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NONCONSTANT COEFFICIENT
SECOND ORDER

LINEAR EQUATIONS

AND SERIES SOLUTIONS

INTRODUCTION
In Chapter 2, the general theory for the initial value problem

a)y” + b@y + c(t)y = 0,
o) =1, Yt =,

was discussed. There it was assumed that a(?), b(f), and c(f) were continuous func-
tions on some open interval containing ¢, and that a(f) did not vanish at ¢,. The
theory stated that the solution y(#) could be expressed uniquely as

¥y = cy1(®) + co9:(0),

where y,(t) and y,(f) were a linearly independent pair of solutions of the differential
equation, and the constants ¢, and ¢, depended on the initial values r and s. Fur-
thermore, the existence of such a pair of linearly independent solutions y,(¢) and
2{t) was also guaranteed by the theory.

Much of the remainder of Chapter 2 was devoted to a discussion of the con-
stant coefficient case

ay” + by + ¢y = 0.
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424 Second Order Linear Equations and Series Solutions

In this case finding a pair of linearly independent solutions depended solely on
solving the characteristic equation

aN* + b\ + ¢ = 0.

The type of solutions depended on the nature of the roots of the characteristic
equation (real and unequal, real and equal, or complex) but the solutions could be
explicitly found.

The reader may well ask whether this simplicity of the solution procedure car-
ries over in some analogous fashion to the nonconstant coefficient case. The
answer is a definite No! With the exception of the special case of the Euler differ-
ential equatidn,

£y’ + by + ¢y = 0

(see Example 2 and Exercise 14 of Section 2.6), there are no general techniques
to reduce the solving of nonconstant coefficient linear differential equations to an
algebraic process.

However, if we are willing to extend our notion of the solution of a differential
equation to allow for the solution to be expressed as an infinite series, then there
is a solution procedure that is applicable to a large class of nonconstant coefficient
linear differential equations. The infinite series will be a power series in the inde-
pendent variable, possibly multiplied by a known function, and the coefficients of
the power series can be determined recursively. Given the generality of the prob-
lem, one could hardly wish for a more satisfactory outcome.

For instance, a solution of

1
y iy ty=0

is given by the power series
2 t4 tG X 2n

92 24(21)2  95(31)2 t Z - 22"( Tk

¥y =1-—

as we shall see later in this chapter. The function given by the power series, denoted
by Jo(t), is an oscillatory function with an infinite number of zeros on the positive
axis, and there are tables and numerical procedures to estimate it for any value of
its argument. This is not such a marked contrast from the familiar function cos ¢,
which is a solution of y” + y = 0 and which can also be represented by a power
series.

The function Jy(t), called the Bessel function of the first kind of order zero, occurs
in a number of problems in heat conduction in solids and vibration of membranes.
It is an example of what are called special functions, many of which arise as series
solutions of second order linear differential equations. A few of these special func-
tions will be discussed at the end of this chapter—they are useful tools for the
kitbag of any applied scientist.
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SERIES SOLUTIONS—PART 1

In the remainder of this chapter we will denote the independent variable by x
rather than ¢. Therefore the second order linear equation will be written as

a(x)y” + b(x)y + c(x)y = 0,

with solutions y = y(x). The use of x rather than ¢ is somewhat traditional, since
many of the problems associated with series solutions or special functions arise
from physical problems where x is a spatial rather than a temporal variable.

To motivate the use of infinite series, we start with a simple example that can
be solved explicitly.

EXAMPLE 1 Consider the first order differential equation
¥y = 2xy,

whose general solution is y(x) = Ae”, where A is an arbitrary constant. Assume that
the solution can be represented by a convergent power series; hence

yx) = D ax"
n=0
and the task is to find the a,.

SOLUTION Since a convergent power series can be differentiated term by term
and also multiplied by 2x, the series can be substituted into the differential equa-
tion to obtain

¥Y(x) = Z na,x""' = 2xy(x) = Z 2a,x"t",
n=0 n=0

Expanding both sides gives
[0-a,+1-a + 2a,x + 3asx® + 4a,x* + Basx* + 6agx® + - - ]

= [2apx + 2a:x* + 2a,x> + 2a3x* + 2a,x° +‘ 2a,x° + - - -],
and by comparing the coefficients of like powers of x we have

0:a,=0, 1-a, =0, 2a = 2a, 3as=2a,
4a, = 2a,, ba; = 2a4, 6a; = 2a4, ....

This implies that a, is arbitrary and

2

ay
a, =0, ay= a, aa=§al=0, a4=§=
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hence

xt o«
= 2 - - e
y(x)—a0[1+x+2!+3!+ ],
which is the first four terms of the Taylor series for a,e*.
The reader can easily see that the general recursion relation for the a, is na,

= 2a, 45, n = 2,3,....8Since a, is arbitrary and q, is zero, this implies that
Aoni1 = 0-’ n = O, 1: 2’~-',
209, 1 2ay,, 1 2a9,—6 1
Ay, = ——— = — = . = ... =—q,.
2n n 2n—2 nn-—1) 2n—4 n!
Therefore
@ a et x?n
a— _0 2n —-— x2
y(x)—Zo !x —aozon!—aoe,

and the power series solution is exactly the Taylor series of the general solution.m
We now return to the second order equation

Yy + pl)y + qlx)y =0 (6.2.1)

and consider first the simplest case, in which the coefficient functions p(x) and ¢(x)
are smooth, well-behaved functions in some neighborhood of a given point, which
is assumed to be x = 0 for simplicity of notation. Consequently, we will assume
that p(x) and g(x) have infinite power series representations

pE) =D pax", gx) =D g,

where these series converge in some neighborhood of x = 0. This leads to the
following definition.

Definition

If the coefficients p(x) and g(x) of equation (6.2.1) can be represented by
power series that are convergent in some neighborhood of x = 0, then x =
0 is said to be an ordinary point of the differential equation.

With the above assumptions it is natural to suppose that the solution y(x) will
also have a power series representation convergent in some neighborhood of x =
0, and therefore

y(x) = Z a,x". ' (6.2.2)
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Since a power series can be differentiated term by term, the solution procedure is
to substitute the series for y(x) into (6.2.1), with p(x) and ¢(x) replaced by their
power series representation, and compare coefficients of like powers of x. This will
lead to a recursion relation by which the a,’s can be determined step by step, and
possibly a general expression can be derived that will give all the a,’s. (In the case
where the ordinary point is x, # 0, one would use instead y(x) = 7., a,(x — x)",
and the algebraic procedure is the same.) We summarize the above discussion.

Solution procedure for ordinary point case

1. Replace the coefficients p(x) and g(x) in the differential equation (6.2.1) by
their power series representations if necessary.

2. Differentiate the series (6.2.2) successively term by term and substitute the
series for y(x), y'(x) and y”(x) into the differential equation.

3. Combine terms and compare coefficients of like powers of x. This will lead
to a recursion relation by which the coefficients a, can be determined step by
step. Possibly a general recursion relation can be obtained by which all the
a,’s can be determined.

This procedure is best illustrated by an example.

EXAMPLE 2 Find the series solution of Airy’s equation

y —xy = 0. (6.2.3)

SOLUTION Since p(x) = 0 and ¢(x) = —x the point x = 0 is an ordinary point.
From (6.2.2) we obtain the relations '

oo

¥y (x) = Z nax""',  y'(x) = Z nn — 1)a,x"?

n=1 n=2

through term-by-term differentiation. After multiplying the series for y(x) by x,
substitution into (6.2.3) gives

oo

> an — Dax"2 — ) g = 0. (6.2.4)

n=2 n=0

If just the first few terms of the solution are desired, one can expand the above
sums to get :

(2a; + 6asx + 12a,x* + 20asx® + 30aex* + 42a,%° + - - )
— (@px + a\x* + axx® + ax* + ax® + - - -) = 0.
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Now, combining the coefficients of like powers of x and setting them equal to zero
gives the relations

2a, = 0, 6a; —a, =0, 12a, —a, =0, 20a; —a;, =0,
0, 42“7_a4=0, ey

30@5 — as

and consequently
ay = O, as =
Therefore

Jx) = Go+ ax + 0 + 2a 4t b 0 T

6 12 180 504
1 1 1 1
= 1 x4 — it c e —xt + — X7 < e
ao[ +6x +180x+ ]+a1[x+12x +504x+ ],
where a, and q, are arbitrary constants. (]

Examining the last expression we see that it can be written in the form

,')’(x) = aoyl(x) + al}’:)(x),

where y,(x) will have a power series representation in 3nth powers of x,
where n = 0, 1, 2, ..., and y,(x) in (3» + 1)st powers of x, wheren = 0, 1, 2,
. . . . Clearly, the two expressions are linearly independent and they represent two
linearly independent solutions of Airy’s equation. The standard notation for them
is

M) =1 + 20 + —— 8 +
1= 6 180~ ’

B'()=x+—1x4+——1—x7+ cee
e 127 " 504 ’
Ai(x) and Bi(x) are called the Airy functions, and the reader is referred to [10],
where they are extensively tabulated and many of their properties are given. The
two arbitrary constants a, and a, can be determined only if initial or boundary
conditions are given.

If a general expression for the series representations of Ai(x) and Bi(x) is
desired, we must return to relation (6.2.4) and try to derive a general recursion
relation from it. The procedure used is to shift indices in the two series until they
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can be combined. Note that the first series leads off with x°, whereas the second
leads off with x, so write

2]

%2, + Y mn — a2 — > ax"! = 0.

n=3 n=0

Now both series lead off with x, but the first starts with n = 8, whereas the second
starts with n = 0, so reindex the second as

2a, + Z nn — 1ax""? — Z a,_sx""% = 0.
n=3

n=3

Both sums can now be combined to obtain
2a, + Y [n(n — Da, — a,_s)x"2 = 0.
n=3

From the above follow the relations

ay =0, a,,=’—1?5"_;35, n=3%45 .., (6.2.5)
which clearly imply that
Qs A5, Ag, .+ « « , Agut9, - - - arve all zero,
as, Gg, Gy, . . . , A3, - . . all depend on a,,
Ay, A7, Qygs - - - » Asu115 - - - all depend on a;.

The relations (6.2.5) are the desired general recursion relations.
The matter of reindexing the series, so as to be able to combine terms, is some-
what arbitrary. For instance, in the expression

o]

2a, + Z nin — 1ax""? — Z ax"t' =0

n=3 n=0
one could reindex the first series instead, so that it starts with » = 0. This would
give
Q0 [ee]
2, + Y (0 + )+ Dax™ — Y axmt =0,
n=0 n=0
and the recursion relation would be

Qn

DT+ 3 + 2

a, = 0, n=0,1,2,....

It is easily seen that this would give exactly the same result.
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The reader should now study the analysis below to see how to use (6.2.5) to
get the general series expressions for Ai(x) and Bi(x). First,

a,_s
a, = ——
nn — 1)

implies that

A3n—3 _ O3

T 3mBn— 1) 3nm — b’

as,

and now apply the recursion relation to as,_3 :

A3y

I3 = (3, 3)3n — 4)

or

A3(n—2) A3(n—9)

B0 = 30— 1)Bn — 4 3%n — Din — 3

Substitute the last expression for as,_, in the expression for as, to get

de = A3n—2)
7 8nm — D —Hn — 9

Proceeding backwards in this fashion, one finally obtains

Qg

. = , n=1,2,...,
I T T R
and since g, is arbitrary, the choice of ¢, = 1 gives
= 1
Ai(x) =1 + x™".
* T R PRy

The reader may wish to work out the second case starting with as,., and letting a,
= 1 to get .

1

Bl - + 3n+l,
@ =+ T D@ "

and to show, by using the ratio test, that both series converge for —o0 < x < co.
A brief word should be said about convergence of the power series obtained
by the method just described. Suppose one is given the linear differential equation

Y+ p)y + qlx)y = fix),

where p(x), g(x), and f(x) have power series representations convergent for
|x — xo| <7, r> 0, so that x, is an ordinary point. Then the power series for the
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solution, obtained formally by substituting the power series

o

yx) =D a,x — x)

n=_

and recursively solving for the coefficients, will also converge for
|x — xy| < r. This useful result, which is proved in more advanced texts, means
that there is no need to test for convergence of the power series obtained for the
solution. It will have the same radius of convergence as the smallest radius of con-
vergence of the power series for the coefficients.

6.2

1. Use the power series method to find the general solutions of
a) vy +y=0;
b) y” — 4y =0.
Verify that you obtain the series for sin x and cos x in (a), and for ¢ and

e ¥ in (b).

In Exercises 2-5, find the recurrence relation for the coefficients and the first
six nonzero terms of the series solutions with the ordinary point, x, = 0.

2.y —xy —2y=0

3.y +x%=0

4.y +y+x=0, 0O =1, (0 =0
5.y’ —(1+xy=0 30 =-2 50 =2

By expressing the coefficients in a power series, substituting y(x) = X7, a,x",
and equating like powers of x, find the first five nonzero terms of the series solu-
tions of Exercises 6-8.

6. v/ + 2y + (sinx)y = 0
7. 97 +ey=0, 30 =1, (0 =—1
8. y” + (a + B cos 2x)y = 0 (Mathieu’s equation: «, 8 are parameters.)

In Exercises 9-13, the ordinary point x, # 0 so the series solution will be of the
form y(x) = I3 a,(x — x,)". Find its first five nonzero terms.

9. y” + (x — 1)y + 2y = 0 with the ordinary point x, = 1.

10. y” + (x¥* — 1)y = 0 with the ordinary point x, = 1.
(Hint: x* — 1 = 2(x — 1) + (x — 1)%)

11. y” + xy’ + (In x)y = 0 with the ordinary point x, = 1.
(Hint: x =1+ (x — 1))
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12. 7 + (In x)y = 0 with the ordinary point x, = 1.
13. y” + (sin x)y = 0 with the ordinary point x, = m/2.
14. Series solutions can be used occasionally to find approximations to solutions

of nonlinear equations. Find the first three nonzero terms of the series
solutions of the following:

a) y =y + 1+, y0) =0. (Hint: The initial conditions imply that

y(x) = a;x + ayx* + - - -, and a useful fact is
(Z ) Z G+ 2 Z €iCs-)
k=1 jER
b) v =1/y+ x*, 9(0) = 1. (Hint: y(x) = 1 + a;x + ax*+ - -+ -; recall
that
Q+w'=1—-u+v®—- - +(=Du+" - -, |ul <1)

Method of Taylor Series. Given the initial value problem

Yyt ply + gy =0, y0) =a,  y0) =5

where p(x) and ¢(x) are smooth functions near x = 0, one can find y”(0) by direct
substitution:

y"(0) = —p0)y'(0) — q(0)y(0)
= —bp(0) — aq(0).

Differentiating the equation and then substituting again will give y”(0). For
example,

3”7(0) + p'(0)y’(0) + p0)y”(0) + ¢'(0)y(0) + ¢(0)y'(0) =
implies that

y”(0) = =op'(0) — p(0)y”(0) — aq’(0) — bg(0).

Proceeding in this manner, one can use the derivatives obtained to develop the
Taylor series of the solution:

// (n)
3o = 0 +yom + L o g

In Exercises 1520, use this method to find the first four nonzero terms of the
series solutions.

15. y" + % =0, »0) =0, y(©) = —
16. Exercise 4 above

17. 5" + ™)y +y =0, »0) =0, y(0) =
18. Exercise 5 above
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19. 3" +xy =€,  y0) =0, y(0) =1
20. y¥ — xy' + y = 4sinx, y0) =1, y(0) = —1
21. Obtain the general series expression for the Airy function Bi(x).

— 6.|2 SERIES SOLUTIONS—PART 2

In the previous section we considered series solutions for

Yy + plx)y + qx)y = 0,

where it was assumed that p(x) and g(x) were smooth functions and had convergent
power series expansions in some neighborhood of a given point x,. In this case the
desired series solutions were obtained by substitution and comparison of coeffi-
cients of like powers of x — x,. Does this procedure work when p(x) or ¢(x) are
singular at x = x,? The answer is NO, except when the singularity is of a special
kind, but fortunately this class of equations contains many of the equations that
arise in applied mathematics and mathematical physics.

Suppose as before that the given point in question is x, = 0, and suppose
further that the differential equation can be written in the form

plx)

p ()
y+E2y + 13y =0, 6.3.1)

where p(x) and g(x) are smooth functions in a neighborhood of x = 0; hence
px) =D pax",  ql) = ) gan
n=0 n=0

In this case x = 0 is said to be a regular singular point, and it is this type of singu-
larity for which the method of power series, suitably modified, also works.

Definition .

If the functions p(x) and g(x) of equation (6.3.1) can be represented by
power series convergent in some neighborhood of x = 0, then x = 0 is said
to be a regular singular point of the differential equation.

The following are examples of differential equations with a regular singular
point at x = 0. Note that one must sometimes modify the coefficients to get the
equation into the form of (6.3.1).

1
1. xy” +y = 0ory” +;§y = 0 with p(x) = 0, g(x) = 1;
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—3/4 /2

2. 4x%” — 3xy’ + 2y = Oory” + ——y + —5y = 0 with

3 1
P(x) - _'Z3qu)'- §1

+ 2 g
3. xy”+(x+2)y’+e"y=Oory”+§-7—y’+’:;,y=O

with p(x) = x + 2, g(x) =
4 4x
4.y +2+-y=0ory + 2 y’ + 3y = Owith p(x) = 2x, g(x) =

THE METHOD OF FROBENIUS

The method of Frobenius provides a technique for finding a series solution, but the
series will be of the form

y(x) = %7 Z a,x" = Z a,x"*’, (6.3.2)
ﬂ’o n=0

where r is some number (not necessarily an integer!) to be determined from the dif-
ferential equatioh. This is the modification incurred by the fact that x = 0 is a
regular singular point. Term-by-term differentiation of the expression for y(x)
gives

y(x) = Z (n + Nax"*!

n=90

and

y(x) = Z n+ P+ r—Daxt 2

n=0
Now write the differential equation (6.3.1) in the form
x%y” + xp(x)y + q(x)y =
and substitute the expansions for p(x), ¢(x), y(x), ¥'(x), and y”(x) to obtain

> 4+ nNn+ r— Dax + <Z p,,x") > (n + naxmt

n=0 n=0 n=0

+ (Z q,,x") D axt =0

n=0 n=0
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The term x" can be factored out of each term, and combining the coefficients of
like powers of x we obtain the expression

X'[r(r — Day + poray + qoao)
+ x[(1 + nra; + p(1 + Na, + pyray + goa; + qiaglx
+xT Je*+ -+ x[ ]+ - =0,

where we have explicitly written down the coefficients of x* = 1 and x. Equating
to zero the first bracketed term and assuming a, # 0 gives

rr = 1)+ por+ g =7+ (po— 1)r + ¢, = 0. (6.3.3)

This quadratic polynomial in 7 is called the indicial equation, and its two roots, 7,
and r,, will be the admissible values of the exponent r in the expression (6.3.2) for
the solution. Note that p, and g, are merely the respective values of p(0) and ¢(0)
and can be easily obtained from the differential equation.

The theory of the regular singular point case, which the reader may wish to
examine in more detail in some of the references, leads to the following solution
procedure.

Solution procedure for the regular singular point case

1. Find p, = p(0); and g, = ¢(0), then find the roots r, and r, of the indicial
equation (6.3.3).

2. Choose as 7, that root of the indicial equation for which the real part of
7| — 7y is nonnegative; if r; and 7, are real and unequal then r, would be the
largest root, for instance. Then for r = r,, let the solution be represented by
the series

(oo
yi(x) = x™ Z a,x".
. n=0

3. Replace p(x) and g(x) by their power series representations, substitute y,(x)
into the differential equation and proceed as in the ordinary point case. One
can always obtain recursively all the coefficients a, and the series obtained
will converge in some deleted neighborhood of x = 0. By a deleted
neighborhood we mean the set of all x satisfying 0 < |x| < « for some
a > 0. In some cases the series may also converge at x = 0.

4. If r, is the second root and r; — 1, is not zero or a positive integer, then one
can proceed as in (1). The series

Polx) = x™ Z b.x"
n=10
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with the 4,’s determined recursively converges in some deleted neighborhood
of x = 0 and is a solution. The two solutions, y,(x) and y,(x), are linearly
independent. ‘

5. If r, — 7, equals zero or a positive integer, then there are two possibilities:
Either a solution of the form y,(x) above exists or the second solution is of
the form

yo(x) = yi(x) BlIn x + x™2 Z b,x",

n=0

with 8 a constant dependent on ;(x) and p(x).

In the case where the regular singular point x, # 0 one would use p, = p(x,) and
go = q(x,) in the indicial equation. The solution corresponding to the root r, would
then be of the form

2O = (x — %)Y a, (x — x,)

and the solution procedure above applies. (See Exercise 8 of Section 6.3.)

The possibility (5) above is the so-called logarithmic case, and if r, — r, equals
zero, it always occurs since the indicial equation has only one root. If r, — ryis a
positive integer, there is a technique using p(x) and y,(x) to determine whether the
logarithmic case occurs; it uses the reduction of order formula to be discussed
shortly, and the interested reader is referred to [2] or [3] for details.

The problem with the case where the real part of r, — 7, is a positive integer
is that if one substitutes the series y,(x) = x™ X7, b,x" into the differential equa-
tion, then one cannot find a recursion relation for all the 4,. Specifically, for some
positive integer m one can no longer solve for b, in terms of the previous b, and
the process comes to a halt. One must resort to other techniques to find a second
linearly independent solution.

A simple example of the logarithmic case, which the reader has seen before, is
the Euler differential equation

x%" + axy + by = 0, where a, b = const.

Clearly, x = 0 is a regular singular point and p(x) = a, g(x) = b, so the indicial
equation is
2+ @— 1)yr+b=0.

If the roots of the indicial equation are 7, and 7, and both are real and equal, then
two linearly independent solutions are

yi(x) = %" and yo(x) = x"In x = y,(x) In x.

This is an example of case (5) above with 8 = 1 and Z7_, b,x" = 0.




6.3 Series Solutions—Part 2 437

The Euler differential equation can be used to illustrate two observations
about regular singular points. The first is that solutions need not be undefined at
a regular singular point. For instance, a linearly independent pair of solutions of

” _2_/ _2_ —_
yr-TY T Ey=0

are y,(x) = x and y,(x) = x* and both are smooth, well-defined functions at the
regular singular point x, = 0. The example also illustrates the second observation,
namely that the solutions at a regular singular point need not be full infinite series,
but may merely be polynomials. Some examples of equations with a regular sin-
gular point and their corresponding indicial equations are given below.

EXAMPLE 1 Find the indicial equation, its roots, and the general form of the
solution for

2) y — [1/@0]y + [(1 + 2)/@d]y = 0;

b) y" + (2/x)y + xy = 0;
o)y + @/x)y + [ + x)/x*]y = 0.

SOLUTION

a) Because p(x) = —1/2 and q(x) = 1/2 + (1/2)x% we have p, = —1/2, Go =
1/2. The indicial equation is

1 1 1
PH+l—c—1pp+c=0C—-D|r—z]=0
(-5-1p+3me-n(-3)
with roots r, = 1 and r, = 1/2, and r, — 7, = 1/2, which is not zero or a
positive integer. We conclude that two linearly independent series solutions,

nx) = x Z a,x" and y(x) = x'? Z b.x",
n=0 n=0

can be found.
b) If the last term is written as x = x°/x? it is seen that p(x) = 2, q(x) = «°,
hence p, = 2, g, = 0. The indicial equation is

2P+2—1yr=rr+1)=0

withroots r; = 0 and r, = —1, s0 r, — r, = 1 a positive integer. Correspond-
ing to the root r, = 0 there is a solution y,(x) = I}, a,x", and the second
solution is either a logarithmic case or has the form y,(x) = x~' £, b,x",
corresponding to r, = —1, which turns out to be the case.

c) We have p(x) = 3, q¢(x) = 1 + x, and p, = 3, g, = 1. The indicial equation is
2P+B3—-—1r+1=@EC+1)>2=0
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with roots r, = r, = —1 and r;, — r, = 0. This is a logarithmic case, and the
solutions are of the form

oo

ylx) = x7! Z a,x"

n=0
corresponding to r, = —1, and

y2(x) = yi(x) Blnx + x7! Z b,x". n

n=0

Once the value of , is determined from the indicial equation, finding the series
solution for y,(x) proceeds as in the case of an ordinary point. The series is substi-
tuted and like powers of x are compared after shifting indices if necessary.

EXAMPLE 2 Find y,(x) for the differential equation of Example 1(c) above:

x*y” + 3xy + (1 + x)y = 0.

SOLUTION Set y,(x) = Z;2, a,x""', then differentiate the series twice, term by
term, and substitute it into the differential equation to get

Y (n—Dn—ax"+3x) (n— Dax"+ (1 +xD ax""'=0.

n=0 n=0 n=0

Multiply each series by its coefficient and combine terms to obtain

Sln—1Dn—2 +3n—1) + lax"" + > ax

n=0 n=0
(=] co
= Z nla,x""' + Z a,x" = 0.
n=0 n=0

1

When n = 0 in the first series, the coefficient of x™' is zero, so we can shift its

index by one to get

D+ Dapx" + D ax" =) [0+ 1), + alx" = 0.

n=0 n=0 n=0
Hence a,,; = —a,/(n + 1>, n = 0,1, 2, ..., which implies
a4 _ 4 _ T T4
a, = —ay, Qg = 22 —22’ as = 32 —32'22,etc.,
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and in general,

- (—1)"a, - (—1)"a,
"oopt.. . 82.92 (n))?

Since a, is arbitrary, it may be set equal to unity, and the first solution is

N i

1

n(x) = Z ik

Usually writing down the first few terms of the series expansion, after combining
those series that lead off with the same power of x, will give a clue as to how to
shift the indices. Careful bookkeeping does the rest! ]

The following exercises deal, for the most part, with the nonlogarithmic case.
To obtain the second solution in the logarithmic case, a technique called the method
of reduction of order is often used. That is the subject of the next section.

EXERCISES

6-3 ]

The equations of Exercises 1-7 have a regular singular point at x = 0. Find the
indicial equation, determine its roots, and state what general form the series
solutions will have. ‘ <

1.

9°>'S"?°

2" + (3x — 22 — (x + 1)y = 2. 2% + %/ + (&~ Yy =
4xy” + 2y —y =0 40 +y =0

x%” + Bxy + 4(cos x)y = 0 6. %" + (2x + &)y — 2y = 0
16x%y” + 24xy’ — 3y = 0

If a differential equation has a regular singular point at x = g, then it can be

written in the form

¥+ px) Y+ q(x) y=o,

X —a (x — a)?

where p(x) and g(x) are smooth functions in a neighborhood of x = a. By
assuming a solution of the form

[+

yx) = (x — a) Y alx — a),

n=0
show that r must be a root of the indicial equation
72+(p0"1)7+q0=0,
where p, = p(a), ¢ = q(a).
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In Exercises 9-12 find the regular singular points, the corresponding indicial
equation, and its roots, and state what general form the series solution will have.

9. x+ 1)y +3H +y=0 10 (x— 1)y" +xy +3y=0

6(x — 2)
x y

11. 2(x — 2)%" — '+ 3y=0 12. (1 — x%)y” — 2xy’ + 6y = 0

The equations in Exercises 13—17 have a regular singular point at x = 0 and are
the case r, — 7, # 0 or a positive integer. Find the recursion relation and the
first four nonzero terms of the series expansion for each of the two linearly inde-
pendent solutions. Find a general expression for each solution if possible.

13. 2xy” +y —y =0 14. 2x%" — xy' + (1 — x%)y =
15. 4xy” + 2y +y =10 16. 3x%y” + 4xy’ — 2y = 0
17. 2x*y” — 5(sin x) ¥ + 3y = 0; find only the first three nonzero terms of each

solution.

S

The equations in Exercises 18—22 have a regular singular point at x = 0 and

r, — 1y is a positive integer (the nonlogarithmic case). Both series solutions can
often be found by substituting y(x) = x™ £, a,x", where 7, is the smaller root of
the indicial equation. Find the recursion relation and the first four nonzero
terms of the series expansion for each of the two linearly independent solutions.
Find a general expression for each solution if possible.

18. xy” + (8 + x*)y’ + 3x°y = 0 19. xy” + 2y + %’y =0
20. xy" + @+ x)y +2y=20 21. x(1 — x)y" — (4 +x)y +4y =0
22. x(1 — x)y” — (4 + x)y’ + 4y = 0, solve for the regular singular point x = 1.

____6.4 THE METHOD OF REDUCTION OF ORDER AND THE
ENENNE 1.O0GARITHMIC CASE OF A REGULAR SINGULAR POINT

Suppose we are given the second order linear equation

Yy + px)y + qlx)y = 0, (6.4.1)

where p(x) and ¢(x) are continuous for all x in some neighborhood of x = x, but
may be discontinuous or singular at x, itself. For instance, this will be the case if
x, is a regular singular point. Suppose further the happy circumstance that a non-
trivial solution y,(x) of (6.4.1) is known. This solution could be the result of a for-
tuitous guess or of diligent labor, as in the case of a regular singular point, where
y,(x) is the series solution corresponding to r,, the largest root of the indicial
equation.
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The method of reduction of order deals with the following question. Given a
nontrivial solution y,(x) of (6.4.1), can one find a second linearly independent solu-
tion y,(x)? The answer is YES, and the method is especially useful when y,(x) is given
by an infinite series and one wishes to obtain the first few terms of the series rep-
resentation of y,(x). For the logarithmic case of the regular singular point it is an
especially effective tool.

Suppose y,(x) is a solution of (6.4.1). The method of reduction of order, like
the method of variation of parameters, assumes that the second solution can be
expressed as y,(x) = y,(x) u(x), where u(x).is to be determined. Therefore

Yo = yu,  yh =yl + oy, y5=yu’ + 2w + ylu
and since y,(x) is assumed to be a solution, this implies that
ye + plxy: + qx)y: = 7 + plyi + glylu + yiu” + 2y + plx)y)w’ = 0

Since y,(x) is a solution, the coefficient of u is zero, and so 4 = wu(x) must satisfy
the relation

yu” + (291 + pl)yJu’ = 0

or
N
"+ +
o[22 o -

The last relation is a first order linear homogeneous equation in w = «’ and can
be solved by using the methods of Chapter 1. The solution is

exp [ J p(s) ds}

S Y T ) e

(We have ignored the immaterial constant of integration.) Integrating once more
gives u(x) and therefore y,(x). Following is a summary of the previous analysis.

Method of reduction of order. Given a solution y,(x) of equation (6.4.1), to
find a second linearly independent solution y,(x), let y,(x) = y,(x)u(x). Substitute
and solve the differential equation obtained for u(x) to get

. €Xp {—er(s)dsJ

}’1(7)2

yo(x) = y1(x) dr, (6.4.2)

which is the reduction of order formula.
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To show that y,(x) and y.(x) are a linearly independent pair of solutions, we
compute their Wronskian. The formulas above for «’ and y; imply that

exp [—J-xp(s)ds}

exp [—f'ms) ds}

¥a(x) = yi(x) j Y dr +

and therefore

exp [—j'xp(s) ds]

Nx)ye(x) = yi(x)y(x) j o)

= yi(x)ys(x) + exp [-— j pls) dsJ

Consequently

Wy, 3)(x) = 31(x)yz(x) — yi(x)y(x) = exp [— J p(s) dS] # 0.

Therefore y,(x) and y,(x) are a linearly independent pair. Note that if p(x) = 0, so

that the differential equation is
y" + gty =0,
then the reduction of order formula is simply

1
:)’1("')2

¥o(x) = (%) f

EXAMPLE 1 Use the reduction of order formula to construct a second solution

to each of the following differential equations.

a) The constant coefficient equation
¥y + 28y + ¥y =0;
b) the Euler equation
x’y” — Txy + 16y = 0,

c) the nonconstant coefficient equation

d

dr+exp{-—fxp(s)ds}

T.

x # 0;




6.4 Reduction of Order 443

SOLUTION

a) This equation has a solution y,(x) = ¢~ * and is the case where the
characteristic polynomial has a double root A = . Since p(x) = 2b, the
reduction of order formula gives

p[ [ 200

x ,—2br
Yolx) = 7™ f ey dr = ¢ f Z_% dr = xe ™.

b) A trial solution of the type y,(x) = x" yields £ = 4. Rewriting the equation as

we see that p(x) = —7/x and

exp [—fr(—-';) ds} =exp[7lnr] = 7.

Hence

x 7
yolx) = x* f #dr = x*In x.

c) Careful examination reveals that y,(x) = x? 4+ 1 is a solution. Since p(x) = 0,
the second linearly independent solution is

2 IR S I
yo(x) = (x +l)j (r2+1)2dr—(x +1){2(x2+1)+2tan x}

+ =(@*+ 1) tan™" x. n

N R
N | =

It is often the case that the integral in the reduction of order formula cannot be
evaluated. Nevertheless the expression for the second solution may still be useful,
for instance to determine the asymptotic behavior of the general solution.

Returning to the topic of series solutions of linear differential equations, it was
mentioned above that the first solution y,(x) could always be expressed as an infi-
nite series. The use of the reduction of order formula to find the second linearly
independent solution y,(x) will then involve the squaring and inverting of an infi-
nite series, followed by a term-by-term integration. There is a systematic way to
accomplish this, and the procedure is a direct generalization of arithmetical oper-
ations on polynomials.
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The Cauchy product formula for series. Given the two power series

oo

Dlax — x)h D blx — xo),

n=0 n=0

their product is given by the power series

[i an(x — xo)"] [i b,(x — xo)”}

n=0 n=0

> (3o, ) = 5o

a=0 \j=0
= aghy + (ahy + aib)(x — %) + (ahs + a)b, + aghp)(x — xo)2
+ -+ (ah, +ab,_y + - - -+ ab)x — xp)" + - - -

The formula is merely a systematic way of combining in the product all those terms
that have the same power of x — x,. If the two series are the same, this gives the
formula for squaring a series:

The Cauchy product formula for squaring a series

o 2
[Z a,(x — xo)"} = a; + 2a9a,(x — xo) + (a} + 2apa,) (x — x)*

n=0

+ (2a4a5 + 2a,a9)(x — x,)°

+ (@} + 2apa, + 2a,a5)(x — x)* + - - -

+ (ai + 2a4ay, + ¢ - - + 2a,.40,1)(x — xo)2"

+ (2a¢a9,41 + ¢+ + + + 2a,a,:)(x — xo)2"+1 + -

EXAMPLE 2 Find the first four nonzero terms of the series for cos x.

SOLUTION Since

2n

d X
then(ﬁ = a3:= a5== e ==()and
- __1__1 _1_1
=5 BT T T T MEHT 9
__1__ 1
%= T8 720" """
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Therefore the series for cos® x will have only even terms and the Cauchy product
formula can be used to compute its first four nonzero terms:

(1) + {(0)2 + 2(1) <—é—>]x2 + [(—%) + 2(1)<§171> + 2(0)(0)]x“

+ [(0)2 + 2(1) (—%QO) + 2(0)(0) + 2 (—%) (2—14>]x6 + e

1 2
1_2 Tt 6 -
x+3x —45x+ [ ]

COS2 X

In the reduction of order formula there appears an expression of the form
1/y,(x)?, so if y,(x) is represented by a power series, it can be squared by using the
above formula. But then it must be inverted or, equivalently, the series represen-
tation of an expression of the form

1
> blx — xo)"
n=0

must be computed. To accomplish this, let the last expression equal the series
Z2-0 q.(x — x)", where the ¢, are to be determined. Therefore we have the relation

[Z ba(x — x»"] [Z gulx — xoy'] =1,

and now use the Cauchy product formula on the left side and then equate the
coefficients of like powers of x — x, to obtain

quO =1, bo‘h + b1¢Io = 0, onz + b1q1 + quo = 0,...,
boqn+blqn—l+ st +bnqo=0,....

Now solve for g, in the first equation, substitute its value in the second equation,
and solve for ¢, use ¢, and ¢, in the third equation to find ¢, etc. The above for-
mulas are a systematic recursive approach to what amounts to “long division.”

It is assumed in the above division process that b, # 0. If by, b, . . . , b, are
all zero, but b, # 0, then the above quotient may be written as

1 1 1

[0 4] k oo

X — X
She—xy C T S b e —
n=0 n=0

b

and the division algorithm applied to the second term.
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EXAMPLE 3 Find the first few terms of 1/g(x)?, where

i 1
=1 "
g +;n+2x
SOLUTION We have
: 1 1 1 1
a()=1, a’l=§’ a2=Z’ a3=g’ ’ an=n+2’
and by the Cauchy product formula
1 1 1 1
2 — - 2 .- )1 - —y2 ..
g(x) (1+3x+4x+ )(+3x+4x+
2
1 1 1
= 12 . . - —_ . 1 . —_ 2
1 +|i2 1 3]x+[<3)+2 4]x
1 1 1
c1-= R Y T
+ [2 5+2 3 4}x +
1+2 +112+173+
= —x + —x —x SR
3 18 30
To find the first few terms of 1 /gx)? = qo + qx + ¢,x* + - - -, one must solve

the equation

2 11 .
(1+§x+I—8—x2‘+-- Ngo + qx + gox* + - - 1) = 1.

Therefore

2 2 11
1-¢g =1, 1‘(]1+§¢I0=O, 1-q2+§q1+I§qo=0,

gt 2+ B+ g =0
93 3q2 18‘]1 30(]0— 3 e s 0y

and we successively solve these to obtain

P S R T
G = L, @ = 3’ 4, = 6 qs 970’
Therefore
1 2 1 13
=1 —=x — = x2 — —— 3 R
g0 576 “a0” T "

After the above detour into the multiplication and inversion of power series,
it is time to return to our principal topic—series solutions of linear differential
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equations around a regular singular point. The method of reduction of order will
be used to obtain the first few terms of the series representation of the second
solution y,(x), when the roots r; and 7, of the indicial equation satisfy r, — r, = 0,
the logarithmic case. This will be accomplished via some examples.

EXAMPLE 4 Find the first few terms of the logarithmic solution to
” 1 4
Yy + 27 +3y=0.

SOLUTION In Section 6.1 it was stated that a solution is

= = ) 1 2 1 4
- = —_—T = ] — — _— —
) = Jol) ;, 97ty 2" T8 T 2304

Since p(x) = 1/x, the reduction of order formula gives

o[ [ V]

x x 1
)’2(9‘) = Jo(x) J. ] (7)2 dr = ]o(x) J.

7:]0(7)2

dr.

By rewriting the equation in the form

2

1 x
y+Iy+ar=0

we see that x = 0 is a regular singular point, and since p, = 1, ¢, = 0, the indicial
equationis ¥ + (1 — 1)r + 0 = #* = 0 with roots r, = r, = 0. This is the loga-
rithmic case.

To find the first few terms of y,(x), first calculate J,(x)’. Since

1 1
a’0=l, a1=0’ a2=_z’ a3=0’ a4=a: sy

we have

Jox=1"4+@2-1-0x + [02—}-2. 1 .(..l)jl,g

1
+[2-1-0 +2-0-<—Z)}x3

+ 12)+21—1—+200]‘*+
4 64 x

12 34
1 2x +32x+ .



448 Second Order Linear Equations and Series Solutions

To find 1/],(x)? the following relations have to be solved:

1
1'q0=1, 1'q1+0‘q0=0, 1'q2+0'q1+<_§>q0=0,

1
1'q3+0'q2+(—§)q|+0'q0=0,

1

3
2)q2+0'q1+3_2q0=0,...

1q4+0'q5+(

to obtain

1 5
= = =— g,=0, = ...
=1 ¢=0, ¢ > qs % =39

Therefore

"1 1 5
y?(x) =]0(x)—’- ‘;(1 +§72+'?§T4—|— .. ')dr

_ 1:,5 4
_]o(x)[lnx+4x +128x—|j } [ |

EXAMPLE 5 Find the first few terms of the logarithmic solution to
1+ x

x2

3
y+ Yyt y=0.

SOLUTION In the final example of the previous section, a solution was found
to be

x2 K8
yl(x)=x—1[1—x+z—§é+---].

The point x = 0 is a regular singular point and the roots of the indicial equation
are r; = 7, = —1, so again this is the logarithmic case. Since p(x) = 3/x, then

ol-J24] -

and the second solution is

1 1

x xl
) = 39 | S T | ;[ — 7 dr.

1_ —_— e —_—— « ..
r+4 36+
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Letting g(r) be the expression in the brackets, we use the Cauchy product formula
to get

gt =1—2r+3" -5+ - - ..
To find 1/g(r)* we must solve the relations

l-g=1 1-q¢+ (=24 =0,

3
1 * q2 + (—Q)ql + <§>q0 = O,

3 5
g+ (—2¢+|z|g+|—7lgp =0,
2 9
to obtain
1 » 5 23
2=1+27+—r2+—73+---.
g 2 9
Therefore
*1 5 3,
yz(x)=y1(x)j ‘r‘[l+27"+'2‘72+%7';+"'}d7“

5 3
= y,(x) In x + y,(x) [Qx -l—zx2 +%x3 + - - }
A further multiplication of series would give

x) = yi(x) 1 -+-[2~-§ +1—12+ ] |
Yo(x) = y(x) In x 4x 108x .

EXAMPLE 6 Find a solution to y” + (2/x)y’ + xy = 0 that is singular at

x = 0.
SOLUTION The indicial equation is 7 + r = 0 with roots r, = 0, 7, = —1.
Since r, — r, = 1 (a positive integer), this may or may not be a logarithmic case.

The solution y,(x) corresponding to r;, = 0 has the series representation (see Exer-
cise 19 of the previous section)

Nnx) = Z ax".
n=0

Since p(x) = 2/x then
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and by the reduction of order formula gives
0 =3 | somdr =y | —=—a
Yox) = n 72}'1(7')2 i ( - )2 T
7 Z a,r
n=0

=y,(x)f ;li,-[bo+b,r+b212+' < ]ar

= yl(x)[-—boxul + bl ll‘l X + b2x + . . .]’
where
1 (e ]
Pt R ED
(Z a,,x") m=0
n=0

There will be a logarithmic term if 4, # 0; otherwise the solution will be of the
form

Yolx) = x7! Z X"
n=0
corresponding to the root 7, = —1. The reader may wish to find the first few a,’s
and consequently show that , = 0. Therefore the singular solution is of the form
above, and not the logarithmic case. ]

EXERCISES

6.4

Given the linear differential equations of Exercises 1-7 and one solution y,(x),
use the reduction of order formula to find a second linearly independent solu-
tion y,(x).

1.

NS g o

y — 4y + 13y = 0, y(x) = € cos 3x
y — 9y =0, yx =

Yy —xy+y=0, yk) =x
. x4+ 4xy’ — 10y = 0, y(x) = &

6 1
Y= 5y=0 n@ =7

a — x2)y” —2xy +2y =0, ykx =x
y” — 2(1 + tan’x)y = 0, y(x) = tanx

x
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Given the following series

© 1
P(x) = Zn—

Qlx) = Z

n=0

compute the first four nonzero terms of the expressions in Exercises 8—13.

1 1
8. P(x)’ % o 10. o 11. P(x) Q)
(x)
12. g(:) 13. P(x) Q%(x)

Given the functions p(x) and the series y,(x), compute the first three nonzero

terms of the expression
exp [—J. p(s) ds]

dr
% (?
in Exercises 14—18.
3
14. [)(x) - x ’
x? x? x5
=1-= _—— e .
») 5791 720"

15. p(x) = — =
n@W =1 +ix+ia +Hx+ -

1
16. px) = —, 3 =1+x+ >+ + - - -

2x
1 [
17. p(x)=;, y](x)=x_._.g _9___. ..
1 x2 x4

The equations of Exercises 19-24 have a regular singular point at x = 0 and are
examples of the logarithmic case. Find the recursion relation and the first four
nonzero terms of the series expansion of the solution corresponding to the root
r,. If possible, find a general expression for this solution. Then use the method
of reduction of order to find the first few terms of the second linearly indepen-
dent solution.

451
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19. xy” +y —xy =0 20. x*y” + xy + xy = 0

21, Xy +xy + (x— 1)y =0 22. x3" +y =0

23. x"y” — 3xy’ + (4x + 4)y = 0 24. x%” + 5xy + (3 — 2y = 0

— 6.5 SOME SPECIAL FUNCTIONS AND TOOLS OF THE TRADE
I

THE GAMMA FUNCTION

This function arises so frequently in series representations of solutions that it is
worth discussing briefly. The Gamma function, I'(x), is defined by the definite
integral

I'(x) = j e~ dt,
0

which converges for all positive x. One sees immediately that I'(1) = 1, and a simple
integration by parts shows that

[e ]

Fx +1) = J e'rdt = —e’'t

0

+ x f e 't dt = 0 + xT'(x).
0 0

The fundamental identity I'(x + 1) = x I'(x) implies, in particular, that for x = n, a
positive integer, the following holds:

I'm+ 1) =nl'(n) = n(n — DI'(n — 1)

= .=qn—1---2-1=n

since I'(1) = 1. Therefore the Gamma function extends the definition of the fac-
torial x!, previously defined only for x = 1,2, ". ., to a function I'(x) that is defined
for all values of x > 0 and that agrees with n! when x = n + 1. Its importance will
become clearer in the next section when we discuss the Bessel function.

The fundamental identity also implies that one needs to know only the values
of I'(x + 1) for 0 =< x =< 1 to be able to compute I'(x) for any x > 0. For if x >
2, one can always find a positive integer n and real number a,
0 = a=<1,s0thatx = n + a + 1. Then by successively using the fundamental
identity we obtain

'x) =Tn+a+1) =1+ o)T'(n + a)

=m+anta—1)NTn+a—1)=-.. (6.5.1)
=nt+an+a—1)---1+ ' + a);
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- hence computing I'(x) becomes a matter of knowing I'(1 + &) from a table, then
performing a series of multiplications. Note that I'(x) = I'(x + 1)/x and I'(1) = 1
implies that I'(x) — o0 as x — 0™

EXAMPLE 1 Find I'(3.77).

SOLUTION
I'3.77) = 2.77T.77) = 2.77)1.77) T (1.77)
= (2.77)(1.77)(0.92876) = 4.52910,

where the approximate value of I'(1.77) was obtained from a table. Extensive tables
of T'(x) can be found, for instance, in [11]. ]

Observe that by using the fundamental identity in reverse, I'(x) can be defined
for x < 0, where x is not a negative integer. For instance, to find I'(—$), we write

4o
RIS RERRE

and

All of this implies that

=)= (2 kS) - )

and the last value can be obtained from tables.
Finally we note the useful and important fact that T'¢) = \/x. This result is
often proved in advanced calculus texts.

THE BESSEL FUNCTION

A differential equation that arises frequently in boundary value problems and
problems in mathematical physics is the Bessel equation.:

2 — ol

1
¥ + ;y’ + y=0, (6.5.2)

x?
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where a is a given parameter. For this discussion, a will be assumed to be a real
number. The solutions of (6.5.2) occur in many types of potential problems involv-
ing cylindrical boundaries, as well as in such areas as elasticity theory, fluid mechan-
ics, and electromagnetic field theory.

The Bessel equation is so important that literally hundreds of volumes of tables
of its solutions, their derivatives, and their zeros for both integer and fractional
values of a have been published. For instance, in the late 1940s the Harvard Com-
putation Laboratory published 12 volumes, each of about 650 pages, giving values
of solutions to (6.5.2) fora = 0, 1, 2, ..., 135. This was done by means of com-
puters that by today’s standards would be called prehistoric; today many of
those tables have been replaced by stored computational packages and subrou-
tines.

One sees immediately that x = 0 is a regular singular point of the Bessel equa-
tion and that p(x) = 1, ¢(x) = —a® + x>. Hence p, = 1, ¢, = —a?, and its indicial
equation is

r+Q—-—r—at=7r—a’=0.

Therefore its roots are r, = e and r, = —a and r, — r, = 2a, which means there
are two distinct cases:

1. a # 0 and not a positive integer. Then 2« is not zero and not a positive
integer, and there are two linearly independent solutions of the form

[>.]

Jalx) = x* Z ax", J-alx) = x7° Z b x"

n=0 n=0

called Bessel functions of fractional or nonintegral order o and — .
2. a = 0 or a positive integer, say @ = m. In this case one solution is of the
form

Jal®) = 2™ Y ax";

n=0

it is called the Bessel function of order m. The second linearly independent
solution is of the logarithmic type and is denoted by Y,,(x), the Bessel function
of the second kind of order m.

In the earlier sections of this chapter we introduced J,(x). In what follows we
will develop the series representation of J.(x), Re(@) = 0, and list some of its impor-
tant properties.

Write the Bessel equations as

x*y + xy + (—a® + xPy = 0,
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n+a

let y(x) = x* L7., a.x" = L), a,x""", and substitute the series to obtain

Y [+ a)n + a — Dlgx

n=0
oo oo 'Y
+ x Z (,n + a)anxn+a—l - a2 Z anxn+a + x2 Z anxn+a = O
n=0 n=( n=0
The first three series can be combined to get

= =

Z [(,n + a)? — a?]anxn+a + Z anxn+tx+2 = 0.

n=0 n=0

Note that in the first series the term corresponding to n = 0 is zero. Therefore
write down the term for n = 1 and reindex to obtain

[(1+ @)? = aflax'™ + > {[(n + 2 + &) — a¥la,,y + a)x" "2 = 0.
n=0
Since o = 0, this implies that @, = 0 and that

a, a,

Gt T ot Gt dmtetom 0L
Hencea, = a3 = + + - = ay,;, = 0 and
4 = — Qg — ay
? 22 + 2a) 21 + a)’
@ = — ay _ %)
! 44+ 20 220+ o)1 + @)’
o = — a4 — Qg
® 6(6 + 2a) .39+ + )1+’
a?n = (_1)" aO ’ n = 1, 2’

2l +a)n — 1 +a) - - - (1 + )

We conclude that

— a = (—1)" 2n
Julx) = aux §22"n!(n Yt —1+a)---(1+a

We note that the series can be written in powers of x/2, and if we examine the
denominator of the general term and compare it to the expression (6.5.1) for the
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Gamma function, we see that considerable simplification is obtained by letting q,
= [2°T(a + 1)]”'. We obtain the compact form

(Y& ey (5
Jlx) = <2> 2 nT(n + o + 1) (2> '

n=0

In comparing this expression with the previous one we can see the notational con-
venience of using the Gamma function. We now examine the various possibilities
for different values of a.

Case 1. Since « = m, where m = 0 or m is a positive integer, we have
IT'n+m+ 1) =@n+ m,

and we obtain the Bessel function of order m:

J(2) 5= (=)
Jnlx) = (2) Zn!(n‘f'm)!(?).

n=0
From the series it follows

JO =1, L.0)=0 m=12....

A more extensive analysis shows that J,(x) is an oscillatory function that approaches
zero as x — 00, very similar to a damped cosine or sine function. For instance,

Jo(x) = 0 for x; = 2.405, 5.520, 8.654, 11.97, . . .
Jix) = 0 for x = 3.832, 7.016,10.17,13.32, ...
Jolx) = 0 for x;=5.136,8.417,11.62,14.80, . ...

A graph of J,(x) for m = 0, 1, 2 is shown in Fig. 6.1; these three Bessel functions
occur often in applications. Tables of the Bessel functions and their zeros can be
found, for instance, in [11].

As mentioned above, when o = m, m = 0 or a positiVe integer, the second
linearly independent solution of the Bessel equation is Y,(x), the Bessel function of
the second kind of order m, and it is of logarithmic type. Its series representation is
very complicated, but it is also an oscillatory function which, however, becomes
unbounded as x — 0. A graph of Yy(x) and Y,(x) is shown in Fig. 6.2.

There are many interesting properties and identities for the Bessel functions
that we do not have space to discuss; the reader could browse through [5] or [8]
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Figure 6.2 Graphs of Y,(x) and Y, (x).
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to see the vast literature devoted to Bessel functions J,.(x) and Y,(x). For this dis-
cussion we only need to state that:

When o = m, m = 0 or a positive integer, a general solution of the Bessel
equation (6.5.2) is

¥x) = afu(x) + bY,(x),

where a and b are arbitrary constants.

Case 2. When a # 0 or a positive integer, the theory of regular singular points
tells us that the two Bessel functions of fractional order o and —a,

(e ey (5
Jalx) = <2> Z nl'(n + a + 1) (2)

n=0

and

—a 2n,
(%) s x
J-ox) = (2) 2 T et <2> ’

n=0

are a fundamental pair of solutions of the Bessel equation (6.5.2). Hence:

When a # 0 or a positive integer, the general solution of the Bessel equation
(6.5.2) is '

yx) = afu(x) + b]_.(x),

where a and b are arbitrary constants.

The function J,(x) is oscillatory and approaches zero as x — o0, and for large x,
J«(x) looks very much like a damped sine wave.

Finally, a frequently useful and time-saving fact, which allows us to express
many solutions of equations with regular singular points at x = 0 in terms of Bessel
functions, is the following.

Given an equation with a regular singular point at x = 0 in the form

Ky’ 4+ (1= 293y + [ — 7a”) + @'y = 0, (6.5.3)
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where s, 7, a, and « are given constants, every solution can be written in the
form

y(x) = cx’[(ax") + cx’]_.(ax"),

where ¢, and ¢, are arbitrary constants. If « = 0 or a positive integer, then
we replace J_,(ax") with Y, (ax").

This result is obtained by using a change of variable, and the verification is left to
the reader in Exercise 9 (p. 465).

EXAMPLE 2
a) In the previous section on regular singular points, the series expression for
one solution of

y" +3xy + (1 +x)y=0

and the first few terms of the second solution (of logarithmic type) were devel-
oped. By comparison with the differential equation (6.5.3), we find:

1—2s=3, s—72 a’=1, a7 =1, 2r=1,

which, when solved, gives r = $,a =25 = —1,a = 0. Therefore a funda-
mental pair of solutions is

nx) = 27 Jo(2x'),  yu(x) = x7'¥e(2x'?).
b) Lets =1, r = a = 1in (6.5.3) to obtain
x2y// + [& — a?) + x2]y _ 0

and the above fact tells us that a fundamental pair of solutions are x'/*J (x) and
either x'2]_ (x) or x'?Y,(x). However, if & = 4, the above equation, after can-
celing x*, becomes y” + y = 0, whose fundamental pair of solutions are sin x
and cos x. This implies that [, »(x) and J_,(x) can be expressed in terms of
x~'2 sin x and x~'/? cos x. In fact it can be shown that (see Exercise 7, p. 464)

Jip(x) = \/% sin x, J-12(x) = \/% Cos x,

s0 Ji2(x) and J_, »(x) can be computed without the use of special tables. m

The above examples show the advantage of the general form (6.5.3), namely,
that the solutions of a large class of equations with a regular singular point at x =
0 can be expressed in terms of well-tabulated functions. Hence, the computation
of complicated series solutions is avoided, which is a real benefit!
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THE AIRY FUNCTIONS

The Airy functions Ai(x), Bi(x) are the fundamental pair of solutions of Airy’s
equation
y —xy =0, (6.5.4)

as was shown before. Similarly, Ai(—x), Bi(—x) denote the fundamental pair of
solutions of

y +xy =0, (6.5.5)

and both pairs of functions are tabulated, for example, in [10]. By writing (6.5.5)
in the form

X’y + %’y =0

we see that it is in the general form (6.5.3) with 1 — 2s = 0, s> — &’ = 0, a’r*
= 1, and 2r = 3. The solution of these equations is r = §, s = 4§
a= %, and a = }; therefore Ai(—x) and Bi(—x) can be written as linear combina-
tions of

\/;],/3 (% x3/2> and \/;]_,/3 <§ x3/2>.

In fact, for x > 0,

Ai(—x) = % \/; []1/3 <§ x$/2> + o <§ x3/2>],

2
Bi(—x) = — \/é [jl/f! ('3' x3/2) _.]—1/3 (% xm):l,

and again we see how ubiquitous are the Bessel functions!

THE LEGENDRE POLYNOMIALS
The differential equation
1 — %%y — 2xy + Ay =0, (6.5.6)

with A a given parameter, is called Legendre’s equation, it occurs frequently in the
analysis of potential problems on spherical domains. One sees that x = 0 is an
ordinary point since

Pe) =T, ) =

1 1 — &?
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clearly are smooth functions for |x| < 1. From the equation in the form

SR U - SV S Rk, WY (6.5.7)
P T e T A a
it follows that x = 1 is a regular singular point (and so is x = —1 by a similar

rewriting).
For the regular singular point at x = 1 it is seen from (6.5.7) that

2x 1 —x
p(x) = I+ » and ¢(x) = (1 +x>>\'

Therefore p(1) = 1, ¢(1) = 0, and the indicial equation is
P+1—-DDr+0=r=0

with roots r, = r, = 0. This is the logarithmic case, and two linearly independent
solutions valid in a deleted neighborhood of x = 1 are of the form

oo

2@ =D ax — 1%y =38 |x — 1] + > b(x — 1)

n=0 n=0

A similar analysis can be made for x = —1, which is also a logarithmic case. The
interesting case occurs when we examine the ordinary point x = 0.

Since x = 0 is an ordinary point, both linearly independent solutions have a
series representation y(x) = £, ax". Differentiating the series term by term and
substituting it in (6.5.6) gives

o]

D nn— Dax2+ ) [—nn — 1) — 2n + Nax" = 0.

n=0 n=0
Now shift the index by two in the first sum and combine terms to obtain
S + 2 + Dags + [—nn + 1) + Nax" = 0,
n=0
which leads to the recurrence relation

nn + 1) — A
a = a,,
" 4+ Y+ 1) "

n=2012.... (6.5.8)

It is seen that ay, ay, . . ., ay, . . . depend on a,, while a,, as, . . ., ay,1;, . . . depend
on a,, with a,, a, arbitrary. This leads to two series, one in even powers of x and
the other in odd powers of x, which are a linearly independent pair of solutions of
Legendre’s equation in a neighborhood of x = 0.
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However, the interesting case in many applications is when the parameter
A = m(m + 1) for some nonnegative integer m, in which case the relation (6.5.8)

tells us that:

1. If m is even, then ay, a,, . . ., a, will not be zero, but a,,,y, a,44, . . . will all
be zero. Therefore one solution will be an even polynomial P,(x) of degree
m and the other solution will be a power series in odd powers of x.

2. If m is odd, then as, a, . . . , a, will not be zero, but a,, .4, @,,4, . . . will all be
zero. Therefore one solution will be an odd polynomial P,(x) of degree m
and the other solution will be a power series in even powers of x.

The polynomial solutions P,(x) described above are called the Legendre poly-
nomials corresponding to A = m(m + 1). They are extremely important because
they are the only solutions of Legendre’s equation that are defined for x = 0

and are bounded at x = 1 (the power series solutions diverge at x = 1 like

In(1 ¥ x)).
The recursion relation (6.5.8) may be used to construct some Legendre poly-

nomials, for instance,

1. IfA =20 =4 - 5, thenm = 4 and

torg = ay = DD =20 0,

+2 2 (O + 2)(0 + 1) 0 0>

o @®=20 14 85
G2 T BT 0 e+ 2T 19 @) = g o

hence P,(x) = ao(1 — 10x* + %x*. It is conventional to choose a, so P,(1)
= 1; therefore

3 35
P,(x) = -é-(l — 10x* + —é-x“).

2. fA=30=5"-6,thenm = 5 and

1)(2) — 30 14
N Y B TR W

3)4) — 30 —18 —14 21
G = b= g g +1)" 20 3 T 5w

and choosing a, so that Ps(1) = 1, we have

15 14 1
Pi(x) = —(x — —x* + g—x5).

8 3 5

The reader may check that

Pyx) = 1, Pi(x) = %, Pyx) = %(398 — 1), Pyx) = ?é(jf;x - x)
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and for a further check, may wish to use the Rodrigues’ formula,

d
g & T D"

P,(x) =

This formula generates all the Legendre polynomials by successive differentiation.
Finally, we remark that the Legendre polynomials are an example of a family

of orthogonal polynomials on —1 < x < 1. By this we mean that

1
J- P(x)P,(x)dx = 0 if n+# m.
-1

This fact is extremely useful in boundary value problems and in approximation

theory.

EXERCISES
5 ——————
1. Given
a) I'(1.185) = 0.92229; evaluate I'(5.185) and I'(— 3.815).
b) T'(1.910) = 0.96523; evaluate I'(4.1910) and I'(—2.090).
2. Stirling’s formula for an asymptotic approximation of n! = I'(n + 1) is

T'(n + 1) = n" "\ 27n,
meaning that

. In+1)

lim ————==1.

w0 N'e" "\ 2N
This means the approximation is good as n gets large, in the sense of a small
relative error nof a small absolute error. Use Stirling’s formula to find an
approximation of 100! = 9.3326 X 10"’ and compute the relative and
absolute errors. (Hint: For computing, use the logarithmic form

1
InT'(n + l)z(n+-;-)lnn-—n+-2-ln21r.)

The Maclaurin series for ¢™* is

cu
-y&r

and since it is an alternating series, the error - ih stoppmg at N terms is less

than the magnitude of the (N + 1)st term.

a) Use Stirling’s formula to approximate the error in estimating ¢~ '* with
the first 20, 25, and 30 terms of the series.
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2

b) How many terms would be needed to compute ¢~ * with an error of less

than 107'°?

One can infer from the above that for computational purposes, power series
can be very inefficient!

. By differentiating the series for the Bessel function term by term, show that
x[y(x) = pl(x) — xJp1(x),
xJp®) = —pfpx) + 2y ().

. The two relations in Exercise 4 imply the important recursion relation

2
Ty = —fj,xx) — ),

which allows one to compute higher order Bessel functions in terms of lower
order ones. Use it and the expressions given on p. 459 for [, »(x) and J_, »(x)
to obtain the values of

a) Jo(1.76),

b) J-37(0.587),

©) J5,2(6.78).

. Use the substitutiony = u/ Vx directly in Bessel’s equation to obtain the
differential equation

a? —1
w” + 11— 5 u=70
x

with solutions x'/*] (x).

. Using the fact that I'G) = \/—1;, show directly from the series representation
for Ji o (x) and J_, »(x) that

sin x = \/E;Jlﬂ(x), cos x = \/—122.]—1/2(94)-

(You will need the identity 6.5.1.)
. The integral representation of [, (x),

1 (- '
_],,(x)=—J cos (nf — x sin 0) d6, n=20,1,2,...,
m™ 0

was obtained by F. W. Bessel (1784-1846) in his study of astronomical

orbits.

a) Use it to show that J_.(x) = (—1)"[,(x) and Ji(x) = — ]\ (x).

b) Use it and a quadrature formula (e.g., Simpson’s rule) to show that 2.405
is an approximate zero of Jy(x).

c) Similarly, show that 3.833 is an approximate zero of J(x).
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9. Given the Bessel equation
2w 4+ zw + (2 — oPw = 0,
let z = ax’, y = x'w and obtain the differential equation (6.5.3).

Express the solutions of the differential equations in Exercises 10—14 in terms of
Bessel functions by using (6.5.3).
10. x%” + 5xy + (3 + 4x%)y = 0
11. 9" + 4xy = 0
12. x*” + 3%y’ + (1 + x)y =0
13. 2x%” —xy + (1 + %%y =0
14. x9” +y =10
15. Using Rodrigues’ formula directly,
a) find Py(x), Py(x), and Py(x);
b) show that ', xP,(x)dx = 0,r = 0, 1,...,m — 1. (Hint: Use successive
integration by parts.)
16. Show that the Legendre equation can be written in the form

d
. 1 _ 2\, = __}\
=)= -y
and use this to show the orthogonality relation
1
j P (x)P,(x) dx = 0, n # m.
—1

(Hint: Let A = m(m + 1) and y(x) = P,(x) in the differential equation, then
multiply both sides by P,(x) and integrate on —1 =< x =< 1 by parts. Repeat
the process with A = n(n + 1), etc.)

17. The function y(f) = P, (cos §), 0 < § < =, where P,(x) is a Legendre
polynomial, arises in potential theory for a spherical body. Show that y(6)
satisfies

¥ + (cot 0)y + n(n + 1)y = 0.
18. The Chebyshev equation is
(1 — x®y” — xy + Ny = 0.

a) Show that x = X1 are regular singular points, and determine the nature
of the two linearly independent solutions valid near them.

b) Show that x = 0 is an ordinary point and that if \> = m? m an integer,
one of the linearly independent solutions valid near x = 0 is a
polynomial T,(x). Find T,(x), m = 0, 1, 2, 3, 4.

19. The Hermite equation is ‘

¥ — 2xy" + 2\y = 0.

465
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0 is an ordinary point and that if \ = m, m a nonnegative

integer, then one of the linearly independent solutions is a polynomial H,,(x).

Find H,(x), m

=0,1,2,3,4.

SUMMARY

The problem of finding two linearly independent solutions or a general
solution of the second order linear differential equation

d’y dy
— + b(t) = Dy =0
a(t) px: + b() & + c(t)y

when the coefficients a(f), b(t), and ¢(f) are constants is a simple algebraic
task. However, when they are not, there is no general technique for finding
solutions. But for a large class of equations, a method wherein the solution is
represented by a power series can be employed.

The first case discussed is where a(t), b(t), and ¢(¢) are smooth, well-
behaved functions in the neighborhood of some point ¢,, and a(t,) # 0. Then
any solution y(f) can be represented by a power series y(t) = L7 a,( — t,)"
that is substituted into the differential equation, and the coefficients a, are
found term by term via a recursion relation.

The second case discussed is where a(t) = (¢ — &) b(t) = (¢ — t)p(t),
and ¢(t) = ¢(t) where p(f) and ¢(t) are smooth well-behaved functions in a
neighborhood of ¢ = ¢,. In this case a solution can be represented by an
infinite series

YO = — t) ) a, t — )"

where the value of 7 is determined by a quadratic equation. This series can
be substituted into the differential equation and the coefficients a,
determined recursively. A second linearly independent solution can be
found, but its series form depends on the nature of the roots of the
quadratic equation.

Many of the special functions of mathematical physics, such as the Bessel
functions or the Legendre polynomials, arise as series solutions of second

~ order differential equations of the type described above. The chapter

concludes with a brief description of some of these functions.

IS MISCELLANEOUS EXERCISES T—

6.1. A solution y(x) of an ordinary differential equation is said to be oscillatory if
it vanishes infinitely often on a half line x, =< x << co. The following comparison
theorem is useful in determining whether solutions are oscillatory.
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Given the two second order linear equations ,
Yy + px)y =0 1)
Y+ qx)y =0 (2)

with g(x) = p(x) for x = x,. If the solutions of (1) are oscillatory, then so are
those of (2), and the zeros of the solutions of (2) are closer together than
those of the solutions of (1).

Use the theorem to study the Airy equation
Y +xy=0, x=1,

and by comparison with equations of the form y” + &’y = 0 show that its solutions

are oscillatory. Furthermore show that:

a) The zeros of its solutions are less than 7 units apart.

b) The distance between successive zeros approaches zero as x approaches co.

¢) There are either 1 or 2 zeros in the interval 1 < x << 4. (A check with tables
shows that Ai(— x) vanishes once and Bi(— x) vanishes twice in the interval.)

6.2. By transforming the Bessel equation to the form

2 _ 1
y”+[1—ax2 4}y=0

(whose solutions are x'/2] (x) and x'*J_,(x) or x'/*Y,(x)), use the comparison theo-
rem above to show that:

a) The Bessel functions are oscillatory.

b) The zeros of J,(x) are separated by more than = units if o® < §.

6.3. Show that x = 0 is a regular singular point of the differential equation
x*y” + (sin x)y’ — (cos x)y = 0,

and that the roots of the indicial equation are r; = 1 and r, = —1. By expanding
sin x and cos x in their Taylor series at x = 0 and by retaining enough terms,
determine the first three nonzero terms of the series solution corresponding to 7,.

6.4. In the previous problem use the method of reduction of order to determine
whether the second solution corresponding to r, = —1 is of logarithmic type or
not.

6.5. Find the series solution of Laguerre’s equation
xy" + (1 —x)y +Ay =0

near the regular singular point x, = 0. Show that the solution reduces to a poly-
nomial L,(x), called a Laguerre polynomial, if A = m, a positive integer. Find L,(x),
Ly(x), and Ls(x).
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6.6. The Fourier-Legendre series expansion of a function flx), —1 < x < 1, is
given by

- 2n +1 [
=Y ab,  a=2E0 [ o P

It will converge to f(x), for instance, for any function f{x) that is continuous and

has a piecewise continuous first derivative.

a) Using the orthogonality relation (see Exercise 16 of Section 6.5) and the fact that
JL P(x)* dx = 2/(2n + 1), obtain the above formula for a,.

b) Show that if f(x) is an even (odd) function, only even (odd) indexed terms will
appear in the series.

c) Use the formula above to compute the first three nonzero terms of the Four-
ier—Legendre series for fix) = [x|, —1 < x < 1. Graph your result.

d) Do the same as in (c) for fix) = ¢, —1 < x < 1.

6.7. Find the solution of the boundary value problem
(1 —x%" —2x+12y=0, 0 =0, yb =4.

6.8. Find the solution of the boundary value problem

2 — (1/4
x 2/)y_

1 T
"y =0, 0) bounded, —|=1.
y +xy + . 3(0) bounde y(2>

6.9. Using (6.5.3), determine for what values of o the boundary value problem

15
Xy — Bxy + (‘Z + x?)y =0, G) =0, am =0,

will have nontrivial solutions or only the zero solution.
6.10. Derive the formula for the Laplace transform of ¢*, where « is not necessarily
an integer:

ey =Tet Do o 1 Re>o.

sa+1
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