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1. Newton’s Method
Problem: Given an equation f(x) = 0, solve for x numerically.
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Problem: Given an equation f(x) = 0, solve for x numerically.
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• Make an initial guess: x0.
Now go up to the curve.

• Draw the tangent line. Its
equation is

y = f(x0) + f ′(x0)(x − x0).

• Let x1 be in x-intercept of
this tangent line.

• This intercept is given by the formula: x1 = x0 − f(x0)
f ′(x0)

.

• Now repeat using x1 as the initial guess.

• The intercept x2 is given by: x2 = x1 − f(x1)
f ′(x1)

.



2. Commentary
The initial guess, x0, was close to the true root. From the picture,
Frame 5, it appears our next estimate x1,

x1 = x0 − f(x0)
f ′(x0)

is a little closer to the unknown root than x0 was.

The next “iterate”, x2, calculated from the formula

x2 = x1 − f(x1)
f ′(x1)

is closer still to the unknown root, see Frame 7.

The process continues: Given that an estimate xn has already been
calculated, the equation of the tangent line is calculated:

y = f(xn) + f ′(xn)(x − xn)



Section 2: Commentary

The x-intercept is then calculated,

f(xn) + f ′(xn)(x − xn) = 0 =⇒ x = xn − f(xn)
f ′(xn)

This intercept is labeled xn+1 and represents our next estimate of the
unknown root.

xn+1 = xn − f(xn)
f ′(xn)

(1)

The initial guess x0, and the Newton Iteration formula, equation (1),
together form an algorithm or a procedure of estimating the value of
the root to the equation f(x) = 0.



3. Examples
Example 3.1. Find the positive root of the equation x2 = 2.

Solution: The function is f(x) = x2 − 2.
Step 1: Compute derivative, f ′(x) = 2x.

Step 2: Construct the iteration formula:

xn+1 = xn − f(xn)
f ′(xn)

= xn − x2
n − 2
2xn

=
x2

n + 2
2xn

Thus, for this problem, the iteration formula is

xn+1 =
x2

n + 2
2xn

This, together with an initial guess of x0 = 1.5 yields the following
calculations.
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Step 3: Construct a table of estimates.

Initial guess of x0 = 1.5 and iteration formula of xn+1 =
x2

n + 2
2xn

.

Newton’s Method
f(x) = x2 − 2, x0 = 1.5

n xn f(xn)
0 1.50000000 0.25000000
1 1.41666667 0.00694445
2 1.41421568 0.00000600
3 1.41421356 0.00000000
4 1.41421356 0.00000000

Thus, the positive root to the equation x2 − 2 = 0 is x ≈ 1.4142135 ,

or, stated differently,
√
2 ≈ 1.4142135 . Example 3.1.
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Example 3.2. Find a solution to the equation x3 = x + 1 that is
near x0 = 1.5.

Solution: The function is f(x) = x3 −x− 1. The function f is always
defined to make the given equation equivalent to an equation of the
form f(x) = 0. (We just take everything on the right-hand side of
the given equation to the left-hand side. The left-hand side is now an
expression defining f(x).

Step 1: Differentiate f ′(x) = 3x2 − 1.
Step 2: Construct the Newton iteration formula:

xn+1 = xn − f(xn)
f ′(xn)

= xn − x3
n − xn − 1
3x2

n − 1
The iteration formula is

xn+1 = xn − x3
n − xn − 1
3x2

n − 1



Section 3: Examples

Step 3: Construct the table of estimates.

Newton’s Method
f(x) = x3 − x − 1, x0 = 1.5

n xn f(xn)
0 1.50000000 0.87500000
1 1.34782608 0.10058217
2 1.32520039 0.00205836
3 1.32471817 0.00000092
4 1.32471795 0.00000000
5 1.32471795 0.00000000

Thus, the solution to the equation x3 = x+1 that is “near” x0 = 1.5
is x ≈ 1.32471795 .

Example 3.2.
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