, an attempt has been made to keep the
text uncluttered with numerical examples and other illustrative material.
Being well aware, however, that mastery of a subject does not come from
studying alone, but from active participation, the author provided many
exercises, including machine projects. Attributions of results to specific au-
thors and citations to the literature have been deliberately omitted from
the body of the text. Each chapter, as already mentioned, has a set of ap-
pended notes that help the reader to pursue related topics in more depth
and to consult the specialized literature. It is here where attributions and
historical remarks are made, and where citations to the literature - both
textbook and research - appear.

The main text is preceded by a Prologue (Chapter 0), which is intended
to place the book in proper perspective. In addition to other textbooks on

Preface . . .
X l l l

the subject, and information on software, it gives a detailed list of topics
not treated in this book, but definitely belonging to the vast area of com-
putational mathematics, and it provides ample references to relevant texts.
A list of numerical analysis journals is also included.

The reader is expected to have a good background in calculus and ad-
vanced calculus. Some passages of the text require a modest degree of ac-
quaintance with linear algebra, complex analysis, or differential equations.
These passages, however, can easily be skipped, without loss of continuity,
by a student who is not familiar with these subjects.

It is a pleasure to thank the publisher for his interest in this book and
his cooperation in producing it. The author is also grateful to Soren Jensen
and Manil Suri, who taught from this text, and to an anonymous reader;
they all made many helpful suggestions on improving the presentation. He is
particularly indebted to Professor Jensen for substantially helping in prepar-
ing the exercises to Chapter 7. The author further acknowledges assistance
from Carl de Boor in preparing the notes to Chapter 2, and from Werner
C. Rheinboldt for helping with the notes to Chapter 4. Last but not least,
he owes a measure of gratitude to Connie Wilson for typing a preliminary
version of the text, and to Adam Hammer for assisting the author with the
more intricate aspects of

January, 1997 Walter Gautschi

CHAPTER 0

PROLOGUE

50.1. Overview. Numerical Analysis is the branch of mathematics that
provides tools and met hods for solving mat hematical problems in numerical
form. The objective is to develop detailed computational procedures, capa-
ble of being implemented on electronic computers, and to study their per-
formance characteristics. Related fields are Scientific Computation, which
explores the application of numerical techniques and computer architectures
to concrete problems arising in the sciences and engineering; Complexity
Theory, which analyzes the number of "operations" and the amount of com-
puter memory required to solve a problem; and Parallel Computation, which
is concerned with organizing computational procedures in a manner that al-
lows running various parts of the procedures simultaneously on different
processors.

The problems dealt with in computational mathematics come from virtu-
ally all branches of pure and applied mathematics. There are computational
aspects in number theory, combinatorics, abstract algebra, linear algebra,
approximation theory, geometry, statistics, optimization, complex analysis,
nonlinear equations, differential and other functional equations, and so on.
It is clearly impossible to deal with all these t0pic.s in a single text of reason-
able size. Indeed, the tendency today is to develop specialized texts dealing
with one or the other of these topics. In the present text we concentrate on
subject matters that are basic to problems in approximation theory, nonlin-
ear equations, and differential equations. Accordingly, we have chapters on
machine arithmetic, approximation and interpolation, numerical differenti-
ation and integration, nonlinear equations, one-step and multistep methods
for ordinary differential equations, and boundary value problems in ordi-
nary differential equations. Important topics not covered in this text are
computational number theory, algebra, and geometry; constructive meth-
ods in optimization and complex analysis; numerical linear algebra; and the

, numerical solution of problems involving partial differential equations and
integral equations. Selected texts for these areas are listed in 50.3.

We now describe briefly the topics treated in this text. Chapter 1 deals
with the basic facts of life regarding machine computation. It recognizes
that, although present-day computers are extremely powerful in terms of
computat ional speed, reliability, and amount of memory available, they are

.
.)

Chapter 0. Prologue

less than ideal - unless supplemented by appropriate software - when it
comes to the precision available, and accuracy attainable, in the execution
of elementary arithmetic operations. This raises serious questions as to how
arithmetic errors, either present in the input data of a problem or commit-
ted during the execution of a solution algorithm, affect the accuracy of the
desired results. Concepts and tools required to answer such questions are
the topic of this introductory chapter. In Chapter 2, the central theme is the
approximation of functions by simpler functions, typically, polynomials and
piecewise polynomial functions. Approximation in the sense of least squares
provides an opportunity to introduce orthogonal polynomials, which are rel-
evant also in connection with problems of numerical integration treated in
Chapter 3. A large part of the chapter, however, deals with polynomial
interpolation and associated error estimates, which are basic to many nu-
merical procedures for integrating functions and differential equations. Also
discussed briefly is inverse interpolation, an idea useful in solving equations.

First applications of interpolation theory are given in Chapter 3, where
the tasks presented are the computation of derivatives and definite inte-
grals. Although the formulae developed for derivatives are subject to the
detrimental effects of machine arithmetic, they are useful, nevertheless, for
purposes of discretizing differential operators. The treatment of numerical
integration includes routine procedures, such as the trapezoidal and Simp-
son's rules, appropriate for well-behaved integrands, as well as the more
sophisticated procedures based on Gaussian quadrature to deal with sin-
gularities. It is here where orthogonal polynomials reappear. The method
of undetermined coefficients is another technique for developing integration
formulae. It is applied in order to approximate general linear functionals,
the Peano representation of linear functionals providing an important tool
for estimating the error. The chapter ends with a discussion of extrapolation
techniques; although applicable to more general problems, they are inserted
here since the composite trapezoidal rule together with the Euler-Maclaurin
formula provides the best-known application - Romberg integration.

Chapter 4 deals with iterative methods for solving nonlinear equations
and systems thereof, the p ike de rksistance being Newton's method. The
emphasis here lies in the study of, and the tools necessary to analyze, conver-
gence. The special case of algebraic equations is also briefly given attention.

Chapter 5 is the first of three chapters devoted to the numerical solution
of ordinary differential equations. It concerns itself with one-step methods
for solving initial value problems, such as the Runge-Kutta method, and
gives a detailed analysis of local and global errors. Also included is a brief

5 0.2. Numerical analysis software 3

introduction to stiff equations and special methods to deal with them. Mul-
tistep methods and, in particular, Dahlquist's theory of stability and its
applications, is the subject of Chapter 6. The final Chapter 7 is devoted
to boundary value problems and their solution by shooting methods, finite
difference techniques, and variational met hods.

50.2. Numerica l analysis software. There are many software pack-
ages available, both in the public domain and distributed commercially, that
deal with numerical analysis algorithms. A widely used source of numerical
software is Netlib, which can be accessed either on the World Wide Web at
the URL http: //www. netlib. org, or by e-mail a t the address (in the US)
netlibQnetlib. org.

If you wish to see an index of all packages contained in the Netlib repos-
itory, you may, on the Web, open up the highlighted entry Browse the
Netlib repository. This will display on the screen a list of all software
packages, which may then be examined more closely by clicking on A more
descriptive version of the list. Instructions as to how files are re-
trieved can be found under Frequently Asked Quest ions about Netlib
(FAQ) on the home page of Netlib. Via e-mail, you can get an index, as well
as instructions regarding retrieval of an individual package or file(s) from
a package, by sending the message send index to the e-mail address given
here.

Large collections of general-purpose numerical algorithms a.re contained
in sources such as Slatec and TOMS (ACM'Transactions on Mathematical
Software). Specialized packages relevant to the topics in the chapters ahead
are identified in the "Notes" to each chapter. Likewise, specific files needed
to do some of the machine assignments in the Exercises are identified as part
of the exercise.

Among the commercial software packages we mention the visual numerics
(formerly IMSL) package, the NAG library, and MLAB (Modeling LABo-
ratory). Interactive systems include HiQ, MACSYMA, MAPLE, Mathcad,
Mathematica, and MATLAB. Many of these packages, in addition to nu-
merical computation, have symbolic computation and graphics capabilities.
Further information is available in the Netlib file commercial. For more li-
braries, and for the interactive systems, also see Lozier and Olver [1994, $31.

50.3. Text books and monographs . We provide here an annotated list
(ordered alphabetically with respect to authors) of other textbooks on nu-

4 Chapter 0. Prologue

merical analysis, written at about the same, or higher, level as the present
one. Following this we also mention books and monographs dealing with
topics in computational mathematics not covered in our (and many other)
books on numerical analysis. Additional books dealing with specialized sub-
ject areas, as well as other literature, are referenced in the "Notes" to the
individual chapters. We generally restrict ourselves to books written in En-
glish and, with a few exceptions, published within the last 15 years or so.
Even so, we have had to be selective. (No value judgment is to be implied
by our selections or omissions.) A reader with access to the AMS (American
Mathematical Society) MathSci CD-ROM will have no difficulty in retriev-
ing a more complete list of relevant items, including older texts.

At kinson [I 9891
A comprehensive in-depth treatment of standard topics short
of partial differential equations; includes an appendix de-
scribing some of the better-known software packages.

Bruce, Giblin, and Rippon [1990]
A collection of interesting mathematical problems, ranging
from number theory and computer-aided design to differen-
tial equations, that require the use of computers for their
solution.

Cheney and Kincaid [I9941
Although an undergraduate text, it covers a broad area,
has many examples from science and engineering as well
as computer programs; there are many exercises, including
machine assignments.

Conte and de Boor [I9801
A widely used text for upper-division undergraduate stu-
dents; written for a broad audience, with algorithmic con-
cerns in the foreground; has FORTRAN subroutines for
many algorithms discussed in the text.

Deuflhard and Hohmann [I9951
An introductory text with emphasis on machine compu-
tation and algorithms; includes a discussion of t hree-term
recurrence relations (not usually found in textbooks), but
no differential equations.

50.3 Text books and monographs 5

Froberg [I9851

A thorough and exceptionally lucid exposition of all ma-
jor topics of numerical analysis exclusive of algorithms and
computer programs.

Hammerlin and Hoffmann [I9911

Similar to Stoer and Bulirsch [I9931 in its emphasis on
mat hematical theory; has more on approximation theory
and multivariate interpolat ion and integration, but nothing
on differential equations.

Isaacson and Keller [I9941

One of the older but still eminently readable texts, stressing
the mathematical analysis of numerical methods.

Kincaid and Cheney [I9961

Related to Cheney and Kincaid [I9851 but more mathe-
matically oriented and unusually rich in exercises and bib-
liographic items.

Rutishauser [I9901

An annotated translation from the German of an older text
based on posthumous notes by one of the pioneers of nu-
merical analysis; although the subject matter reflects the
state of the art in the early 1970s, the treatment is highly
original and is supplemented by translator's notes to each
chapter pointing to more recent developments.

Schwarz [I9891

A mathematically oriented treatment of all major areas of
numerical analysis, including ordinary and partial differen-
tial equations.

Stoer and Bulirsch [I9931

Fairly comprehensive in coverage; writ ten in a style appeal-
ing more to mathematicians than engineers and computer
scientists; has many exercises and bibliographic references;
serves not only as a textbook, but also as a reference work.

Todd [1980, 19771

Rather unique books, emphasizing problem solving in areas
often not covered in other books on numerical analysis.

6 Chapter 0. Prologue

A collection of outstanding survey papers on specialized topics in nu-
merical analysis is being assembled by Ciarlet and Lions [1990,1991,1994]
in handbooks of numerical analysis; three volumes have appeared so far.
Another source of surveys on a variety of topics is Acta numerica, an annual
series of books edited by Iserles [1992-19961, of which five volumes have so
far been published. For an authoritative account of the history of numerical
analysis, the reader is referred to the book by Goldstine [1977].

The related areas of Scientific Computing and Parallel Computing are
rather more recent fields of study, and currently are most actively pursued
in proceedings of conferences and workshops. Nevertheless, a few textbooks
have also appeared, notably in the linear algebra context and in connection
with ordinary and partial differential equations, for example Schendel [1984],
Ortega and Voigt [1985], Ortega [1989], Golub and Ortega [1992], [1993],
Van de Velde [1994], and Heath [1997], but also in optimization, Parda-
los, Phillips, and Rosen [1992], computational geometry, Akl and Lyons
[1993], and other miscellaneous areas, Crandall [1994], Kockler [1994], and
Bellomo and Preziosi [1995]. Interesting historical essays are contained in
Nash [1990]. Matters regarding the Complexity of numerical algorithms are
discussed in an abstract framework in books by Traub and Woiniakowski
[I9801 and Traub, Wasilkowski, and Woiniakowski [1983], [1988], with ap-
plications to the numerical integration of functions and nonlinear equations,
and similarly, applied to elliptic partial differential equations and integral
equations, in the book by Werschulz [1991]. Other treatises are those by
Kronsjo [1987], KO [1991], Bini and Pan [1994], and Wang, Xu, and Gao
[1994]. For an in-depth complexity analysis of Newton's method, the reader
is encouraged to study Smale's [I9871 lecture.

Material on Computational Number Theory can be found, at the under-
graduate level, in the book by Rosen [1993], which also contains applications
to cryptography and computer science, and in Allenby and Redfern [1989],
and at a more advanced level in the books by Niven, Zuckerman, and Mont-
gomery [1991], Cohen [1993], and Bach and Shallit [1996], the first volume
of a projected two-volume set. Computational methods of factorization are
dealt with in the book by Riesel [1994]. Other useful sources are the set of
lecture notes by Pohst [I9931 on algebraic number theory algorithms, and
the proceedings volumes edited by Pomerance [I9901 and Gautschi [1994a,
Part 111. For algorithms in Combinatorics, see the books by Nijenhuis and
Wilf [1978], Hu [1982], and Cormen, Leiserson, and Rivest [1990]. Vari-
ous aspects of Computer Algebra are treated in the books by Cox, Little,

50.3 Text books and monographs

and O'Shea [1992], Geddes, Czapor, and Labahn [1992], Mignotte [1992],
Davenport, Siret, and Tournier [1993], Heck [1996], and Mishra [1993].

Other relatively new disciplines are Computational Geometry and
Computer-Aided Design, for which relevant texts are Preparata and Shamos
[1985], Edelsbrunner [1987], Mantyla [1988], and Taylor [I9921 ; and Farin
[1995], [I9971 and Hoschek and Lasser [1993], respectively. Statistical Com-
puting is covered in general textbooks such as Kennedy and Gentle [1980],
Anscombe [1981], Maindonald [1984], and Thisted [1988]. More specialized
texts are Devroye [I9861 on the generation of nonuniform random variables,
Spath [I9921 on regression analysis, Heiberger [I9891 on the design of ex-
periments, Stewart [I9941 on Markov chains, and Fang and Warig [I9941 on
the application of number-theoretic methods. Numerical techniques in Op-
timization (including optimal control problems) are discussed in Evtushenko
[1985]. An introductory book on unconstrained optimization is Wolfe [1978];
among the more advanced and broader texts on optimization techniques we
mention Gill, Murray, and Wright [1981], Fletcher [1987], and Ciarlet [1989].
Linear programming is treated in Nazareth [I9871 and Panik [1996], linear
and quadratic problems in Sima [1996], and the application of conjugate di-
rection methods to problems in optimization in Hestenes [198C)]. The most
comprehensive text on (numerical and applied) Complex Analysis is the
three-volume treatise by Henrici [1988, 1991, 19861. Numerical methods for
conformal mapping are also treated in Schinzinger and Laura [1991]. For
approximation in the complex domain, the standard text is Gaier [1987];
Stenger [I9931 deals with approximation by sinc functions. The book by
Iserles and N~rse t t [I9911 contains interesting discussions on the interface
between complex rational approximation and the stability theory of dis-
cretized differential equations. The impact of high-precision computation
on problems and conjectures involving complex approximation is beautifully
illustrated in the set of lectures by Varga [1990].

For an in-depth treatment of many of the preceding topics, also see the
three-volume work of Knuth [1975, 1981, 19731.

Perhaps the most significant topic omitted in our book is numerical lin-
ear algebra and its application to solving partial differential equations by
finite difference or finite element methods. Fortunately, there are good trea-
tises available that address these areas. For Numerical Linear Algebra, we
refer to the book by Golub and Van Loan [I9961 and the classic work of
Wilkinson [1988]. Other general texts are Watkins [1991], Jennings and
McKeown [1992], and Datta [1995]; Higham [I9961 has a comprehensive
treatment of error and stability analyses. The solution of sparse linear sys-

8 Chapter 0. Prologue

tems, and the special data structures and pivoting strategies required in di-
rect methods, are treated in 0sterby and Zlatev [1983], Duff, Erisman, and
Reid [1989], and Zlatev [1991], whereas iterative techniques are discussed
in the classic texts by Varga [I9621 and Young [1971], and more recently
in Hageman and Young [1981], Il'in [1992], Hackbusch [1994], Saad [1996],
and Weiss [1996]. The books by Branham [1990] and Bjorck [I9961 are de-
voted especially to least squares problems. For eigenvalues, see Chatelin
[1983], [1993], and for a good introduction to the numerical analysis of
symmetric eigenvalue problems, see Parlett [1980]. The currently very ac-
tive investigation of large sparse symmetric and nonsymmetric eigenvalue
problems and their solution by Lanczos-type methods has given rise to
many books, for example, Cullum and Willoughby [1985], Meyer [1987],
Sehmi [1989], and Saad [1992]. For readers wishing to test their algo-
rithms on specific matrices, the collection of test matrices in Gregory and
Karney [1978], and the recently established "matrix market" on the Web
(h t t p : //math. n i s t . gov . /MatrixMarket), are useful sources.

Even more extensive is the textbook literature on the numerical solu-
tion of Partial Differential Equations. The field has grown so much that
there are currently only a few books that attempt to cover the subject
as a whole. Among these are Birkhoff and Lynch [I9841 (for elliptic prob-
lems), Sewell [1988], Hall and Porsching [1990], Ames [1992], Celia and Gray
[1992], Morton and Mayers [1994], and Quarteroni and Valli [1994]. Varia-
tional and finite element methods seem to have attracted the most attention.
An early and still frequently cited reference is the book by 'Ciarlet [1978];
among the more recent texts we mention the Texas Finite Element Series
(Becker, Carey, and Oden [1981], Carey and Oden [1983], [1984], [1986],
Oden [1983], Oden and Carey [1984]), Axelsson and Barker [1984], Wait and
Mitchell [1985], Sewell [I9851 (with a slant toward software), White [1985],
Girault and Raviart [I9861 (focusing on Navier-Stokes equations), Burnett
[1987], Hughes [1987], Johnson [1987], Schwarz [1988], Beltzer [1990] (us-
ing symbolic computation), KFiZek and Neittaanmaki [1990], Brezzi and
Fortin [1991], and Brenner and Scott [1994]. Finite difference methods are
treated in Godunov and Ryaben'kiY [1987], Strikwerda [1989], Ashyralyev
and SobolevskiY [1994], Gustafsson, Kreiss, and Oliger [1995], and Thomas
[1995], the method of lines in Schiesser [1991.], and the more refined tech-
niques of multigrids and domain decomposition in Hackbusch [1985], Briggs
[1987], McCormick [1989], [1992], Bramble [1993], ShaYdurov [1995], and
Smith, B j~rs tad , and Gropp [1996]. Problems in potential theory and elastic-
ity are often approached via boundary element methods, for which represen-

5 b. 4 Journals 9

tative texts are Banerjee and Butterfield [1981], Brebbia [1984], Hartmann
[1989], Chen and Zhou [1992], and Hall [1994]. A discussion of conservation
laws is given in the classic monograph by Lax [I9731 and more recently in
LeVeque [I9921 and Godlewski and Raviart [1996]. Spectral methods (i.e.,
expansions in (typically) orthogonal polynomials), applied to a variety of
problems, were pioneered in the monograph by Gottlieb and Orszag [I9771
and have received extensive treatments in more recent texts by Canuto, Hus-
saini, Quarteroni, and Zang [1988], Mercier [1989], and Fornberg [1996]. The
numerical solution of elliptic boundary value problems nowadays is greatly
facilitated thanks to the software package ELLPACK, which is described in
Rice and Boisvert [1985].

Early, but still relevant, texts on the numerical solution of Integral Equa-
tions are Atkinson [I9761 and Baker [1977]. A more recent introduction
to the subject is Delves and Mohamed [1988]. Volterra integral equations
are discussed in Linz [I9851 and, more extensively, in Brunner and van
der Houwen [1986], whereas singular integral equations are the subject of
Prossdorf and Silbermann [1991].

50.4. Journals. Here we list the major journals (in alphabetical order)
covering the areas of numerical analysis and mathematical software.

ACM Transactions on Mathematical Software
Applied Numerical Mathematics
BIT Numerical Mathematics

Calcolo
Chinese Journal of Numerical R'lathematics and Applications
Computational Mathematics and Mathematical Physics

Computing

IMA Journal on Numerical Analysis
Journal of Computational and Applied Mathematics

Mathematical Modelling and Numerical Analysis

Mat hematics of Computation

Numerische Mat hematik

SIAM Journal on Numerical Analysis

CHAPTER 1

MACHINE ARITHMETIC AND RELATED MATTERS

The questions addressed in this introductory chapter are fundamental
in the sense that they are relevant in any situation that involves numerical
machine computation, regardless of the kind of problem that gave rise to
these computations. In the first place, one has to be aware of the rather
primitive type of number system available on computers. It is basically a
finite system of numbers of finite length, thus a far cry from the idealistic
number system familiar to us from mathematical analysis. The passage from
a real number to a machine number entails rounding, and thus small errors,
called round08 errors. Additional errors are introduced when the individual
arithmetic operations are carried out on the computer. In themselves, these
errors are harmless, but acting in concert and propagating through a lengthy
computation, they can have significant - even disastrous - effects.

Most problems involve input data not representable exactly on the com-
puter. Therefore, even before the solution process starts, simply by storing
the input in computer memory, the problem is already slightly perturbed,
owing to the necessity of rounding the input. It is important, then, to es-
timate how such small perturbations in the input affect the output, the
solution of the problem. This is the question of the (numerical) condition
of a problem: the problem is called well-conditioned if the changes in the
solution of the problem are of the same order of magnitude as the perturba-
tions in the input that caused those changes. If, on the other hand, they are
much larger, the problem is called ill-conditioned. It is desirable to measure
by a single number - the condition number of the problem - the extent
to which the solution is sensitive to perturbations in the input. The larger
this number, the more ill-conditioned the problem.

Once the solution process starts, additional rounding errors will be com-
mitted, which also contaminate the solution. The resulting errors, in con-
trast to those caused by input errors, depend on the particular solution
algorithm. It makes sense, therefore, to also talk about the condition of an
algorithm, although its analysis is usually quite a bit harder. The quality of
the computed solution is then determined by both (essentially the product
of) the condition of the problem and the condition of the algorithm.

1. ~ e a l Numbers, Machine Numbers, and Rounding 11

51. Real Numbers, Machine Numbers, and Rounding

We begin with the number system commonly used in mathematical anal-
ysis and confront it with the more primitive number system available to us
on any particular computer. We identify the basic constant (the machine
precision) that determines the level of precision attainable on such a com-
puter.

51 . l . Real numbers. One can introduce real numbers in many different
ways. Mathematicians favor the axiomatic approach, which leads them to
define the set of real numbers as a "complete Archimedean ordered field."
Here we adopt a more pedestrian attitude and consider the set of real num-
bers R to consist of positive and negative numbers represented in some ap-
propriate number system and manipulated in the usual manner known from
elementary arithmetic. We adopt here the binary number system, since it is
the one most commonly used on computers. Thus,

x E R iff x = f (bn2" + bn-12n-1 + - . .+ bo+b-12-1 + b-22-2 + - - -). (1.1)

Here n 2 0 is some integer, and the "binary digits" bi are either 0 or 1,

bi = 0 or bi = 1 for all i. (1.2)

It is important' to note that in general we need infinitely many binary digits
to represent a real number. We conveniently write such a number in the
abbreviated form (familiar from the decimal number system)

where the subscript 2 a t the end is to remind us that we are dealing with a
binary number. (Without this subscript, the number could also be read as
a decimal number, which would be a source of ambiguity.) The dot in (1.3)
- appropriately called the binary point - separates the integer part on the
left from the fractional part on the right. Note that the representation (1.3)
is not unique; for example, (. ~ l l T . . .)2 = (.1)2. We regain uniqueness if we
always insist on a finite representation, if one exists.

12 Chapter 1. Machine Arithmetic and"Re1ated Matters

Examples.

(k even)

To determine the binary digits on the right, one keeps multiplying by
2 and observing the integer part in the result; if it is zero, the binary
digit in question is 0, otherwise 1. In the latter case, the integral part
is removed and the process repeated.

The last example is of interest insofar as it shows that to a finite decimal
number there may correspond a (nontrivial) infinite binary representation.
One cannot assume, therefore, that a finite decimal number is exactly rep-
resentable on a binary computer. Conversely, however, to a finite binary
number there always corresponds a finite decimal representation. (Why?)

51.2. Machine numbers. There are two kinds of machine numbers:
floating-point and fixed-point. The first corresponds to the "scientific no-
tation" in the decimal system, whereby a number is written as a decimal
fraction times an integral power of 10. The second allows only for frac-
tions. On a binary computer, one consistently uses powers of 2 instead of
10. hlore important, the number of binary digits, both in the fraction and
in the exponent of 2 (if any), is finite and cannot exceed certain limits that
are characteristics of the particular computer at hand.

(a) Floating-point numbers. We denote by t the number of binary digits
allowed by the computer in the fractional part, and by s the number of
binary digits in the exponent. Then the set of (real) floating-point numbers
on that computer will be denoted by R(t, s). Thus,

x E ~ (t , s) iff x = f -2e , (1.4)

where, in the notation of (1.3),

fj 1.2. Machine numbers

Here all bi and cj are binary digits, that is, either zero or one. The binary
fraction f is usually referred to as the mantissa of x, and the integer e as the
exponent of x. The number x in (1.4) is said to be normalized if in its fraction
f we have b-l = 1. We assume that all numbers in R(t, s) are normalized
(with the exception of x = 0, which is treated as a special number). If x # 0
were not normalized, we could multiply f by an appropriate power of 2, to
normalize it, and adjust the exponent accordingly. This is always possible
as long as the adjusted exponent is still in the admissible range.

We can think of a floating-point number (1.4) as being accommodated
in a machine register as shown in Figure 1.1.1. The figure does not quite
correspond to reality, but is close enough to it for our purposes.

I I b-1 1 b-2 I . . . I b-t I * I cs-1 I Cs-2 1 . . - 1 Co /

t bits s bits

FIGURE 1.1.1. Packing of a floating-point number in a machine register

Note that ihe set (1.4) of normalized floating-point numbers is finite,
and is thus represented by a finite set of points on the real line. What is
worse, these points are not uniformly distributed (cf. Ex. 1). This, then, is
all we have to work with!

It is immediately clear from (1.4) and (1.5) that the largest and smallest
magnitude of a (normalized) floating-point number is given, respectively, by

2S -1 2" max 1 ~ 1 = (1 - 2 - ~) 2 , . m i n (x (= 2 - .
x~IW(t,s) x~IW(t,s)

(1.6)

On a SUN SPARC workstation, for example, one has t = 23, s = 7, so
that the maximum and minimum in (1.6) are 1.70 x and 2.94 x
respectively. (Because of an asymmetric internal hardware representation of
the exponent on these computers, the true range of floating-point numbers
is slightly shifted, more like from 1.18 x to 3.40 x

A real nonzero number whose modulus is not in the range determined by
(1.6) cannot be represented on this particular computer. If such a number
is produced during the course of a computation, one says that overflow has

14 Chapter 1. Machine Arithmetic agd Related Matters

occurred if its modulus is larger than the maximum in (1.6), and underflow
if it is smaller than the minimum in (1.6). The occurrence of overflow
is fatal, and the machine (or its operating system) usually prompts the
computation to be interrupted. Underflow is less serious, and one may get
away with replacing the delinquent number by zero. However, this is not
foolproof. Imagine that at the next step the number that underflowed is to
be multiplied by a huge number. If the replacement by zero has been made,
the result will always be zero.

In order to increase the precision, one can use two machine registers to
represent a machine number. In effect, one then embeds R(t, s) c R(2t, s),
and calls x E R(2t, s) a double-precision number.

(b) Fixed-point numbers. This is the case (1.4) where e = 0. That is,
fixed-point numbers are binary fractions, x = f , hence I f 1 < 1. We can
therefore only deal with numbers that are in the interval (-1,l). This, in
particular, requires extensive scaling and rescaling to make sure that all
initial data, as well as all intermediate and final results, lie in that interval.
Such a complication can only be justified in special circumstances where
machine time and/or precision are at a premium. Note that on the same
computer as considered before, we do not need to allocate space for the
exponent in the machine register, and thus have in effect s + t binary digits
available for the fraction f , hence more precision; cf. Figure 1.1.2.

I f 1 b-1 I b-2 I I b-t I b-(t+i) I I b-(t+,) I
FIGURE 1.1.2. Packing of a fixed-point number in a machine register

(c) Other data structures for numbers. Complex floating-point numbers
consist of pairs of real floating-point numbers, the first of the pair represent-
ing the real part and the second the imaginary part. To avoid rounding errors
in arithmetic operations altogether, one can -employ rational arithmetic, in
which each (rational) number is represented by a pair of extended-precision
integers - the numerator and denominator of the rational number. The Eu-
clidean algorithm is used to remove common factors. A device that allows
keeping track of error propagation and the influence of data errors is interval
arithmetic involving intervals guaranteed to contain the desired numbers. In
complex arithmetic one employs rectangular or circular domains.

51.3. Rounding. A machine register acts much like the infamous Pro-
crustes bed in Greek mythology. Procrustes was the innkeeper whose inn

. 5 1.3. Rounding 15

had only beds of one size. If a fellow came along who was too tall to fit into
his beds, he cut off his feet. If the fellow was too short, he stretched him.
In the same way, if a real number comes along that is too long, its tail end
(not the head!) is cut off; if it is too short, it is padded by zeros at the end.

More specifically, let

be the "exact" real number (in normalized floating-point form), and

the rounded number. One then distinguishes between two methods of round-
ing, the first being Procrustes' method.

(a) Chopping. One takes

x* = chop(x), e* = e, bTk = b-k for k = 1,2 , . . . , t . (1.9)

(b) Symmetric rounding. This corresponds to the familiar rounding up
or rounding down in decimal arithmetic, based on the first discarded decimal
digit: if it is larger than or equal to 5, one rounds up: if it is less than 5:
one rounds down. In binary arithmetic, the procedure is somewhat simpler,
since there are oilly two possibilities: either the first discarded binary digit
is 1, in which case one rounds up, or it is O? in which case one rounds down.
We can write the procedure very simply in terms of the chop operation in
(1.9):

1
x* = rd(z), rd(x) := chop x + - - 2-' 2') . (2

(1.10)

There is a small error incurred in rounding, which is most easily esti-
mated in the case of chopping. Here the absolute error lx - x* I is

16 Chapter 1. Machine Arithmetic 'and Related Matters

It depends on e (i.e., the magnitude of x) , which is the reason why one
prefers the relative error I(x - x*)/xl (if x # O), which, for normalized x,
can be estimated as

Similarly, in the case of symmetric rounding, one finds (cf. Ex. 6)

The number on the right is an important, machine-dependent quantity,
called the machine precision,

eps = 2-t; (1.13)

it determines the level of precision of any large-scale floating-point compu-
tation. On the SUN SPARC workstation, where t = 23, we have eps =
1.19 x corresponding to a precision of 6 to 7 significant decimal digits.

Since it is awkward to work with inequalities, one prefers writing (1.12)
equivalently as an equality,

rd(x) = x(1 + E) , . I E I 5 eps, (1.14)

and defers dealing with the inequality (for E) to the very end.

52. Machine Arithmetic

The arithmetic used on computers unfortunately does not respect the
laws of ordinary arithmetic. Each elementary floating-point operation, in
general, generates a small error that may then propagate through subsequent
machine operations. As a rule, this error propagation is harmless, except in
the case of subtraction, where cancellation effects may seriously compromise
the accuracy of the results.

52.1. A model of machine arithmetic. Any of the four basic arith-
metic operations, when applied to two machine numbers, may produce a

52.1, A model of machine arithmetic 17

result no longer representable on the computer. We have therefore errors
also associated with arithmetic operations. Barring the occurrence of over-
flow or underflow, we may assume as a model of machine arithmetic that
each arithmetic operation o (= +, -, x , /) produces a correctly rounded re-
sult. Thus, if x, y E R(t, s) are floating-point machine numbers, and fl(xo y)
denotes the machine-produced result of the arithmetic operation xoy, then

~ (x o y) = x o y (1 + E) , I E I 5 eps. (2-1)

This can be interpreted in a number of ways; for example, in the case of
. multiplication,

In each equation we identify the computed result as the exact result on data
that are slightly perturbed, whereby the respective relative perturbations
can be estimated, for example, by I E I 5 eps in the first two equations, and

e 1 + ;E, 14 .~1 $eps in the third. These are elementary examples
of backward error analysis, a powerful tool for estimating errors in machine
computation.

Even though a single arithmetic operation causes a small error that can
be neglected, a succession of arithmetic operations can well result in a signif-
icant error, owing to error propagation. It is like the small microorganisms
that we all carry in our bodies: if our defense mechanism is in good or-
der, the microorganisms cause no harm, in spite of their large presence. If
for some reason our defenses are weakened, then all of a sudden they can
play havoc with our health. The same is true in machine computation: the
rounding errors, although widespread, will cause little harm unless our com-
putations contain some weak spots that allow rounding errors to take over
to the point of completely invalidating the results. We learn about one such
weak spot (indeed the only one) in the next subsection.'

1 Rounding errors can also have significant implications in real life. One example, taken
from politics, concerns the problem of apportionment: how should the representatives
in an assembly, such as the US House of Representatives or the Electoral College, be
constituted to fairly reflect the size of population in the various states? If the total
number of representatives in the assembly is given, say, A, the total population of the US
is P, and the population of State i is pi, then State i should be allocated

representatives. The problem is that ri is not an integer, in general. How then should Ti

18 Chapter 1. Mach inar i thme t i c and Related Matters

52.2. Error propagat ion in arithmetic operat ions; cancellat ion
error. We now study the extent to which the basic arithmetic operations
propagate errors already present in their operands. Previously, in 52.1, we
assumed the operands to be exact machine-representable numbers and dis-
cussed the errors due to imperfect execution of the arithmetic operations by
the computer. We now change our viewpoint and assume that the operands
themselves are contaminated by errors, but the arithmetic operations are
carried out exactly. (We already know what to do, cf. (2.1), when we are
dealing with machine operations.) Our interest is in the errors in the results
caused by errors in the data.

(a) Multiplication. We consider values x(1 + E,) and y (l + E ~) of x and y
contaminated by relative errors E, and E ~ , respectively. What is the relative
error in the product? We assume E,, E~ sufficiently small so that quantities
of second order, E:, E; - and even more so, quantities of still higher
order - can be neglected against the epsilons themselves. Then

Thus, the relative error E , . ~ in the product is given (at least approximately)

by
EX.y = Ex Ey; (2.2)

that is, the (relative) errors in the data are being added to produce the (rela-
tive) error in the result. We consider this to be acceptable error propagation,
and in this sense, n~ultiplication is a benign operation.

(b) Division. Here we have similarly (if y # 0)

be rounded to an integer rf? One can think of three natural criteria to be imposed: (i) rf
should be one of the two integers closest to ri ("quota condition"). (ii) If A is increased,
all other things being the same, then rt should not decrease ("house monotonicity"). (iii)
If pi is increased, the other pj remaining constant, then rf should not decrease ("pop-
ulation monotonicity"). Unfortunately, there is no apportionment met hod that satisfies
all three criteria. There is indeed a case in US history when Samuel 3. Tilden lost his
bid for the presidency in 1876 in favor of Rutherford B. Hayes, purely on the basis of the
apportionment method adopted on that occasion (which, incidentally, was not the one
prescribed by law at the time).

52.2. Error propagation in arithmetic operations; cancellation error 19

that is,
E x / y = E x - E y .

Also division is a benign operation.

(c) Addition and subtraction. Since x and y can be numbers of arbitrary
signs, it suffices to look at addition. We have

assuming x + y # 0. Therefore,

As before, the error in the result is a linear combination of the errors in the
data, but now the coefficients are no longer f 1 but can assume values that
are arbitrarily large. Note first, however, that when x and y have the same
sign, then both coefficients are positive and bounded by 1, so that

addition, in this case, is again a benign operation. It is only when x and
y have opposite signs that the coefficients in (2.4) can be arbitrarily large,
namely, when Ix + yl is arbitrarily small compared to 1x1 and Jyl. This
happens when x and y are almost equal in absolute value, but opposite in
sign. The large magnification of error then occurring in (2.4) is referred to
as cancellation error. It is the only serious weakness - the Achilles heel,
as it were - of numerical computation, and it should be avoided whenever
possible. In particular, one should be prepared to encounter cancellation
effects not only in single devastating amounts, but also repeatedly over a
long period of time involving "small doses" of cancellation. Either way, the
end result can be disastrous.

We illustrate the cancellation phenomenon schematically in Figure 1.2.1,
where b, b', b" stand for binary digits that are reliable, and the gs represent
binary digits contaminated by error; these are often called "garbage" digits.
Note in Figure 1.2.1 that "garbage - garbage = garbage," but, more impor-
tant, that the final normalization of the result moves the first garbage digit
from the 12th position to the 3rd.

20 Chapter 1. ~ a c h i ; l e Arithmetic and Related Matters

FIGURE 1.2.1. The cancellation phenomenon

Cancellation is such a serious matter that we wish to give a number of
elementary examples, not only of its occurrence, but also of how it might be
avoided.

Examples.

(1) An algebraic identity: (a - b)2 = a2 - 2ab+ b2. Although this is a valid
identity in algebra, it is no longer valid in machine arithmetic. Thus, on a
2-decimal-digit computer, with a = 1.8, b = 1.7, we get, using symmetric
rounding,

fl(a2 - 2ab + b2) = 3.2 - 6.2 + 2.9 = -.lo
instead of the true result .010, which we obtain also on our 2-digit computer
if we use the left-hand side of the identity. The expanded form of the square
thus produces a result which is off by one order of magnitude and on top
has the wrong sign!

(2) Quadratic equation: x2 - 56x + 1 = 0. The usual formula for a
quadratic gives, in 5-decimal arithmetic,

rcp = 28 + Jr783 = 28 + 27.982 = 55.982.

This should be contrasted with the exact roots .0178628.. . and
55.982137. . . . As can be seen, the smaller of the two is obtained to only two
correct decimal digits, owing to cancellation. An easy way out, of course, is
to compute 2 2 first, which involves a benign addition, and then to compute
XI = 1 / 2 2 by Vieta's formula, which again involves a benign operation -
division. In this way we obtain both roots to full machine accuracy.

53. The Condition of a Problem 21

(3) Compute Y = - fi, where x > 0 and 161 is very small.
Clearly, the formula as written causes severe cancellation errors, since each
square root has to be rounded. Writing instead

completely removes the problem.

(4) Compute y = COS(X + 6) - cos x , where (61 is very small. Here
cancellation can be avoided by writing y in the equivalent form

(5) Compute y = f (x + 6) - f (x), where 161 is very small and f a given
function. Special tricks, such as those used in the two preceding examples,
can no longer be played, but if f is sufficiently smooth in the neighborhood
of x, we can use Taylor expansion:

The terms in this series decrease rapidly when 161 is small, so that cancella-
tion is no longer a problem.

Addition is an example of a potentially ill-conditioned function (of two
variables). It naturally leads us to study the condition of more general
functions.

53. The Condition of a Problem

A problem typically has an input and an output. The input consists
of a set of data, say, the coefficients of some equation, and the output of
another set of numbers uniquely determined by the input, say; all the roots
of the equation in some prescribed order. If we collect the input in a vector
x E Rm (assuming the data consist of real numbers), and the output in the
vector y E Rn (also assumed real), we have the black box situation shown
in Figure 1.3.1, where the box P accepts some input x and then solves the
problem for this input to produce the output y.

-
P

22 Chapter 1. Makhine Arithmetic and Related Matters

FIGURE 1.3.1. Black box representation of a problem

We may thus think of a problem as a map f , given by

(One or both of the spaces Rm, Rn could be complex spaces without changing
in any essential way the discussion that follows.) What we are interested in
is the sensitivity of the map f at some given point x to a small perturbation
of x, that is, how much bigger (or smaller) the perturbation in y is compared
to the perturbation in x. In particular, we wish to measure the degree of
sensitivity by a single number - the condition number of the map f at
the point x. We emphasize that, as we perturb x, the function f is always
assumed to be evaluated exactly, with infinite precision. The condition of
f , therefore, is an inherent property of the map f and does not depend on
any algorithmic considerations concerning its implementation.

This is not to say that knowledge of the condition of a problem is ir-
relevant to any algorithmic solution of the problem. On the contrary! The
reason is that quite often the computed solution y* of (3.1) (computed in
floating-point machine arithmetic, using a specific algorithm) can be demon-
strated to be the exact solution to a 'Lnearby'l problem; that is,

Y* = f (x*):

where x* is a vector close to the given data x:

x* = x + b,

and moreover, the distance llbll of x* to x can be estimated in terms of the
machine precision. Therefore, if we know how strongly (or weakly) the map
f reacts to a small perturbation, such as b in (3.3), we can say somethiilg
about the error y* - y in the solution caused by this perturbation. This,
indeed, is an important technique of error analysis -- known as backward
error analysis - which was pioneered in the 1950s by J. W. Givens, C.
Lanczos, and, above all, J. H. Wilkinson.

I 53.1. Condition numbers 23

I Maps f between more general spaces (in particular, function spaces) have
also been considered from the point of view of conditioning, but eventually,

I these spaces have to be reduced to finite-dimensional spaces for practical
I

implement ation.

I
I

33.1. Condition numbers. We start with the simplest case of a single
function of one variable.

I
T h e case m = n = 1: y = f (x). Assuming first x # 0, y # 0, and

denoting by Ax a small perturbation of x; we have for the corresponding

I perturbation Ay by Taylor's formula

Ay = f (x + Ax) - f (x) = f l (x)Ax, (3.4)

assuming that f is differentiable at x. Since our interest is in relative errors,
we write this in the form

I The approximate equality becomes a true equality in the limit as Ax -+ 0.
This suggests that the condition of f at x be defined by the quantity

I

(cond f) (x) :=

This number tells us how much larger the relative perturbation in y is com-
pared to the relative perturbation in x.

If x = 0 and y # 0, it is more meaningful to consider the absolute error
measure for x and for y still the relative error. This leads to the condition
number I f l (x) / f (XI\ . Similarly for y = 0, x # 0. If x = y = 0, the conditioil
number by (3.4) would then simply be I fl(.x)l.

I T h e case of arbitrary m, n: Here we write

i and exhibit the map f in component form

We assume again that each function f, has partial derivatives with respect
to all m variables at the point x. Then the most detailed analysis departs

24 Chapter 1. Machine Arithmetic and Related Matters

from considering each component y, as a function of one single variable,
x,. In other words, we subject only one variable, x,, to a small change and
observe the resulting change in just one component, y,. Then we can apply
(3.6) and obtain

y,, (x) := (cond,, f) (x) :=

n x m This gives us a whole matrix r (x) = [y,,(x)] E R+ of condition numbers.
To obtain a single condition number, we can take any convenient measure of
the "magnitude" of the matrix r (x) such as one of the matrix norms defined
in (3.11),

(condf)(x) = Ilr(x>ll, r (x > = [7v,(x>l. (3.9)

The condition so defined, of course, depends on the choice of norm, but the
order of magnitude (and that is all that counts) should be more or less the
same for any reasonable norm.

If a component of x, or of y, vanishes, one modifies (3.8) as discussed
earlier.

A less refined analysis can be modeled after the one-dimensional case by
defining the relative perturbation of x E Rm to mean

where Ax is a perturbation vector whose components Ax, are small com-
pared to x,, and where 1 1 - llRm is some vector norm in Rm. For the per-
turbation Ay caused by Ax, one defines similarly the relative perturbation
I l A ~ l (~ n / l l y) l ~ n , with a suitable vector norm 1 1 . I JRn in Rn. One then tries
to relate the relative perturbation in y to the one in x.

To carry this out, one needs to define a matrix norm for matrices A E

Rnxm. We choose the secalled "operator norm,"

.- llAllRnxm .- m a ~ IIAxIIRn
I I x I I R ~ *

=#O

In the following we take for the vector norms the "uniform" (or infinity)
norm,

53.1. Condition numbers 25

It is then easy to show that (cf. Ex. 30)

-.
A I l w n x m -. IAIIw = l~$zn x l a , (, A = [a,,] E I W ~ " ~ . (3.13)

,=1

Now in analogy to (3.4), we have

' Therefore, a t least approximately,

p=1 P

2 max ~ A x J - max x
P V

Since this holds for each v = 1,2 , . . . , n, it also holds for max I A y, 1 , giving,
V

in view of (3.12) and (3.13),

Here

is the Jacobian matrix of f . (This is the analogue of the first derivative for
systems of functions of several variables.) From (3.14) one now immediately
obtains for the relative perturbations

26 Chapter 1. Machine Arithmetic and Related Matters

Although this is an inequality, it is sharp in the sense that equality can
be achieved for a suitable perturbation Ax. We are justified, therefore, in
defining a global condition number by

(cond f) (x) : = ll~llcc lldf Id~llcc
I l f (x>Ilcc

Clearly, in the case m = n = 1, the definition (3.16) reduces precisely to
the definition (3.6) (as well as (3.9)) given earlier. In higher dimensions (m
and/or n larger than I) , however, the condition number in (3.16) is much
cruder than the one in (3.9). This is because norms tend to destroy detail:
if x , for example, has components of vastly different magnitudes, then 11x11,
is simply equal to the largest of these components, and all the others are
ignored. For this reason, some caution is required when using (3.16).

To give an example, consider

The components of the condition matrix r (x) in (3.8) are then

indicating ill-conditioning if either xl = x2 or xl = -x2 and lxll (hence also
1x2 1) is not small. The global condition number (3.16), on the other hand,
since r 1

becomes, when L1 vector and matrix norms are used (cf. Ex. 31),
n
L

11xIl1 . max(x:, x;)
(cond f)(x) = 1 x1X2 = 2 1x1 1 $- 1x21 max(x:, x;)

(1x1 + x2 I + 1x1 - x2() 1 ~ 1 ~ 2) 1x1 + x2) + 1x1 - x21 '
1 ~ 1 ~ 2 1

Here x1 = x2 or x1 = -x2 yield (cond f) (x) ==: 2, which is obviously mis-
leading.

53.2. Examples ' 27

53.2. Examples. We illustrate the idea of numerical condition in a num-
ber of examples, some of which are of considerable interest in applications.

(1) Compute I , =
. In t-cJ dt for some fixed integer n > 1. As it stands,

the example here dea1sGith.a map from the integers to reals, and therefore
does not fit our concept of "problem" in (3.1). However, we propose to
compute In recursively by relating Ik to Ik-l and noting that

To find the recursion, observe that

Thus, multiplying both sides by tk-' and integrating from 0 to 1 yields

We see that Ik is a solution of the (linear, inhomogeneous, first-order) dif-
ference equation

We now have what appears to be a practical scheme to compute I,:
start with yo = I. given by (3.17), and then apply in succession (3.19) for
k = 1,2, . . . , n; then yn = I,. The recursion (3.19), for any starting value
YO, defines a function,

~n = fn(y0). (3.20)

We have the black box in Figure 1.3.2 and thus a problem fn : R -+ R.

FIGURE 1.3.2. Black box for the recursion (3.19)

28 ° Chapter 1. Machine Arithmetic and Related Matters

(Here n is a parameter.) We are interested in the condition of fn a t the point
yo = lo given by (3.17). Indeed, I. in (3.17) is not machine-representable,
and must be rounded to I; before the recursion (3.19) can be employed.
Even if no further errors are introduced during the recursion, the final result
will not be exactly In, but some approximation I; = fn(16), and we have,
at least approximately (actually exactly; see the remark after (3.27)),

To compute the condition number, note that fn is a linear function of
yo. Indeed, if n = 1, then

If n = 2, then

and so on. In general,

where pn is some number (independent of yo). There follows

(cond f n) (YO) = YO~;(YO) YO(-^)^ I Yn = I Yn I -
Now, if yo = 10, then yn = In, and from the definition of In as an inte-
gral it is clear that In decreases monotonically in n (and indeed converges
monotonically to zero as n + m). Therefore,

We see that f,(yo) is severely ill-conditioned at yo = lo, the more so the
larger n.

We could have anticipated this result by just looking at the recursion
(3.19): we keep multiplying by (-5), which tends to make things bigger,
whereas they should get smaller! Thus, there will be continuous cancellation
occurring throughout the recursion.

fj 3.2. Examples

How czn we avoid this ill-conditioning? The clue comes from the remark
just made: instead of multiplying by a large number, we would prefer divid-
ing by a large number, especially if the results get bigger at the same time.
This is accomplished by reversing the recurrence (3.19), that is, by choosing
an u > n and computing

The problem then, of course, is how to compute the starting value y,,. Before
we deal with this, let us observe that we now have a new black box, as shown
in Figure 1.3.3.

FIGURE 1.3.3. Black box for the recursion (3.24)

As before, the function involved, g,, is a linear function of y,,, and an
argument similar to the one leading to (3.22) then gives

For y,, = I,,: we get, again by the monotonicity of In,

In analogy to (3.21), we now have

I; - In I; - I,, u-n I,* - I,, I I n I = (c o n d g n) (~ u) ~u i) 1 I,, 1 ,
where I; is some approximation of I,,. Actually, I; does not even have to be
close to I,, for (3.27) to hold, since the function gn is linear. Thus, we may
take I,* = 0, committing a 100% error in the starting value, yet obtaining
I; with a relative error

u-n

I) , u > n .

30 Chapter 1. Machine Arithmetic and Related Matters

The bound on the right can be made arbitrarily small, say, 5 E, if we choose
u large enough; for example,

The final procedure, therefore, is: given the desired relative accuracy E,

choose u to be the smallest integer satisfying (3.29), and then compute

This will produce a sufficiently accurate I: = In, even in the presence of
rounding errors committed in (3.30): they, too, will be consistently attenu-
ated.

Similar ideas can be applied to the more important problem of computing
solutions to second-order linear recurrence relations such as those satisfied by
Bessel functions and many other special functions of mathematical physics.
The procedure of backward recurrence is then closely tied up with the theory
of continued fractions.

(2) Algebraic equations: these are equations involving a polynomial of
given degree n,

Let < be some fixed root of the equation, which we assume to be simple,

The problem then is to find <, given p. The data vector a = [ao, a l , . . . , an-lIT
E Rn consists of the coefficients of the polynomial p, and the result is <, a
real or complex number. Thus, we have

What is the condition of <? We adopt the detailed approach of (3.8) and
first define

8 3.2. Examples 31

n-1 Then we take a convenient norm, say, the L1 norm J(ylll := lyul of the
vector y = [yo, . . . , yn-1IT, to define

n-1

(cond <) (a) = (condu <) (a).
u=o

To determine the partial derivative of J with respect to a,, observe that we
have the identity

Differentiating this with respect to a,, we get

where the last term comes from differentiating the first factor in the product
a,<". The last identity can be written as

Since pl(c) # 0, we can solve for d</da, and insert the result in (3.34) and
(3.35) to obtain

1
(cond <) (a) = c Ia.1 /<lU.

I<P'(E)I u=o

We illustrate (3.36) by considering the polynomial p of degree n that has
the zeros 1 , 2 , . . . , n ,

This is a famous example due to J. H. Wilkinson, who discovered the ill-
conditioning of some of the zeros almost by accident. If we let & = p,
p = 1 ,2 , . . . , n , it can be shown that

min cond <, = cond El - n2 as n -t ca,
tL

32 Chapter 1. Machine Arithmetic and Related Matters

The worst-conditioned root is Jpo with po the integer closest to n / a , when
n is large. Its condition number grows like (5.828.. .)n, thus exponentially
fast in n. For example, when n = 20, then cond Jpo = .540 x 1014.

The example teaches us that the roots of an algebraic equation written in
the form (3.31) can be extremely sensitive to small changes in the coefficients
a,. It would, therefore, be ill-advised to express every polynomial in terms
of powers, as in (3.37) and (3.31). This is particularly true for characteristic
polynomials of matrices. It is much better here to work with the matrices
themselves and try to reduce them (by similarity transformations) to a form
that allows the eigenvalues - the roots of the characteristic equation - to
be read off relatively easily.

(3) Systems of linear algebraic equations: given a nonsingular square
matrix A E RnXn, and a vector b E Rn, the problem now discussed is
solving the system

Ax = b. (3.38)

Here the data are the elements of A and b, and the result the vector x. The
map in question is thus EXn2+" + Rn. To simplify matters, let us assume
that A is a fixed matrix not subject to change, and only the vector b is
undergoing perturbations. We then have a map f : Rn + Rn given by

z = f (b) := A - ~ b.

It is in fact a linear map. Therefore, d f /db = A-l, and we get, using (3.16),

(cond f)(b) = IlbI IIA-l 1 1
IIA-lbll '

where we may take any vector norm in Rn and associated matrix norm (cf.
(3.11)). We can write (3.39) alternatively in the form

(cond f) (b) = llAx11 IIA-l l l (where Ax = b) ,
llxll

and since there is a one-to-one correspondence between x and b, we find for
the worst condition number

IIAxIl maw (cond f)(b) = max - J I A - ' ~ ~ = llAl - l ~ - ' l l ,
beRn z€Rn llxll

5 3.2. Examples 33

by definition of the norm of A. The number on the far right no longer
depends on the particular system (i.e., on b) and is called the condition
number of the matrix A. We denote it by

cond A := IlAll - I I A - ' 1 . (3.40)

It should be clearly understood, though, that it measures the condition of
a linear system with coefficient matrix A, and not the condition of other
quantities that may depend on A, such as eigenvalues.

Although we have considered only perturbations in the right-hand vector
b, it turns out that the condition number in (3.40) is also relevant when
perturbations in the matrix A are allowed, provided they are sufficiently
small (so small, for example, that 1 1 AAll . I I A - ~ I ~ < 1).

We illustrate (3.40) by several examples.

(i) Hilbert2 matrix:

This is clearly a symmetric matrix, and it is also positive definite. Some nu-
merical values for the condition number of Hn, computed with the Euclidean
norm,3 are shown in Table 1.3.1. Their rapid growth is devastating.

'David Hilbert (1862-1943) was the most prominent member of the Gottingen school
of mathematics. Hilbert's fundamental contributions to almost all parts of mathemat-
ics - algebra, number theory, geometry, integral equations, calculus of variations, and
foundations - and in particular the 23 now famous problems he proposed in 1900 a t the
International Congress of Rlathematicians in Paris, gave a new impetus, and new direc-
tions, t o 20th-century mathematics. Hilbert is also known for his work in mathematical
physics, where among other things he formulated a variational principle for Einstein's
equations in the theory of relativity.

w e have cond' H, = Amax (H,) . Amax (H z ') , where Amax (A) denotes the largest eigen-
value of the (symmetric, positive definite) matrix A. We computed all eigenvalues of H,
and H,', using the appropriate Eispack routine. The inverse of H, was computed from
its well-known explicit form (not by inversion!). The total computing time (on a CDC
6500 computer in the 1980s) was 45 sec, a t a cost of $1.04

34 Chapter 1. Machine Arithmetic and Related Matters

TABLE 1.3.1. The condition of Hilbert matrices

A system of order n = 10, for example, cannot be solved with any reliabil-
ity in single precision on a 14-decimal computer. Double precision will be
"exhausted" by the time we reach rL = 20. The Hilbert matrix thus is a
prototype of an ill-conditioned matrix. From a result of G. Szego it can be

(ii) Vandermonde4 matrices: these are matrices of the form

where t l , t2 , . . . , tn are parameters, here assumed real. The condition num-
ber of these matrices, in the m-norm, has been studied at length. Here are
some sample results: if the parameters are equally spaced in [-1,1], that is,

then
1

cond,~, - -e-"/4 e n (l + t l n ') , n - m .
7T

Numerical values are shown in Table 1.3.2.

4 ~ l e x a n d r e Theophile Vandermonde (1735-1796)) the author of only four mathematical
papers, was elected t o the French Academy of Sciences before he even wrote his first paper,
apparently as a result of influential acquaintances. Nevertheless, his papers, especially the
first, made important contributions to the then emerging theory of equations. By virtue
of his fourth paper, he is regarded as the founder of the theory of determinants. What
today is referred to as the "Vandermonde determinant," however, does not seem to appear
anywhere in his writings. As a member of the Academy, he was appointed to the committee
that in 1799 was t o define the unit of length - the meter.

54. The Condition of an Algorithm 35

TABLE 1.3.2. The condition of Vandermonde matrices

They are not growing quite as fast as those for the Hilbert matrix, but still
exponentially fast. Worse than exponential growth is observed if one takes
harmonic numbers as parameters,

Then indeed
n+l cond,Vn>n .

Fortunately, there are not many matrices occurring naturally in applications
that are that ill-conditioned, but moderately to severely ill-conditioned ma-
trices are no rarity in real-life applications.

54. The Condition of an Algorithm

We again assume that we are dealing with a problem f given by

Along with the problem f , we are also given an algorithm A that "solves"
the problem. That is, given a machine vector x E Rm(t, s), the algorithm A
produces a vector y~ (in machine arithmetic) that is supposed to approxi-
mate y = f (x). Thus, we have another map f A describing how the problem
f is solved by the algorithm A;

In order to be able to analyze f A in these general terms, we must make a
basic assumption, namely, that

for every x E Rm (t , s) , there holds
(4.3)

f A (x) = f (xA) for some XA E Rm.

36 Chapter 1. Machine Arithmetic and Related Matters

That is, the computed solution corresponding to some input x is the exact
solution for some different input XA (not necessarily a machine vector and
not necessarily uniquely determined) that we hope is close to x. The closer
we can find an XA to x, the more confidence we should place in the algorithm
A. We therefore define the condition of A in terms of the XA closest to x (if
there is more than one), by comparing its relative error with the machine
precision eps:

(cond A) (x) = inf llxA - ~ 1 1 b p s -
x A 11xIl

Here the infimum is over all XA satisfying y~ = f (xA). In practice one can
take any such XA and then obtain an upper bound for the condition number:

(cond A) (x) 5 I I X A - ~ 1 1
llxll

bps .

The vector norm in (4.4), respectively, (4.5), can be chosen as seems conve-
nient.

Here are some very elementary examples.

(1) Suppose a library routine for the logarithm function furnishes y =

lnx, for any positive machine number x, by producing a y~ satisfying y~ =
[lnx](l + E) , I E J < 5eps. What can we say about the condition of the
underlying algorithm A? We clearly have

y~ = ln XA where, XA = x (uniquely).

Consequently,

XA - X
= IxE - 11 x I ~ l n X I 5 5 Iln X I . eps,

and, therefore, (cond A) (x) 5 5 I ln x 1. The algorithm A is well-conditioned,
except in the immediate right-hand vicinity of x = 0 and for x very large. (In
the latter case, however, x is likely to overflow before A becomes seriously
ill-condit ioned.)

(2) Consider the problem

f : Rn + R, y = XlX2.. . x,.

§5. Computer Solution of a Problem; Overall Error

We solve the problem by the obvious algorithm

Note that xl is machine-representable, since for the algorithm A we assume
. x E R n (t , s) .

Now using the basic la,w of machine arithmetic (cf. (2.1)), we get

from which
Pn = 21x2 . . . x n (l + E ~) (~ + E Q) m e . (1 + En).

Therefore, we can take, for example (there is no uniqueness),

This gives, using the oo-norm,

and so, by (4.5)' (cond A) (x) 5 1 for any x E Rn(t, s). Our algorithm, to
nobody's surprise, is perfectly well-conditioned.

55. Computer Solution of a Problem; Overall Error

The problem to be solved is again

This is the mathematical (idealized) problem, where the data are exact real
numbers, and the solution is the mathematically exact solution.

38 Chapter 1. Machine Arithmetic and Related Matters '

When solving such a problem on a computer, in floating-point arithmetic
with precision eps, and using some algorithm A, one first of all rounds the
data, and then applies to these rounded data not f , but fA:

Here E represents the rounding error in the data. (The error E could also
be due to sources other than rounding, e.g., measurement.) The total error
that we wish to estimate is then

By the basic assumption (4.3) made on the algorithm A, and choosing
x2 optimally, we have

11x2 - x* I I f a (~ *) = f (~ L) > l l x * l l = (cond A) (x*) - eps.

Let y* = f (x*). Then, using the triangle inequality, we have

where we have used the (harmless) approximation I(yJJ ==: J(y* 1 1 . By virtue of
(5.4), we now have for the first term on the right,

I l~2 - y*ll - - l I f ~ (x *) - f (x*)ll -. - Ilf (4 - f (x*)ll
IIY* I 1 llf (x*)ll I l f (x*)ll

5 (cond f)(x*) - 11x2 - x*Il

llx* 1 1
= (cond f) (x*) (cond A) (x*) . eps.

For t,he second term we have

I * I - - I f * - f < (cond f) (x) .
- ' I x * - = (cond f) (x) - E.

lly l l IIf (x)lI IlxlI

Notes towchapter 1

Assuming finally that (cond f) (x*) (cond f) (x), we get

' - 'I' 5: (cond f) (x) { E + (cond A) (x*) - eps)
llvll

This shows how t h e d a t a error a n d machine precision contribute toward t h e
total error: b o t h are amplified by t h e condition of t h e problem, but t h e
lat ter is further amplified by the condition of t h e algorithm.

NOTES T O CHAPTER 1

In addition to rounding errors in the data and those committed during the
execution of arithmetic operations, there may be other sources of errors not con-
sidered in this introductory chapter. One such source of error, which is not entirely
dismissible, is a faulty design of the computer chip that executes arithmetic opera-
tions. This was brought home in a recent incident when it was discovered in 1994
(by Thomas Nicely in the course of number-theoretic computations involving re-
ciprocals of twin primes) that the Pentium floating-point divide chip manufactured
by Intel can produce erroneous results for certain (extremely rare) bit patterns in
the divisor. The incident - rightly so - has stirred up considerable concern, and
prompted not only remedial actions: but also careful analysis of the phenomenon;
some relevant articles are those by Coe, Iliathisen, Moler, and Pratt [I9951 and
Edelman [preprint] .

Neither should the occurrence of overflow and proper handling thereof be taken
lightly, especially not in real-time applications. Again, a case in point is the failure
of the French rocket Ariane 5, which on June 4, 1996, less than a minute into
its flight, self-destructed. The failure was eventually traced to an overflow in a
floating-point to integer conversion and lack of protection against this occurrence
in the rocket's on-board software (cf. Anonymous [1996]).

51.1. The abstract notion of the real number system is discussed in most
texts on real analysis, for example, Hewitt and Stromberg [1975, Ch.l,§5] or Rudin
[1976, Ch.11. The development of the concept of real (and complex) numbers has
had a long and lively history, extending from pre-Hellenic times to the recent past.
Many of the leading thinkers over time contributed to this development. A reader
interested in a detailed historical account (and who knows German) is referred to
the monograph by Gericke [1970].

51.2
metic, in
for this,

(a) The notion of the floating-point number system and associated arith-
.eluding interval arithmetic, can also be phrased in abstract algebraic terms;
see, for example, Kulisch and Miranker [1981]. A more elementary, but

detailed, discussion of floating-point numbers and arithmetic is given in Sterbenz
[1974]. There the reader will learn, for example, that computing the average of
two floating-point numbers, or solving a quadratic equation, can be fairly intricate

40 Chapter 1. Machine Arithmetic and Related Mat t&rs

tasks if they are to be made foolproof. The quadratic equation problem is also con-
sidered at some length in Young and Gregory [1988, $3.41, where further references
are given to earlier work of W. Kahan and G. E. Forsythe.

The basic standard for binary floating-point arithmetic, used on all contempo-
rary computers, is the ANSI/IEEE Standard 754 established in IEEE [1985]. It
provides for t = 23 bits in the mantissa and s = 7 bits in the exponent, in single-
precision arithmetic, and has t = 52, s = 11 in double precision. There is also
an "extended precision" for which t = 63, s = 14, allowing for a number range of
approx. to

(c) Rational arithmetic is available in all major symbolic computation packages
such as Mathematica and MACSYMA.

Interval arithmetic has evolved to become an important tool in computations
that strive a t obtaining guaranteed and sharp inclusion regions for the results of
mathematical problems. The basic texts on interval analysis are Moore [1966],
[I9791 and Alefeld and Herzberger [1983]. Specific applications such as computing
inclusions of the range of functions, of global extrema of functions of one and several
variables, and of solutions to systems of linear and nonlinear equations are studied,
respectively, in Ratschek and Rokne [I 9841, [1988], Hansen [1992], and Neumaier
[1990]. Concrete algorithms and codes (in Pascal and C++) for "verified computing"
are contained in Hammer, Hocks, Kulisch, and Ratz [1993], [1995]. Interval arith-
metic has been most widely used in processes involving finite-dimensional spaces;
for applications to infinite-dimensional problems, notably differential equations, see,
however, Eijgenraam [I98 11 and Kaucher and hliranker [1984].

$2. The fact that thoughtless use of mathematical formulae and numerical
methods, or inherent sensitivities in a problem, can lead to disastrous results, has
been known since the early days of computers; see, for example, the old but still
relevant papers by Stegun and Abramowitz [I9561 and Forsythe [1970]. Nearby
singularities can also cause the accuracy to deteriorate unless corrective measures
are taken; Forsythe [I9581 has an interesting discussion of this.

$2.1. For the implications of rounding in the problem of apportionment, men-
tioned in Footnote 1, a good reference is Garfunkel and Steen [1988, Ch. 12, pp.230-

$3.1. An early but basic reference for ideas of conditioning and error analysis
in algebraic processes is Wilkinson [1963]. An impressive continuation of this work,
containing copious references to the literature, is Higham [1996]. It analyzes the
behavior in floating-point arithmetic of virtually all the algebraic processes in cur-
rent use. Problems of conditioning specifically involving polynomials are discussed
in Gautschi [1984]. The condition of general (differentiable) maps has been studied
as early as 1966 in Rice [1966].

$3.2. (1) For a treatment of stability aspects of more general difference equa-
tions, and systems thereof, including nonlinear ones, the reader is referred to the

Notes to Chapter 1 41

monograph by Wimp [1984]. This also contains many applications to special func-
tions. Another relevant text is Lakshmikantham and Trigiante [1988].

(2) The condition of algebraic equations, although coilsidered already in Wilkin-
son's book [1963], has been further analyzed by Gautschi [1973]. The circumstances
that led to Wilkinson's example (3.37), which he himself describes as "the most
traumatic experience in [his] career as a numerical analyst," are related in the es-
say by Wilkinson [1984, §2]. This reference also deals with errors committed in the
evaluation and deflation of polynomials. For the latter, also see Cohen [1994]. The
asymptotic estimates for the best- and worst-conditioned roots in Wilkinson's ex-
ample are from Gautschi [1973]. For the computation of eigenvalues of matrices, the
classic treatment is Wilkinson [1988]; more recent accounts are Parlett [I9801 for
symmetric matrices: and Golub and Van Loan [1996, Ch. 7-91 for general matrices.

(3) A more complete analysis of the condition of linear systems, that also allows
for perturbations of the matrix, can be found, for example, in the very readable
books by Forsythe and Moler [1967, Ch.81 and Stewart [1973, Ch.4, 531. The asymp-
totic result of Szego cited in connection with the Euclidean condition number of the
Hilbert matrix is taken from Szego [1936]. For the explicit inverse of the Hilbert
matrix, referred to in Footnote 3, see Todd [1954]. The condition of Vandermonde
and Vandermonde-like matrices has been studied in a series of papers by the author;
for a summary, see Gautschi [1990].

§§4 and 5. The treatment of the condition of algorithms and of the overall error
in computer solutions of problems, as given in these sections: seems to be more or
less original. Similar ideas, however, can be found in the book by Dahlquist and
Bjorck [1974, Ch.2, §4].

42 Chapter 1. Machine Arithmetic and Related Matters

EXERCISES AND MACHINE ASSIGNMENTS T O CHAPTER 1

EXERCISES

1. Represent all elements of R+(3,2) = {x E R(3,2) : x > 0, x normalized) as
dots on the real axis. For clarity, draw two axes, one from 0 to 8, the other
from 0 to 4 .

2. (a) What is the distance d(x) of a positive normalized floating-point number
x E R(t , s) to its next larger floating-point number:

d(x) = min (y -x)?
Y € I W (L . S)

Y > z

(b) Determine the relative distance r (x) = d(x)/x, with x as in (a), and
give upper and lower bounds for it.

3. The identity fl(1 + x) = I , x 2 0, is true for x = 0 and for x sufficiently small.
What is the largest machine number x for which the identity still holds?

4. Consider a miniature binary computer whose floating-point words consist of
4 binary digits for the mantissa and 3 binary digits for the exponent (plus
sign bits). Let

Mark in the following table whether the machine operation indicated (with
the result z assumed normalized) is exact, rounded (i.e., subject to a nonzero
rounding error), overflows, or underflows.

operation exact rounded overflow underflow

5. The following algorithm (attributed to CLEVE ~ J O L E R) estimates eps:

Exercises knd Machine Assignments to Chapter 1 43

Run the program with the corresponding double-precision statements ap-
pended to it and print the single- and double-precision eps.

6. Prove (1.12).

7. A set S of elements, or pairs of elements, is said to possess a metric if there
is defined a distance function d(x, y) for any two elements x, y E S that has
the following properties:

(i) d(x, y) > 0 and d(x, y) = 0 if and only if x = y (positive definiteness);

(ii) d(x, y) = d(y, x) (symmetry);

(iii) d(x, y) 5 d(x, z) + d(z, y) (triangle inequality).

Discuss which of the following error measures is a distance function on what
set S (of real numbers, or pairs of real numbers):

(a) absolute error: ae(x, y) = lx - yl;
(b) relative error: re(z, y) = I 1 ;
(c) relative precision (F. W. 3 . OLVER, 1978): rp(x, y) = (In 1x1 - In I yI 1;

If y = x(1 + .E), show that rp(x, y) = O(E) as E -+ 0.

8. Assume that xr , x; are approximations to X I , x:! with relative errors El and
E2, respectively, and that IEil 5 E , i = 1, 2. Assume further that xl # x2.

(a) How small must E be in order to ensure that x; # x; ?
1 1

(b) Taking to approximate , obtain a bound on the relative
2; - 2; 2 1 - x2

error committed, assuming (i) exact arithmetic; (ii) machine arithmetic
with machine precision eps. (Neglect higher-order terms in El, E2, eps.)

9. Consider the quadratic equation x2 + px + q = 0 with roots x l , x2. As seen
in Example (2) of 52.2, the absolutely larger root must be computed first,
whereupon the other can be accurately obtained from ~ 1 x 2 = q. Suppose
one incorporates this idea in a program such as

44 Chapter 1. Machine Arithmetic and kelated Matters

Find three serious faults with this program as a "general-purpose quadratic
equation solver." Take into consideration that the prcgram will be executed
in floating-point machine arithmetic. Be specific and support your arguments
by examples, if necessary.

10. Let f (x) = 4- - 1.

(a) Explain the difficulty of computing f (x) for a small value of 1x1 and
show how it can be circumvented.

(b) Compute (cond f) (x) and discuss the conditioning of f (x) for small 1x1.

(c) HOW can the answers to (a) and (b) be reconciled?

11. The n th power of some positive (machine) number x can be computed

(i) either by repeated multiplication by x, or

(ii) as xn = enInx.

In each case, derive bounds for the relative error due to machine arithmetic,
neglecting higher powers of the machine precision against the first power.
Based on these bounds, state a criterion (involving x and n) for (i) to be
better than (ii).

12. Let f (x) = (1 - cos x)/x, x # 0.

(a) Show that direct evaluation of f is inaccurate if 1x1 is small; assume
fl(f (x)) = fl((1 - fl(cos x))/x), where R(cos x) = (1 + E,) cos x, and
estimate the relative error of fl(f (x)) as x + 0.

(b) A mathematically equivalent form of f is f (x) = sin2 x / (x(l + cos x)).
Carry out a similar analysis as in (a), based on fl(f (x)) = fl([fl(sin x)I2/
(x(1 + fl(cos x)))), assuming fl(cos x) = (1 + z,) cos x, fl(sin x) = (1 +
E,) sin x and retaining only first-order terms in E, and E,. Discuss the
result .

(c) Determine the condition of f (x). Indicate for what values of x (if any)
f (x) is ill-conditioned. 1(1x1 is no longer small: necessarily.)

1/2
13. If z = x + ig, then fi = (T) + i (r

X)

? where r = (x2 +

y2)1/2. Alternatively, Jr = u + iv, u = , v = y/2u. Discuss the

computational merits of these two (matkernatidally equivalent) expressions
when x > 0. Illustrate with z = 4.5 + .025i, using 8 significant decimal
places. How would you deal with x < O?

~ x e r c i s i s and Machine Assignments to Chapter 1

14. Consider the numerical evaluation of

say, for t = 20, and 7-digit accuracy. Discuss the danger involved.

15. Let X+ be the largest positive machine-representable number, and X- the
absolute value of the smallest negative one (so that -X- 5 x 5 X+ for any
machine number x). Determine, approximately, all intervals on R on which
the tangent function overflows.

16. Consider a decimal computer with 3 (decimal) digits in the floating-point
mantissa.

(a) Estimate the relative error committed in symmetric rounding.

(b) Let x1 = -982, xp = .984 be two machine numbers. Calculate in machine
arithmetic the mean m = $(xl + xp). IS the conlputed number between
x l and x2 ?

(c) Derive sufficient conditions for X I < fl(m) < 2 2 to hold. where XI , xp
are two machine numbers with 0 < x1 < x2.

17. For this problem, assume a binary computer with 12 bits in the floating-point
mantissa.

(a) What is the machine precision eps?

(b) Let x = 6/7 and x* be the correctly rounded machine approximation to
x (symmetric rounding). Exhibit x and x* as binary numbers.

(c) Determine (exactly!) the relative error E of x* as an approximation to
x? and calculate the ratio l~l /eps .

18. The associative law of algebra states that

(a + b)c = a c t bc.

Discuss to what extent this is violated in machine arithmetic. Assume a
computer with machine precision eps and assuine that a . b. c are machine-
representable numbers.

(a) Let y1 be the floating-point number obtained by evaluating (a + b)c
(as written) in floating-point aritllmetic: and let yl = (a + b)c(l + e l) .
Estimate Jel (in terms of eps (neglecting second-order terms in eps).

(b) Let 92 be the floating-point number obtained by evaluating a c + bc (as
written) in floating-point arithmetic, and let y2 = (a + b)c(l + ep).
Estimate Je2((neglecting second-order terms in eps) in terms of eps
(and a , b, and c).

46 Chapter 1. Machine Arithmetic a id Related Matters

(c) Identify conditions (if any) under which one of the two ys is significantly
less accurate than the other.

19. Let x l , x 2 , . . . , x, be machine numbers. Their product can be computed by
the algorithm

(a) Find an upper bound for the relative error (p,-xlx2 . . - x,)/(xlx2 . . . x,)
in terms of the machine precision eps and n.

(b) For any integer r 2 1 small enough to satisfy r - eps < , show that

(I + eps)' - 1 < (1 . 0 6) ~ . eps.

Hence simplify the answer given in (a). {Hint: Use the binomial theo-
rem.)

20. Analyze the error propagation in exponentiation, x" (x > 0):

(a) assuming x exact and cu subject to a small relative error E,;

(b) assuming cu exact and x subject to a small relative error E,.

Discuss the possibility of any serious loss of accuracy.

21. Indicate how you would accurately compute

22. (a) Let a = .23371258 x lov4, b = .33678429 x lo2, c = -.33677811 x lo2.
Assumiilg an 8-decimal-digit computer, determine the sum s = a + b+c
either as (i) fl(s) = fl(fl(a + b) + c) or as (ii) fl(s) = fl(a + fl(b + c)).
Explain the discrepancy between the-two answers.

(b) For arbitrary machine iluillbers a, b: c, on a computer with machine
precision eps, find a criterion on a , b, c for the result of (ii) in (a) to
be more accurate than the result of (i). {Hint: Compare bounds on
the relative errors, neglecting higher-order terms in eps and assuming
a + b + c # 0.)

23. Write the expression a 2 - 2ab cosy + b2 (a > 0, b > 0) as the sum of two
positive terms in order t o avoid cancellation errors. Illustrate the advan-
tage gained in the case a = 16.5, b = 15.7, y = 5", using 3-decimal-digit
arithmetic. Is the method foolproof?

* Exercises and Machine Assignments to Chapter 1 47

24. Determine the condition number for the following functions.

(a) f (x) = I n x , x > 0 ; (b) f (x) = c o s x , / x ~ < $ T ;

x
(c) f (x) = sin-' x, 1x1 < 1; (d) f (x) = sin-' d m -

Indicate the possibility of ill-conditioning.

25. Compute the condition number of the following functions, and discuss any
possible ill-conditioning.

(a) f (x) = x'In (x > 0, n > 0 an integer)

(b) f (x) = x - d a (x > l)

(4 f (x1,x2) = d m
(d) f (~ 1 , x2) = x1 + 2 2

26. (a) Consider the composite function h(t) = g(f (t)). Express the condition
of h in terms of the condition of g and f . Be careful to state at which
points the various condition numbers are to be evaluated.

(b) Illustrate (a) with h(t) = w, t = +T.

27. Show that (cond f - g) (x) L (cond f) (x) + (cond g) (x)

2.8. Let f : R2 --+ R be given by y = X I + x2. Define (cond f) (x) = (condl f) (x) +
(cond2 f)(x), where condi f is the condition number of f considered a function
of xi only (i = 1,2) .

(a) Derive a formula for ~ (2 1 , x2) = (cond f) (x).

(b) Show that K(x', x2) as a function of x l , x2 is symmetric with respect to
both bisectors bl and b2 (see figure).

(c) Determine the lines (or domains) in IR2 on which K(x', x2) = c, c 2 1 a
constant. (Simplify the analysis by using symmetry; cf. part (b).)

48 Chapter 1 . Machine *Arithmetic and Related Matters

29. Let 1) - 1 1 be a vector norm in Rn and denote by the same symbol the associated
matrix norm. Show for arbitrary matrices A, B E RnXn that

(a) IIABII 5 IlAll IlBll ;
(b) cond(AB) 5 cond A cond B.

30. Prove (3.13). {Hint: Let m, = max, C, la,,J. Show that llAllx 5 m, as
well as J I AJJ, 2 m,: the latter by taking a special vector x in (3.11) .)

31. Let the L1 norm of a vector y = [yx] be defined by I J yJI1 = Ex I yx 1 . For a
matrix A E I R n x m , show that

I 1 Axil 1 JJAIJ1 := max -
ZER" l l~l l l

= m , C la,,l;
~ $ 0 u

that is, JJAll is the "maximum column sum." {Hint: Let m l = max, C,, la,, I.
Show that J JAl(l 5 m l as well as llAlll 2 m l , the latter by taking for x in
(3.11) an appropriate coordinate vector.)

32. Let a , q be linearly independent vectors in Rn of (Euclidean) length 1. Define
b(p) E R n as follows:

b(p) = a - pq, p E IR.
Compute the condition of the angle ~ (p) between b(p) and q a t the value
p = po = qTa. (Then b(po) I q; see figure.) Discuss the answer.

33. The area A of a triangle ABC is given by A = iabsin (see figure). Discuss
the condition of A.

34. Define, for x # 0,

Exercises and Machine Assignments to Chapter 1

(a) Show that { fn} satisfies the recursion

{Hint : Differentiate k times the identity e-" = x . (e-"/x).)

(b) Why do you expect the recursion in (a) , without doing any analysis, t o
be numerically stable if x > O? How about x < O?

(c) Support and discuss your answer to (b) by showing

(cond yn) (fo) =
1

Ien (x) 1 '

where e,(x) = 1 + x + x2/2! + - - . + xn/n! is the n th partial sum of the
exponential series. {Hint : Use Leibniz's formula t o evaluate f,.}

35. Consider the algebraic equation

(a) Show that the equation has exactly one positive root ((a) .

(b) Obtain a formula for (cond ()(a).

(c) Obtain (good) upper and lower bounds for (cond ()(a).

36. Consider the algebraic equation

(a) Show that there is exactly one positive root ((a).

(b) Show tha.t c(a) is well-conditioned as a function of a. Indeed, prove

1
(cond J) (a) < - .

n - 1

37. Consider the equation

for real values of x and a .

(a) Show graphically that the equation has exactly one root ((a) 2 0 if
a 2 0, exactly two roots c2(a) < cl(a) < 0 if - l / e < a < 0, and none
if a < - l /e .

(b) Discuss the condition of ((a), (a) , & (a) as a varies in the respective
intervals.

50 Chapter 1. ~ a c h i i e Arithmetic and Related Matters

38. Given the natural number n, let (= ((a) be the unique positive root of the
equation xn = ae-" (a > 0). Determine the condition of < as a function
of the parameter a ; simplify the answer as much as possible. 'In particular,
show that (cond 6) (a) < l l n .

39. Let f (x l , x2) = x l + x2 and consider the algorithm A given as follows,

Estimate y (x l , x2) = (cond A) (x) , using any of the norms

Discuss the answer in the light of the conditioning of f .

40. This problem deals with the function f (x) = d G - 1, -m < x < 1.

(a) Compute the condition number (cond f) (x) .

(b) Let A be the algorithm that evaluates f (x) in floating-point arithmetic
on a computer with machine precision eps, given an (error-free) floating-
point number x. Let ~ 2 , €3 be the relative errors due, respectively,
to the subtraction in 1 - x, to taking the square root, and to the final
subtraction of 1. Assuine 5 eps (i = 1, 2,3) . Letting f ~ (x) be the
value of f (x) so computed, write f ~ (x) = f (X A) and X A = x (l + EA).
Express EA in terms of x, e l , €2, €3 (neglecting terms of higher order
in the E,). Then determine an upper bound for (E A J in terms of x and
eps, and finally an estimate of (condA)(x).

(c) Sketch a graph of (cond f) (z) (found in (a)) and a graph of the estimate
of (cond A)(x) (found in (b)) as functions of x on (-oc, 1). Discuss your
results.

41. Consider the function f (x) = 1 - e-" on the interval 0 5 x 5 1

(a) Show tha t (cond f) (x) 5 1 on [0,1].

(b) Let A be the algorithm that evaluates f (x) for the machine number x
in floating-point arithmetic (with machine precision eps) . Assume that
the exponential routine returns a correctly rounded answer. Estimate
(cond A) (x) for 0 5 x 5 1, neglecting terms of O(eps2). {Point of
information: ln(1 + E) = E + O (E ~) , E -+ 0.)

(c) Plot (cond f) (x) and your estimate of (cond A)(x) as functions of x on
[O,].]. Comment on the results.

Exercises and Machine Assignments to Chapter 1 51

42. (a) Suppose A is an algorithm that computes the (smooth) function f (x)
for a given machine number x, producing fA(x) = f (x) (l + E ~) , where

1 5 cp(x)eps (eps = machine precision). Show that

(cond A)(x) 5 CP(X>
(cond f) (4

if second-order terms in eps are neglected. {Hint: Set fA(x) = f (xA) ,
XA = x(1 + E *) , and expand in powers of €A, keeping only the first.)

(b) Apply the result of (a) to f (x) = % , 0 < x < $n, when evaluated
as shown. (You may assume that cosx and sin x are computed within
a relative error of eps.) Discuss the answer.

(c) Do the same as (b), but for the (mathematically equivalent) function
sin x

f (x) = 7 0 < x < $n.

hlACHINE ASSIGNMENTS

1. Let x = 1 + n/106 and compute xn for n = 1 , 2 , . . . , lo6, both in single
precision and double precision. Use the double-precision results to observe
the rounding errors pn in the single-precision results (relative errors). Print
(in e-format with 5 decimal digits after the decimal point, except for the
integer n) : n, xn , p, , pn / (n x eps) for n = k x lo5, k = 1,2 , . . . , 10, where eps
is the machine precision. What should xn be, approximately, when n = lo6 ?
Comment on the results. (Compute the number n in a machine-independent
manner, using an elementary function routine.)

2. Compute the derivative dy/dx of the exponential function y = ex at x = 0
from difference quotients (ex+h - ex)/h with decreasing h. Use

(a) h = 2-i, i = 1 ,2 , . . . ,20;

(b) h = (2.2)-', i = 1 ,2 , . . . ,20,

and print 8 decimal digits after the decimal point. Explain what you observe.

3. Consider the following procedure for determining the limit lim (eh - l) / h on
h-0

a computer. Let

and accept as the machine limit the first value satisfying dn = dn-l (n 2 1).

(a) Run the procedure on a computer.

52 Chapter 1. Machine Arithmetic and Related Matters

(b) In floating-point arithmetic for R(t, s) , with rounding by chopping, for
what value of n will the correct limit be reached, assuming no underflow
(of 2-") occurs? {Hint: Use eh = 1 + h + +h2 + - - - .) Compare with
the experiment made in (a).

(c) On what kind of computer (i.e., under what conditions on s and t) will
underflow occur before the limit is reached?

4. Euler's constant y = .57721566490153286.. . is defined as the limit

1 1 1
y = limy,, where yn = 1 + - + - + - - - + - - I n n .

n - + x 2 3 n

Assuming that y - yn - ~ n - ~ , n + oo, for some constants c and d > 0, try
to determine c and d experimentally on the computer.

5. Letting Au, = un+l - u,, one has the easy formula

With un = ln (l + n) , compute each side (as it stands) for N = 1000(1000)
10,000, the right-hand side in double recision. Print the relative discrepancy hP of the two sides. Repeat with ~ n , computed in single and double
precision. Explain the results.

6. (a) Write a program that computes

where the summation is carried out as written.

(a l) What is the exact sum SN?
(a2) Run your program for N = 10,100,1000,. . . ,1, 000,000 and print

out the error Ifl(SN) - SN I. Comment on the answers obtained.

(b) Do the same as in part (a), but for the product

Comment on the results.

7. (a) Suppose x , y, z are floating-point numbers with x > y > z > 0. Estimate
the relative errors in

Which result is more accurate? Explain. Adapt your discussion so it
applies to the sum sn in Part (b).

Exercises and Machine Assignments to Chapter 1 53

(b) It is known that

" (-1Ik
rr = 4 iim s,, sn = x ?k+l n + ~

k=O

Write a program computing s, for n = lo7, using forward as well
as backward summation. Compute the respective errors (in double
precision as er r=abs (sng l (4 . dO*dble (sn) -dpi)) , where dp i is the
double-precision value of rr and sn the single-precision value of s,).
Interpret the results.

8. In the theory of Fourier series the numbers

known as Lebesgue constants, are of some importance.

(a) Show that the terms in the sum increase monotonically with k. How do
the terms for k near n behave when n is large?

(b) Compute A, for n = 1,10, lo2 , . . . , lo5 in single and double precision
and compare the results. Explain what you observe.

9. Sum the series

X 3C

(a) x (- l) n / n ! 2 (b) x l / n ! 2

until there is no more change in the partial sums to within the machine
precision. Generate the terms recursively. Print the number of terms required
and the value of the sum. (Answers in terms of Bessel functions: (a) Jo(2);
(b) Io(2).)

- -
1

10. (P.J. DAVIS, 1993) Consider the series x k3/2 + k1/2 . Try to compute the
Ir= 1 .---

sum to three correct decimal digits.

11. We know from calculus that

What is the "machine limit"? Explain.

54 chapter 1. Machine Arithmetic and Related Matters

12. Let f (x) = (n + l) x - 1. The iteration

in exact arithmetic converges to the fixed point l l n in one step (why?).
What happens in machine arithmetic? Run a program with n = 1 (1)5 and
K = 10(10)50 and explain quantitatively what you observe.

13. Compute the integral exdx from Riemann sums with n equal subintervals, 1'
evaluating the integrand a t the midpoint of each. Print the Riemann sums
for n = 10,20,30, . . . ,200 (showing 6 decimal digits after the decimal point),
together with the exact answers. Comment on the results.

14. Let y, = tneLtdt, n = 0 , 1 , 2 , 1'
(a) Use integration by parts to obtain a recurrence formula relating yk to

yk-l for k = 1 , 2 , 3 , . . . , and determine the starting value yo.

(b) Write and run in single precision a program that generates yo, yl , . . . ,
yl 2 , using the recurrence of (a), and prints the results in e 1 5 . 7 format.
Explain in detail (quantitatively, using mathematical analysis) what is
happening.

(c) Use the recursion in (a) in reverse order, starting (arbitrarily) with
y~ = 0. Print in four consecutive columns (in e15.7 format) the values

(N) thus obtained for N = 14,16,18,20. Explain in yAN). yjN)7 ; ~ 1 2

detail (quantitatively) what you observe.

