CHAPTER 18 - JOHANNES KEPLER (1571-1630)
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Out of the night that covers me,
Black as the pit from pole to pole
I thank whatever gods there be
For my unconquerable soul.

—W. E. Henley (in hospital, 1875)

“For there is a musick where ever there is a harmony, order, or proportion: and thus far
we may maintain the musick of the sphears; for those well-ordered mctions and regular
paces, though they give no sound unto the ear, yet to the understanding they strike a

note most full of harmony,”

From Religio Medici
Sir Thomas Browne (1642)
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Kepler, the young German to whom Tycho Brahe
left his tables, was well worthy of this trust. He grew
into one of the greatest scientists of the age—per-
haps equalled in his own time only by Galileo and
later outshone only by Newton. As Sir Oliver Lodge
points out, Tycho and Kepler form a strange con-
trast: Tycho “rich, noble, vigorous, passionate,
strong in mechanical ingenuity and experimental
skill, but not above the average in theoretical power
and mathematical skill’; and Kepler “poor, sickly,
devoid of experimental gifts, and unfitted by nature
for accurate observation, but strong almost beyond
competition in speculative subtlety and innate
mathematical perception.”* Tycho’s work was well
supported by royalty, at one time magnificently en-
dowed; Kepler's material life was largely one of
poverty and misfortune. They had in common a
profound interest in astronomy and a consuming
determination in pursuing that interest.

Kepler was born in Germany, the eldest son of
an army officer. He was a sickly child, delicate and
subject to violent illnesses, and his life was often
despaired of. The parents lost their income and
were reduced to keeping a country tavern. Young
Johannes was taken from school when he was nine
and continued as a servant till he was twelve. Ulti-
mately he returned to school and went on to the
University where he graduated second in his class.
Meanwhile, his father abandoned his home and re-
turned to the army; and his mother quarreled with
her relations, including her son, who was therefore
glad to get away. At first he had no special interest
in astronomy. At the University he heard the Coper-

1 Sir Oliver Lodge, Pioneers of Science.

nican system expounded. He adopted it, defended
it in a college debate, and even wrote an essay on
one aspect of it. Yet his major interests at that time
seem to have been in philosophy and religion, and
he did not think much of astronomy. But then an
astronomical lecturership fell vacant and Kepler,
who was looking for work, was offered it. He ac-
cepted reluctantly, protesting, he said, that he was
not thereby abandoning his claim “to be provided
for in some more brilliant profession.” In those days
astronomy had little of the dignity which Kepler
himself later helped to give it. However, he set to
work to master the science he was to teach; and soon
his learning and thinking led to more thinking and
enjoyment. “He was a born speculator just as Mozart
was a born musician™; and he had to find the mathe-
matical scheme underlying the planetary system. He
had a restless inquisitive mind and was fascinated
by puzzles concerning numbers and size.? Like
Pythagoras, he “was convinced that God created
the world in accordance with the principle of per-

2 Most of us have similar delights, though less intense.
You have probably enjoyed working on series of numbers,
given as a puzzle or an “intelligence test,” trying to continue
the series. Try to continue each of the following. If you

enjoy puzzling over them (as well as succeeding) you are
tasting something of Kepler’s happiness.

(a) 1,8,5,7,9, 11, . . . How does this series probably
go on?

(b) 1, 4,9, 16, 25, . . . ?

(c) 5.6, 7,10, 11, 12, 15, 16, . . . ?

(d) 2,3, 4,6, 8,12, 14,18, . ..?

(e) 4,7,12,19,28,...7
(£) 173655749...°7
(g) 01881102415625...°7

[Note that in (f) and (g) you must also find where to put
the commas.]
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Fic. 18-1a. KepLER’s FIRsT GUESS
A regular plane figure (such as a square) can have a
circle inscribed, to touch its sides. It can also have an
outside circle, through its corners. Then that outside
circle can be the inner circle for another, larger plane
figure. The ratio of radii, R/r, is the same for all
squares; and it has a different fixed value for all tri-
angles. Geometrical puzzle: what is the fixed value of
R/r for the inner and outer circles of a square? What
is the value for a triangle?

(a)

Fic. 18-1b. The same two circles can be generated by

letting the figure (here a triangle) spin around its own

center, in its own plane. Its corners will touch the outer
circle, and its sides envelop the inner one.

(c)

Fic. 18-lc. A series of regular plane figures,
separated by inner and outer circles, provides a series
of circles which might show the proportions of the
planetary orbits. Even the best choice of figures
failed to fit the solar system.

—
)

Fic. 18-1d. KePLER'S SEcoND Gugss
This shows the basis of Kepler’s final scheme. He chose
the order of regular solids Slat gave the best agreement
with the known proportions of planetary orbits.

ASTRONOMY

fect numbers, so that the underlying mathematical
harmony . .. is the real and discoverable cause of
the planetary motions.” Kepler himself said, “I
brooded with the whole energy of my mind on this
subject.”

His mind burned with questions: Why are there
only six planets? Why do their orbits have just the
proportions and sizes they do? Are the times of the
planets’ “years” related to their orbit-sizes? The first
question, “Why just six?” is characteristic of Kepler’s
times—nowadays we should just hunt for a seventh.
But then there was a finality in facts and a magic
in numbers. The Ptolemaic system counted seven
planets (including Sun and Moon, excluding the
Earth) and even had arguments to prove seven
must be right.

Kepler tried again and again to find some simple
relation connecting the radius of one orbit with the
next. Here are rough relative radii from Tycho's
observations, calculated for the Copernican scheme:
8:15:20:30: 115: 195. He tried to guess the secret
in these proportions. Each guess meant a good deal
of work, and each time he found it did not fit the facts
he rejected that guess honestly. His mystical mind
clung to the Greek tradition that circles are perfect;
and at one time he thought he could construct a
model of the orbits thus: draw a circle, inscribe an
equilateral triangle in it, inscribe a circle in that
triangle, then another triangle inside the inner circle,
and so on. This scheme gives successive circles a
definite ratio of radii, 2:1. He hoped the circles
would fit the proportions of the planetary orbits
if he used squares, hexagons, etc., instead of some
of the triangles. No such arrangement fitted. Sud-
denly he cried out, “What have flat patterns to do
with orbits in space? Use solid figures.” He knew
there are only five completely regular crystalline
solid shapes (see Fig. 18-3). Greek mathemati-
cians had proved there cannot be more than five.
If he used these five solids to make the separating
spaces between six spherical bowls, the bowls would
define six orbits. Here was a wonderful reason for
the number six. So he started with a sphere for the
Earth’s orbit, fitted a dodecahedron outside it with
its faces touching the sphere, and another sphere
outside the dodecahedron passing through its cor-
ners to give the orbit of Mars; outside that sphere
he put a tetrahedron, then a sphere for Jupiter, then
a cube, then a sphere for Saturn. Inside the Earth’s
sphere he placed two more solids separated by
spheres, to give the orbits of Venus and Mercury.

38ir William Dampier, History of Science (4th edn.,
Cambridge University Press, 1949).
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THE REGULAR SOLIDS. A geometrical intelligence test

How many different shapes of regular solid are possible?
To find out, follow argument (a); then try (b).

A regular solid is a geometrical solid with identical regular
plane faces; that is, a solid that has:

all its edges the same length

all its face angles the same

all its corners the same

and all its faces the same shape.

(See opposite for shapes that do not Frc. 18-2.

meet the requirements.)
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For example, a cube is a regular

solid.

The faces of a regular solid might be:
all equilateral triangles & @
or all squares Y,
or all regular pentagons é
or...andsoon ... &,

(a) Here is the argument for square
faces. Try to make a corner of a
regular solid by having several corners
of squares meeting there.

We already know that in a cube each
corner has three square faces meeting
there. Take three squares of card-
board and place them on the table
like this, then try to pick up the place
where three corners of squares meet.
The squares will fold to make a cube
corner.

Therefore we can make a regular solid
with three square faces meeting at
each of the solid’s corners. (We need
three more squares to make the rest

= =
of the faces and complete the cube.) -

Could we make another regular solid,
with only one, or two, or four square
faces meeting at a corner?

With one square, we cannot make a
solid corner.

With two squares, we can only make
a flat sandwich.

With three squares, we make a cubical
corner, leading to a cube.

With four squares meeting at a corner,
they make a flat sheet there, and
cannot fold to make a corner for a =
closed solid.

Thus, SQUARES CAN MAKE ONLY ONE KIND OF REGU-
LAR SOLID, A CUBE.

(b) Now try for yourself with regular pentagons, and ask
how many regular solids can be made with such faces.

Then try hexagons, and other polygons.

Then return to triangles and carry out similar arguments
with triangular faces.

THE RESULT: Only FIVE varieties are possible in our
3-dimensional world. (Fig. 18-3)

(NOTE that these arguments need pencil sketches but can
be carried out in your head without cardboard models.)

KEPLER

THE SOLIDS BELOW ARE
NOT REGULAR SOLIDS
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Fic. 18-3.

The five regular solids are drawn after D. Hilbert and
S. Cohn-Vossen in Anschauliche Geometrie (Berlin:

Julius Springer, 1932).

7
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Fic. 18-4. KEPLER'S SCHEME OF REGULAR SoOLIDS,
From m1s Book
The relative sizes of planetary orbits were shown by
bowls separating one solid from the next. The bowls
were not thin shells but were just thick enough to
accommodate the eccentric orbits of the planets.

The relative radii of the spheres, calculated by
geometry, agreed fairly well with the proportions
then known for planetary orbits, and Kepler was
overjoyed. He said: “The intense pleasure I have
received from this discovery can never be told in
words. I regretted no more the time wasted; I tired
of no labor; I shunned no toil of reckoning, days and
nights spent in calculation, until I could see whether
my hypothesis would agree with the orbits of Co-
pernicus, or whether my joy was to vanish into air.”

We now know the scheme was only a chance suc-
cess. In later years, Kepler himself had to juggle the
proportions by thickening up the bowls to fit the
facts; and, when more planets were discovered
centuries after, the scheme was completely broken.*
Yet this “success” sent Kepler on to further, great
discoveries.

He published his discovery in a book, including
an account of all his unsuccessful trials as well as
the successful one. This unusual characteristic ap-
peared in many of his writings. He showed how his
discoveries were made. He had no fear of damaging
his reputation but only wanted to increase human
knowledge, so instead of concealing his mistakes he
gave a full account of them. “For it is my opinion,”

¢ There i a rough empirical rule relating orbit-radii to
each other, called Bode’s Law; but until recently no reason
for it could be found. However, see G. Gamow, 1, 2, 3, . . .
Infinity (New York, Mentor Books, 1953) for a suggested

reasom.
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he said, “that the occasions by which men have ac-
quired a knowledge of celestial phenomena are not
less admirable than the discoveries themselves. . . .
If Christopher Columbus, if Magellan, if the Portu-
guese when they narrate their wanderings, are not
only excused, but if we do not wish these passages
omitted, and should lose much pleasure if they were,
let no one blame me for doing the same.”

The book also contained an admirable defense of
the Copernican system, with good solid reasons in
its favor, Young Kepler sent copies of his book to
Tycho Brahe and Galileo, who praised it as a
courageous beginning. This started Kepler's life-
long friendship with them.® In the same book, he
made the suggestion that each planet may be pushed
along in its orbit by a spoke carrying some influence
from the Sun—a vague and improbable idea that
later helped him discover his second Law.

Kepler was a Protestant, and he found himself
being turned out of his job by Roman Catholic pres-
sure on the administration. Worrying about his
future, and anxious to consult Tycho on planetary
observations, he travelled across Germany to Prague.
Tycho, busy observing Mars, “the difficult planet,”
wrote to him: “Come not as a stranger but as a
friend; come and share in my observations with such
instruments as I have with me.” While the work of
the observatory proceeded, Tycho was turning to
detailed “theory,” schemes to fit his long series of
observations. Kepler was soon set to work on Mars,
working with Tycho to find a circular orbit that
fitted the facts. Sensitive, and sick, Kepler com-
plained that Tycho treated him as a student and
did not share his records freely. Once, driven half
crazy by worry, he wrote Tycho a violent letter full
of quite unjust reproaches, but Tycho merely ar-
gued gently with him. Kepler, repenting, wrote:

“Most Noble Tycho,

How shall I enumerate or rightly estimate your
benefits conferred on me? For two months you have
liberally and gratuitously maintained me, and my
whole family . . . you have done me every possible
kindness; you have communicated to me everything
you hold most dear. . . . I cannot reflect without
consternation that I should have been so given up
by God to my own intemperance as to shut my eyes

5In a later edition, Kepler took special trouble to avoid
any appearance of stealing credit from Galileo. In one of his
rejected theories he assumed a planet between Mars and
Jupiter. Fearing a careless reader might take this to be a
claim anticipating Galileo’s discovery of Jupiter’s moons, he
added a note, saying of his extra planet, “Not circulating
round Jupiter like the Medicaean stars. Be not deceived. 1
never had them in my thoughts.”
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on all these benefits; that, instead of modest and
respectful gratitude, I should indulge for three
weeks in continual moroseness towards all your
family, in headlong passion and the utmost inso-
lence towards yourself. . . . Whatever I have said
or written . . . against your excellency .. .I...
honestly declare and confess to be groundless, false,
and incapable of proof.”

When Kepler ended his visit and returned to
Germany, Tycho again invited him to join him
permanently. Kepler accepted but was delayed by
poverty and sickness, and when he reached Prague
with no money he was entirely dependent on Tycho.
Tycho secured him the position of Imperial Mathe-
matician to assist in the work on the planets.

Tycho died soon after, leaving Kepler to publish
the tables. Though he still held the imperial ap-
pointment, Kepler had difficulty getting his salary
paid and he remained poor, often very poor. At one
time he resorted to publishing a prophesying alma-
nac. The idea was abhorrent to him, but he needed
the money, and he knew that astrology was the
form of astronomy that would pay. For the rest of
his life, over a quarter of a century, he worked on
the planetary motions, determined to extract the
simple secrets he was sure must be there.

The Great Investigation of Mars

When Tycho died, Kepler had already embarked
on his planetary investigations, chiefly studying the
motion of Mars. What scheme would predict Mars’
orbit? Still thinking in terms of circles, Kepler made
the planet’s orbit a circle round the Sun, with the
Sun a short distance off center (like Ptolemy’s ec-
centric Earth). Then he placed an equant point Q
off center on the other side, with a spoke from Q to
swing the planet around at constant speed. He did
not insist, like Ptolemy, on making the eccentric
distances CS and CQ equal, but calculated the best
proportions for them from some of Tycho’s observa-
tions. Then he could imagine the planet moving
around such an orbit and compare other predicted
positions with Tycho’s record. He did not know the
direction of the line SCQ in space, so he had to
make a guess and then try to place a circular orbit
on it to fit the facts. Each trial involved long tedious
calculations, and Kepler went through 70 such trials
before he found a direction and proportions that
fitted a dozen observed longitudes of Mars closely.
He rejoiced at the results, but then to his dismay
the scheme failed badly with Mars’ latitudes. He
shifted his eccentric distances to a compromise value
to fit the latitudes; but, in some parts of the orbit,
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Mars’ position as calculated from his theory dis-
agreed with observation by 8 (8 sixtieths of one
degree). Might not the observations be wrong by
this small amount? Would not “experimental error”
take the blame? No. Kepler knew Tycho, and he
was sure Tycho was never wrong by this amount.
Tycho was dead, but Kepler trusted his record. This
was a great tribute to his friend and a just one.
Faithful to Tycho’s memory, and knowing Tycho’s
methods, Kepler set his belief in Tycho against his
own hopeful theory. He bravely set to work to go
the whole weary way again, saying that upon these
eight minutes he would yet build up a theory of the
universe.

It was now clear that a circular orbit would not
do. Yet to recognize any other shape of orbit he must
obtain an accurate picture of Mars’ real orbit from
the observations—not so easy, since we only ob-
serve the apparent path of Mars from a moving
Earth. The true distances were unknown; only
angles were measured and those gave a foreshort-
ened compound of Mars’ orbital motion and the
Earth’s. So Kepler attacked the Earth’s orbit first,
by a method that had all the marks of genius.

Mapping the Earth’s Orbit in Space and Time

To map the Earth’s orbit around the Sun on a
scale diagram, we need many sets of measurements,
each set giving the Earth’s bearings from two fixed
points. Kepler took the fixed Sun for one of these,
and for the other he took Mars at a series of times
when it was in the same position in its orbit. He
proceeded thus: he marked the “position” of Mars in
the star pattern at one opposition (opposite the Sun,
overhead at midnight). That gave him the direction
of a base line Sun-(Earth)-Mars, SE,M. Then he
turned the pages of Tycho’s records to a time ex-
actly one Martian year later. (That time of Mars’
motion around its orbit was known accurately, from
records over centuries.) Then he knew that Mars
was in the same position, M, so that SM had the
same direction. By now, the Earth had moved on
to E, in its orbit. Tycho’s record of the position of
the Mars in the star-pattern gave him the new
apparent direction of Mars, E,M; and the Sun’s
position gave him the direction E,S. Then he could
calculate the angles of the triangle SE,M from the
record, thus: since he knew the directions E;M and
E,M (marked on the celestial sphere of stars) he
could calculate the angle A between them. Since he
knew the directions E,S and E,S, he could calculate
the angle B, between them. Then on a scale diagram
he could choose two points to represent S and M and
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Fic. 18-5. KerLER's ScHEME To Protr THE EArTH'S ORBIT

locate the Earth’s position, E,, as follows: at the
ends of the fixed baseline SM, draw lines making
angles A and B and mark their intersection E,. One
Martian year later still, he could find the directions
EM and E,S from the records, and mark E, on his
diagram. Thus Kepler could start with the points S
and M and locate E,, E;, E,, . . . enough points to
show the orbit’s shape.

Then, knowing the Earth’s true orbit, he could
invert the investigation and plot the shape of Mars’
orbit. He found he could treat the Earth’s orbit
either as an eccentric circle or as slightly oval; but
Mars’ orbit was far from circular: it was definitely
oval or, as he thought, egg-shaped, but he still
could not find its mathematical form.

Variable Speed of Planets: Law I1

Meanwhile his plot of the Earth’s motion in space
showed him just how the Earth moves unevenly
along its orbit, faster in our winter than in summer.
He sought for a law of uneven speed, to replace the
use of the equant. His early picture of some push-
ing influence from the Sun suggested a law to try.

He believed that motion needed a force to maintain
it, so he pictured a “spoke” from the Sun pushing
each planet along its orbit, a weaker push at greater
distance. He tried (with a confused geometrical
scheme) to add up the effects of such pushes from
an eccentric Sun; and he discovered a simple law:
the spoke from Sun to planet sweeps out equal areas
in equal times. It does not swing around the Sun
with constant speed (as Ptolemy would have liked),
but it does have a constancy in its motion: constant
rate of sweeping out area (which Ptolemy would
probably have accepted). Look at the areas for
equal periods, say a month each. When the planet
is far from the Sun the spoke sweeps out a long thin
triangle in a month; and as the planet approaches
the Sun the triangles grow shorter and fatter—the
planet moves faster. Later on, when Kepler knew
the shape of Mars’ orbit he tried the same rule and
found it true for Mars too. Here he had a simple
law for planetary speeds: each planet moves around
the Sun with such speeds that the radius from Sun
to planet sweeps out equal areas in equal times.
Kepler had only a vague “reason” for it, in terms of
solar influences, perhaps magnetic; but he treasured
it as a true, simple statement, and used it in later
investigations. We treasure it too, and assign a first-
class reason to it. We call it Kepler’s Second Law.
His First Law, discovered soon after, gave the true
shape of planetary orbits.

The Orbit of Mars: Law 1

When he had plotted Mars’ orbit (forty labori-
ously computed points), Kepler tried to describe
its oval shape mathematically. He had endless diffi-
culties—at one time he says he was driven nearly
out of his mind by the frustrating complexity. He
wrote to the Emperor (to encourage finances), in

F1c. 18-6. KeEpLER'S DISCOVERIES FOR MARs
An ellipse with the Sun in one focus fits the orbit of
Mars. The spoke from Sun to Planet sweeps out equal
areas in equal times. The positions marked here show
planet’s positions at equal intervals of time, 1/20 of its
“year” apart. The planet moves with such speeds that
all the sectors marked here—a few of them shaded—
have equal areas.
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Fic. 18-7. A Sorar SysteEM wita Evvipricar ORBITS
ArRoUND A CoMMON SUN
(The planets’ orbits in our own Solar System have much
smaller eccentricities. But some comets move in
elliptical orbits with great eccentricity.}

his grandiose style: “While triumphing over Mars,
and preparing for him, as for one already van-
quished, tabular prisons and equated excentric fet-
ters, it is buzzed here and there that my victory is
vain, and that the war is raging anew. For the
enemy left at home a despised captive has burst all
the chains of the equations, and broken forth from
the prisons of the tables.”

Finally, he found the true orbit sandwiched be-
tween an eccentric circle that was too wide and
an inscribed ellipse that was too narrow. Both dis-
agreed with observation, the circle by +8 at some
places, the inner ellipse by —8’. He suddenly saw
how to compromise half way between the two, and
found that gave him an orbit that is an ellipse with
the Sun in one focus. He was so delighted with his
fina] proof that this would work that he decorated
his diagram with a sketch of victorious Astronomy
(Fig. 18-8). At last he knew the true orbit of Mars.®
A similar rule holds for the Earth and other planets.
This is his First Law.

81t may seem strange that he did not think of an ellipse
earlier. It was a well-known oval, studied by the Greeks as
one of the sections of a cone. But then we know the answer.
Besides, ellipses were not so important then. It was Kepler
who added greatly to their fame. (An ellipse is easy to draw
with a loop of string and two thumb-tacks. If you have never
tried making one for yourself you should do so. This is an
amusing experiment which will show you a property of el-
lipses that is valuable in optics.)

A

Fic. 18-9.
DrawinGg AN Ervrese, with a loop of thread and two nails
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Law I11

Kepler had then extracted two great “laws” from
Tycho's tables, by his fearless thinking and untir-
ing work. He continued to brood on one of his early
questions: what connection is there between the
sizes of the planets’ orbits and the times of their
“years” He now knew the average radii’ of the
orbits; the times of revolution (“years”) had long
been known. (As the Greeks surmised, the planets
with the longest “years” have the largest orbits.)
He felt sure there was some relation between radius
and time. He must have made and tried many a
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Fic. 18-8.

KepPrLER’S TRIUMPHANT DiacraM, FRoM HIS BOOK ON MARs
When he succeeded in proving that an ellipse with the
Sun in one focus could replace an oscillatin% circular
orbit and maintain an “equal area” law, Kepler added
a sketch of Victorious Astronomy, to show his delight

and to emphasize the importance of the proof.

guess, some of them sterile ones like his early
scheme of the five regular solids or wild mystical
ones like his speculation of musical chords for the
planets. Fortunately there is a connection between
radii and times, and Kepler lived to experience the
joy of finding it. He found that the fraction R®/T?
is the same for all the planets, where R is the planet’s
average orbit-radius, and T is the planet's “year,”
measured in our days. See the table.

7 Assuming circular orbits, Copernicus made rough esti-
mates, and Tycho made better ones. Kepler knew these when
he tried his strange scheme of regular solids, and he traded
on their roughness to let his test of that theory seem “suc-

cessful.”
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PLANETARY DATA — TEST OF KEPLER'S THIRD LAW
(These are modern data, more accurate than Kepler’s)

Time of
Radius of revolution R®
planet’s (planet’s T
orbit “year”)
R R® T2 (miles)®
Planet (miles) (days) (miles)? (days)? (days)?
Mercury 3.596 X 107 8797 46.50 X 10 7739.  6.009 X 10®
Venus 6.720 % 107 224.7 303.5 x 10% 50490.  6.011 X 10%®
Earth 9.290 X 107 365.3 801.8 X 10% 133400.  6.010 X 10%®
Mars 1416 X 107 687.0 2839. X 10* 472100.  6.015 X 10
Jupiter 4833 x 107 4332. 112900. X 10* 18770000.  6.015 X 10
Saturn 8861 X 10"  10760. 695700. 10>  115800000.  6.008 XX 10®

4.0000 om

4.0006cum

Fic. 18-10. ELLipsE: THE EARTH’s ORBIT DRAWN TO SCALE

The actual eccentricity of planetary orbits is very small.
The orbits are almost circles, yet Tycho’s observations
enabled Kepler to show that they are not circles but
ellipses. The sketch above shows the Earth’s orbit
drawn to scale. If a 4.0000 centimeter line is used, as
here, to represent the minimum radius, which is really
some 93,000,000 miles, the maximum radius needs a
line 4.0006 centimeters long. The eccentricity of Mars’
orbit is over thirty times as big, but even then the ratio
of radii is only 1.0043 to 1.0000. Mercury is the only
planet with a much greater eccentricity of orbit, with
radii in proportion 1.022 to 1.000. Even this eccen-
tricity of orbit seems small, but it is sufficient to
involve Mercury in such speed changes around the
orbit that Relativity mechanics predicts a very slow
slewing around of the orbit—a precession of only 1/80
of a degree per century, discovered and measured
%:mg before the Relativity prediction!

The test of Kepler's guess is shown in the last columr

Fic. 18-11a. ? RELATIONSHIP BETWEEN
RADIUS anp “YEAR” ror PLANETARY ORBITS ?

(Planetary orbits roughly to scale.)
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Frc. 18-11b. PLANET’s “YEAR”

The planet’s year is the time it takes to go once around

its orbit. This is the time-interval from the moment

when its direction hits some standard mark in the star-

pattern until it returns to the same mark. (The Earth

moves too. An allowance for the Earth’s motion must

be made when extracting the planet’s true year from
observations. )
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Again he was overjoyed at wresting a divine secret
from Nature by brilliant guessing and patient trial.
He said:

“What I prophesied two-and-twenty years ago,
as soon as I discovered the five solids among the
heavenly orbits—what I firmly believed long before
I had seen Ptolemy’s “Harmonies”—what I had
promised my friends in the title of this book, which
I named before I was sure of my discovery—what
sixteen years ago, I urged as a thing to be sought—
that for which I joined Tycho Brahe, for which I
settled in Prague, for which I have devoted the best
part of my life to astronomical contemplations, at
length I have brought to light, and recognized its
truth beyond my most sanguine expectations. It is
not eighteen months since I got the first glimpse of
light, three months since the dawn, very few days
since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me . . . the die
is cast, the book is written, to be read either now
or by posterity, I care not which; it may well wait
a century for a reader, as God has waited six
thousand years for an observer.”

Kepler's Laws

These investigations took years of calculating,
changing, speculating, calculating. . . . Kepler dis-
covered—among other “harmonies” that he valued—
three great laws that are clear and true. Here they
are:

LAWI EACH PLANET MOVES IN AN ELLIPSE WITH
THE SUN IN ONE FOCUS.
LAWII THE RADIUS VECTOR ( LINE JOINING SUN TO

PLANET) SWEEPS OUT EQUAL AREAS IN
EQUAL TIMES.

LAWIII THE SQUARES OF THE TIMES OF REVOLU-
TION (OR YEARS) OF THE PLANETS ARE
PROPORTIONAL TO THE CUBES OF THEIR
AVERACE DISTANCES FROM THE SUN.

(Or R®/T* is the same for all the planets)

Once guessed, the first two laws could be tested
with precision with available data; so Kepler could
make sure he had guessed right. Law III was tested
in its discovery. Only relative values of orbit-radii
were needed.

Kepler had done a great piece of work. He had
discovered the laws that Newton linked with uni-
versal gravitation. Of course that was not what
Kepler thought he was doing. “He was not tediously
searching for empirical rules to be rationalised by
a coming Newton. He was searching for ultimate

causes, the mathematical harmonies in the mind of
the Creator.” He emerged with no general reason
for his ellipses and mathematical relationships; but
he delighted in their truth.

Guessing the Right Law

Guessing the third law was a matter of finding a
numerical relationship which would hold for several
pairs of numbers. An infinite variety of “wrong”
guesses can be made to fit a limited supply of data,
in this case values of T and R for only six planets.
Many such guesses that succeed with six planets
fail when applied to a seventh planet (Uranus, dis-
covered later). Of those that still succeed, many
would fail if tried on an eighth planet (Neptune).
So trials with more and more sets of data can help
to remove “wrong” guesses, leaving the “right” one.
But in what sense is the “right” one right? Some of
us believe there is a really true story behind the
things we see in Nature. Kepler, Galileo, and New-
ton probably thought like that. Others now say
that the right rule is merely (a) the rule that ap-
plies most generally (for example, to the greatest
variety of planets). In this sense Kepler's R3/T?
guess was right because it applies to later-discov-
ered planets and to other systems such as Jupiter’s
moons. His five-regular-solids rule was wrong, be-
cause it did not agree well with data for the original
six planets and failed completely when required to
deal with more than six. And, they say, the right
rule is (b) the rule that fits best into a theoretical
framework which ties together a variety of knowl-
edge of Nature. If that theory has been manufac-
tured just to deal with the problem in hand, then
(b) is nonsense—it would merely say that the rule
is right because it agrees with its own theory con-
structed to agree with it. We call that an ad hoc
theory. If, however, the theory connects the prob-
lem in hand to other natural knowledge, then (b) is
a cogent recommendation. Newton, guessing at uni-
versal gravitation, made a theory that connects fall-
ing bodies and the Moon’s motion and planetary
motion and tides, etc. He showed that Kepler’s Law
III (as well as the other two) was a necessary de-
duction from this theory. Thus Kepler’s R®/T? rule
seems “right” on both scores, (a) and (b), general-
ness and agreement with wide theory. It might have
been a “wrong” guess, waiting like the early “five-
regular-solids” law for more data to refute it and for
theory to fail to “predict™ it.

8 Sir William Dampier, op.cit.

9 Scientists use “predict” in this way, but it is an un-

fortunate choice of word. Here it means “coordinate with
other knowledge.”
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A Fictitious “Kepler Problem”

To see something of the hazards involved in an in-
vestigation like Kepler’s let us trace through a specimen
problem using imaginary data, with a fictitious relation-
ship. Suppose you have invented a planetary puzzle and
know the scheme you have used, but ask me to try to
find the scheme. You present me with the following data.

Data Problem
“Planet” R T What is the “law”
A 1 3 connecting R and T?
B 2 6
C 4 18

You know the scheme, since you have invented it. (It
is not an inverse square law system: the “planets” are
not real ones!) In fact, you got T by squaring R and
adding 2. That is, you chose the relation T = R? + 2
and used it. (Make sure our data fit this formula.)
So if a new planet D is discovered with R = § it will
have T = 52 + 2, or 27. Suppose you give me the data
for A, B, C (holding D up your sleeve). In looking for
a rule, I try to find some algebraic combination of T and
R which will be the same for each of these planets.
Starting with planets A and B, I notice that T/R is 3/1
for A, 6/2 for B, the same for both. Hoping I have
found the right rule (T/R the same for all), I try this
on planet C. For C, T/R is 18/4 and this is not the
same as 3/1. I must therefore reject this simple guess.
In trying other schemes which give the same answer for
planets A and B, I find several more which fail for C.
But presently I find that I get the same answer for
planets A and B if I proceed thus: I divide R into 8 and
add 7 times R and subtract T; that is, I find the value of
8R+ TR —T.

For planet A, 8/1 +7x 1 —3=12;

and for planet B, 8/2 + 7 X 2 — 6 = 12

So the answer is the same, 12, for both A and B. Try-
ing the same rule on planet C,

Thave 8/4 + 7 X 4 — 18 = 12 again.

So I am delighted to find the rule works for C and A
and B. Confident that I have got the right rule, I plan to
publish it, but you then divulge the data for planet D:
R = 5and T = 27. Trying my rule on planet D,

I obtain 8/5 + 7 X 5 — 27 = 9.6.

After asking you whether your data might be wrong
enough to excuse the difference between 9.6 and 12.0, I
start all over again. If I am lucky as well as patient, I may
hit upon a scheme such as this: add 2 to the square of R
and divide by T'. This yields an answer 1.000 for all four
planets, A, B, C, D.2° Therefore it has a better chance of
being the right rule than the others. Tests on more data
would improve its reputation further and if some general
theory could endorse it I might feel sure I had the right
rule. Summing up this investigation in a table, we have

10 There is no special virtue in the answer being 1.000. If
I divide by 5T instead of by T the answers would all be
0.200, but the essential story is unchanged.

ATTEMPTS TO OBTAIN

“PLANET”  DATA CONSTANT NUMBERS

1°t Trial N**Trial Q' Trial
T 8 R +2
R T — —4+TR-T
R R T
A 1 3 3 12 1
B 2 6 3 12 1
C 4 18 4.5 12 1
D 5 27 54 9.6 1
€ 3 11 3.667 12.67 1

Note that at the last moment another “planet” has been
discovered, e, which is so small that it was not noticed
before. It too fits with the final rule (of course it does,
in this game, since you manufactured its data by using
your private knowledge of that rule), and it fails to fit
with the earlier rules. Notice, however, that it nearly
fits with the second rule, giving 12.67 instead of 12.00.
If the data for planet e had been available when I was
working on my second rule, should I not have been
tempted to say “12.67 is near enough; the difference is
due to experimental error”?

Kepler's Writing

Kepler wrote many books and letters setting forth
his discoveries in detail, describing failures as well
as successes. His account of his Laws is immersed
in much mystical writing about other discoveries
and ideas: planetary harmonies, schemes of mag-
netic influence, hints about gravitation, and a con-
tinuing delight in his earliest scheme of the five
regular solids. Remember Kepler did not know the
“right answers.” He had no idea which of his
theories would be validated by later discoveries and
thought. He finally managed to get the Rudolphine
tables printed—paying some of the cost himself,
which he could hardly afford—so that at last really
good astronomical data were available. Among his
own books, he wrote a careful fairly popular book
on general astronomy in which he explained the
Copernican theory and described his own discov-
eries. The book was at once suppressed by the
Church authorities, leaving him all the poorer by
making it hard to get any of his books published
and sold.

Comments on Kepler
“When Kepler directed his mind to the discovery
of a general principle, he . . . never once lost sight

of the explicit object of his search. His imagination,
now unreined, indulged itself in the creation and in-
vention of various hypotheses. The most plausible,
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These data provide a problem somewhat like the one that
faced Kepler when he had planetary orbit data but had not
guessed his third law. There is a fairly simple relationship
between N and v.

Can you find this relationship? Try this, as Kepler would,
with courage and care, without any help from a theory or
a book. If you find the relationship, show how closely the data

ASTRONOMY

fit it. Of course, the original experimenters had an advantage
over you; they knew what relation to try first—but then they
had to do a difficult experiment. In these difficult experi-
ments of counting single atoms as they bounce away from
the gold, you must not expect great accuracy; so, unlike
Kepler's, your constant may wobble by 10% but not in any
particular direction.



