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2 Preliminaries Chap. 0

are two such numbers, we define z, to be equal to z,, and write 2, = z,,
if 21 = z:and y1 = y2. The sum 2; 4 2; is defined to be the complex number

given by
Zitz= (11 + 2500 +¥2).

If z = (z, y), the negative of z, denoted by —z, is defined to be the number
—z = (—z, —y).
The zero complex number, also denoted by 0, is defined by
0 = (0,0).
It is clear from these definitions that
) ata=ata

(i) (m+z)+ta=za+ (22+a2)

(i) 24+40=2

(iv) 24 (-2)=0

for all complex numbers 2, 2y, 2,, 2.
The difference 2; — z, is defined by

z1—2 =2+ (~2),
and we have
== (21— 2 — 1)

The product z;z, is defined by
2122 = (122 — Y12, T1Y2 + Tayy).

This definition appears curious at first, but we shall soon see a justification
for it. It is easy to check that multiplication satisfies

(V) 21z =22
(Vi) (212)z3 = z1(2a23)

for all complex numbers 2y, 2,, z;.
The unit complex number, with respect to multiplication, is the number
(1, 0) for we see that if z = (z, y) is any complex number

2(1,0) = (z,9) (1,0) = (z,y) = 2.
For this reason we denote the number (1,0) by just 1. Then we have

(vii) 21 =2z
for all complex z.

Sec. 2 Preliminaries 3

If z = (z,y) # (0,0) there is a unique complex number w such that
2w =1 (= (1,0)). Indeed, if w = (u, v), where %, v are real, the equation
zw = 1 says that

Tu—~y =1
yu + 2v = 0.
These equations have the unique solution
il -y
d+g T Eyg

provided z* 4 y? 0, which is equivalent to the assumption we made that
z # 0. The number w, such that zw = 1, is called the reciprocal of z, and
we denote it by 21 or 1/2. Thus

U =

z -y
+4F g

1= v, ifz=0.

Then
(viil) 2zt =1, if  z#0.

The quotient 2:/2, is defined when z; 0 by

2 .
2= 2125, if 270,
22
The interaction between addition and multiplication is given by the
rule

(ix) 21(z + %) = 2123 + 212s.

The complex numbers of the form (z, 0) are such that the negative and
reciprocal of any such number have the same form, for

- Aﬂ. Ov = Alﬂn Ov«
(z,0)"' = (2,0), if z#0.
Ko_.mog\n. the sum and product of two such numbers have the same form,
since
(21, 0) + (25,0) = (z1 + 2,0),
(21,0) (22,0) = (2122, 0).

The real numbers are in a one-to-one correspondence with the complex
numbers of this form, the real number z corresponding to the complex
number z = (z,0). Further, as we have just seen, the numbers corre-
sponding to —z, 27, 21 + s, 2yzs are just —z, 27,21 + 25, 2120, if 21 = (2, 0),
% = (3, 0). For this reason it is usual to identify the complex number
(2,0) with the real number z, and we write z = (z,0). [Notice that this
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agrees with our earlier identifications 0 = 0, 0), 1 = (1, 0).] In this
sense, the complex numbers contain the real numbers. The properties
(7)~(iz), which hold for complex numbers, are also valid for real numbers,
and thus we see that we have succeeded in enlarging the set of real numbers
without losing any of these algebraic properties. We have gained something
also, since there are complex numbers z which satisfy the equation

24+1=0.

One such number is the tmaginary unit < = (0,1), as can be easily checked,
and this provides one justification for our definition of multiplication.

If z = (z,y) is a complex number, the real number z is called the real
part of z, and we write Rez = z; whereas y is called the imaginary part
of 2, and we write Im z = y. Thug

z=(z,y) =z(1,0) +%(0,1) =244y = Rez + ¢(Im z).

Hereafter it will be convenient to denote & complex number (z,y) as
z + iy.

It is clear that the complex numbers are in & one-to-one correspondence
with the points of the (z, ¥)-plane, the complex number z = z + 4y corre-
sponding to the point with coordinates (7, y). Then thought of in this way
the z-axis is often called the real azxis, the y-axis is called the tmaginary azis,
and the plane is called the complez plane.

If z = z + 4y, its mirror image in the real axis is the point # — 4y. This
number is called the complex conjugate of z, and is denoted by 2. Thus
2=z —1yifz =z iy Wesee immediately that

Z=z,21tn=2+ memnw =5k 7l = (%),

for any complex numbers 2, 2y, 2.
Introducing polar coordinates (r, 8) in the complex plane via

z=rcost, y=rsing, (r20,0<0<2r),
we see that we may write
z2=z+1y =r(cosf + 4sin ).
The magnitude of z = z + 4y, denoted by |2, is defined to be . Thus
Jol = (@t + g = (2o,

where the positive square root is understood. Clearly |2] = |z|. Suppose
zisreal (thatis, Imz = 0). Then z = z + 40, for some real z, and

2] = ()1,

Sec. 2 Preliminaries $

which is the magnitude of z considered as a real number. In &A.:aou the
magnitude of a complex number obeys the same rules as the magnitude of a
real number, namely:

|z2] =0 ifandonlyif z=0,
|=z| = [z},
|2+ 2| < || + |2,
liza| = |2 |z].

We show that |z, + 2| < |z| + |2, for example. First we note that

Rez < ||
for any complex number z. Then

lat+al* = (@ +2)0&F2) = |2t + |2 + 22 + 22

|21]2 + |2:]? 4+ 2 Re (2:2)
2112 + 2|2 + 2| 22|
la|* + || +2]a]| |2
(al + [2]),

from which it follows that |z + 2| S |z + |z].
From the above rules one can deduce further that

ol =2l Sla+ 2| S |al+|al,

I O

X

| 22|

Geometrically we see that |2; — 2;| represents the distance between the
two points z; and 2; in the complex plane.

21
2

EXERCISES
1. Compute the following complex numbers, and express in the form z + iy,

where z, y are real: ] ]
(8 @—13)+ (—1416) (b) 44 i2) — (6 — 13)

1+14
© 6—iVDE+ i) @
(e {4—15] (f) Re (4 — 15}
® Im (8 + i2)




6 Preliminaries Chap. 0

».annﬂugomo:oiumoon_c_on::sg?s_omo:naASnc+o.amnsamor
rz0and0S0< 2 IR
(8) 14+ 43 M) 1+

o
@ X8 @ @+ -9

1—2

3. Indicate graphically the set of all complex =E.=va.m 2 satisfying:

@) |z=2|=1 ) |z+2]<2
(c) |JRec| S 3 @d|Imz|>1
@ lz—114+]z42| =8 ‘
4. Prove that: :
(8) 2+ 2=2Rez b)z~2=2iImz .. .
() [Rez| S |2| @ lz| S {Rez|+ |Imas}

5. If r is a real number, and 2 aovaaxr show that
Re(rz) =r (Rez), Im (rz) =r (Im2).

6. Prove that
lal—lal s latal.

(Hini: 21 = 21+ &2+ (—25), and 23 = 2; 4 29 + (—21).)
7. Prove that L
[nnt st o1 — 22t = 2|21 [P+ 2 2af},
for all complex 2y, 2. :
jz—a}.

st

8. Ifja] < _.ﬂrpe&Bv_on:um&w: o) S

9. If n is any pogitive integer, prove that ,

™ (cos nd - 1 sin nb) = [r (cos § 44 sin O)*.
(Hint: Use induction.) s Coapt
10. Use the result of Ex.  to find .

(a) two complex numbers satisfying 23 = 2,
(b) three complex numbers satisfyitig #* ='1.

3. Functions

Suppose D is a set whose elements are denoted by P, Q, - - -, which are
called the points of the set. Let R be another set. A function on D to.R is a
law f which associates with each point P in D exactly one point in R, which
we denote by f(P). The set D is called the domain of f. The point f(P)
is called the value of f at P. We can'visualize the concept of a function as

Sec. 3 Preliminaries 7

Figure 1

in Fig. 1, where each P in D is connected to a unique f(P) in R by a string
according to some rule. This rule, or what amounts to the same thing, the
collection of all these strings, is the function fon D to R.

We say that two functions f and g are equal, f = g, if they have the
same domain D, and f(P) = g(P) forall Pin D.

The ides of a function is very general, and is a fundamental one in
mathematics. We shall consider some examples which are of importance
for our study of differential equations.

(a) Complez-valued functions. If the set R which contains the values of
£ is the set of all complex numbers, we say that f is a complex-valued func-
tion. If f and g are two complex-valued functions with the same domain D,
we can define their sum f + g and product fg by

U+9)(P) =f(P) +4¢(P),
(fg9) (P) =f(P)g(P),

for each P in D. Thus f + g and fg are also functions with domain D. If
is any complex number the function which assigns to each Pin a domain D
the number « is called & constant function, and is also denoted-by «. Thus
if f is any complex-valued function on D we have

(af ) (P) = of (P)
for all P in D. ,

A real-valued function f defined on D is one whose values are real num-
bers. Such a function is & special case of a complex-valued function. Clearly
the sum and product of two real-valued functions on D are real-valued
functions. Real-valued functions are usually the principal object of study
in first courses in calculus.

Every complex-valued function f defined on a domain D gives rise to
two real-valued functions Re f, Im f defined by

(Ref)(P) = Re [f(P)]},
(Imf)(P) = Im[f(P)],
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for all P in D. Re f and Im f are called the real and imaginary parts of J
respectively and we have

f=Ref+iImf.

Thus the study of complex-valued functions can be reduced to the study of
pairs of real-valued functions. To obtain examples of complex-valued func-
tions we must specify their domains.

(b) Complez-valued functions with real domains. Many of the functions
we consider in this book have a domain D which is an interval I of the real
axis. Recall that an inferval is a set of real z satisfying one of the nine
inequalities

easz=b asz<h a<z=sbh a<z<h,
632<®, ~0o<r=<h a<z<®, —o<z<b,
—o <zr< ®,

where a, b are distinct real numbers. The calculus of complex-valued fune-
tions defined on real intervals is entirely analogous to the calculus of real-
‘valued functions defined on intervals. We sketch the main ideas.

Suppose f is a complex-valued function defined on a real interval I.
Then f is said to have the complex number L as a limit at 2, in I, and we
write

limf(z) =L, or f(z)>L, (z—m),
)

If(x) = L| -0, as 0< |z —=z|—0.

This means that given any ¢ > 0 there is & 5 > 0 such that
If(z) — L| <e¢, whenever 0 < |z — 2| <85, zinl.

Note that here we are using the magnitude of complex numbers. Formally
our definition is the same as that for real limits of real-valued functions.
Because of this the usual rules for limits, and their proofs, are valid. In
particular, if f and g are complex-valued functions defined on I such that
for some zyin I ,

f#) > L, gz) > M, (z—2),
then

F+9)(x)->L+M, (fo)(z) > LM, (z—z).

Sec. 3 Preliminaries 9

Suppose f has a limit L = L, 4 L, at x,, where L, Ls are real. Then
since
| (Ref) () — Li| = | Re[f(2) — L]| s If(z) — L,
and

|(Imf) (2) = Ly| = | Im[f(z) — L]| = |f(z) — LI,
it follows that
(Ref)(z) = L, (Imf)(x)— L, (z— ).

Conversely, if Re f and Im f have limits L,, L, respectively at xo, then f
will have the limit L = L, 4 L, at x,.

We say that a complex-valued function f defined on an interval I is
continuous at xyin I if f has the limit f(xo) at x, that is,

|7(z) = f(ze)| =0, as 0 < |z— x| —0.

Equivalently, f is continuous at z, if both Re f and Im f are continuous at
7o. We say f is continuous on I if it is continuous at each point of I. The
sum and product of two functions which are continuous at zo are continuous
there.

The complex-valued function f defined on an interval I is said to be
differentiable at x, in I if the ratio

f=@) — f(z0)
T — %
has a limit at zo. If f is differentiable at z, we define its derivative at xq,
J'(20), to be this limit. Thus, if f”(z,) exists,
f(z) = f(=z0)
T — X
An equivalent definition is: f is differentiable at z, if both Ref and Im f
are differentiable at 2. The derivative of f at 2o is given by
J(z)) = (Ref)’ () +i(Im f ) (o).

Using these definitions one can show that the usual rules for differentiating
real-valued functions are valid for complex-valued functions. For example,
if f, g are differentiable at z, in I, then so are f + g and fg, and

(F+9)' (%) =1 (z0) + ¢ (20),
(J9)' (%) = f'(z0)g(20) + f(20)¢’ (20).

If f is differentiable at every z in an interval I, then f gives rise to a new
function f’ on I whose value at each z on I is f' ().

y  (x # m),

— fi(z) |—0, as 0< |z —20]—>0.

T
¥




- Every function J which is continuous on a £ z < b is integrable there.
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A complex-valued function f with domain the interval a S x < b is
said to be integrable there if both Re f and Im f are, and in this case we define

its integral by
b b b
[ 1@ a=[ Ren@az+if (mp)) da

since
Re[#f(x)] S |9f(z)| = |f(2)].
As particular 0»_2528 of complex-valued functions let
f@) =z+ (1 -9z,
g(z) = (1 + )z,

This definition implies the usual integration rules. In particular, if f and

g are integrableon a 5 z < b, and a, 8 are two complex numbers, for all real z. Then

(Re f)(z) =z + 2, (Imf)(z) = —2°,
(f+9)(2) =z + 222,
(Jo) () = (1 +9)2* + 224,
f(z) =14+ (2 - 20)z,

~

[ @+o@a=af s a+6[ o o

An important inequality connected with the integral of a continuous
complex-valued function f definedonae S z S bis

[ 1 de| s ['1 1) 1o

\..JE %u\..na%+ 1 -1 \o_m&uml

e .

This inequality is valid if f is real-valued, and the proof for the case when ,
J is complex-valued can be based on this fact. Let (c) Complex-valued functions with complex domains. We shall need to
know a little about complex-valued functions whose domains consist of

complex numbers. An example is the function f given by
J (2) = 2",

for all complex 2, where 7 is a positive integer.
Let f be a complex-valued function which is defined on some disk

F = \a» f(x) dz.

If F = 0 the inequality is obvious. If F » 0, let
Fe=|Flu, u=cosf+ising, (0=56<2r).

Then u@ = 1, and we have
D: |z—a] <r

\., f(z) %_ ua\.,zs dz - ?T\._.EV i

with center at the complex number a and radius » > 0. Much of the caleulus
for such functions can be patterned directly after the calculus of complex-
valued functions defined on a real interval I. We say that f has the com-

] . 4
= T3 d &ﬂ-
.,\M Be [4(z) ] d= = .\.. /@) | plex number L as a limit at 2oin D if

*By
, \._23_%

is meant the integral of the function | f | given by | f [(z) = |f(z)|fora £ = S b. Thus
& more appropriate notation would be

[7(z) = L| =0, as 0< |z—2|—0,
and we write

limf(z) = L, or f(2) > L, (z—z).

hn'.o

b
\. I/ 1(z)ds. If f and g are two complex-valued functions defined on D such that for som

20in D »
f(z) > L, gz M, (z—2),

We shall use the former notation since it is commonly used, and there will be no chance
of confusion.
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then
G+ @) =L+ M (fg)(z) > LM, (z— z). ’

The proofs are identical to those for functions defined on real intervais.
The function f, defined on the disk D, is mEa to be continuous at z,
inDif

[J(2) — f(z0) | >0, a8 0 <|z—2z[—0.

It is said to be continuous on D if it is continuous at each point of D. The
sum and E.&:S of two functions which are continuous at z, are continuous
there. Examples of continuous functions on the whole complex plane are

J@) =z, g@) =2

Let g be defined on some disk D, containing z,, and let its values be in
some disk D, where a function f is defined. If ¢ is continuous at z,, and S
is continuous at g(ze), then “the function of a function” F given by

F(z) =fg(z)), (¢ in Dy, . (3.1)

is continuous at zo. The proof follows the same lines asin ov_ncEn for real-
valued functions %nu& for real z.

If f is defined on a disk D aoueEuEm 2o we say that f is differentiable
at 2z if

J(z) — f(20)
2~ 2
has a limit at 2. If f is differentiable at z, its derivative at zo, f'(2,), is defined
to be this limit. Thus
f(2) — f(z0)
, z2~-=2
Formally our %@53; is the same as Epn mon the %_5693 & p aoBEou.
valued function defined on a real interval. For this reason if f and g are

functions which have %n<.§<8 at 2o in D then \ + 9 .? have derivatives
there, and

’ AN > uev-

l\@&, =0, 880<[z-2|=0.

5+ s (z) = % F.v + \F?

(fo) (20) = f'(20)g(20) + f(20)g'(20).

Also, suppose f and g are two functions as given in (3.1), and that g is
differentiable at 2o, whereas f is differentiable st-g(zs). Then 7 is &munﬁ.
tiable at zo, with

(3.2)

Fi(ea). = '@(z0))¢ (20).

Sec. 3 Preliminaries 13

It is clear from the definition of a derivative that the function ¢ defined
by ¢(z) = ¢, where ¢ is a complex constant, has a derivative which is zero
everywhere, that is, ¢/(z) = 0. Also, if p1(2) = z for all 2, then p{(z) = 1.
Combining these results with the rules (3.2) we obtain the fact that every
polynomial has a derivative for all z. A polynomial is a function p whose
domain is the set of all complex numbers and which has the form

p(2) = a® + 2" + - ++ + ausZ + Gu
where ao, @y, * -+, a, are complex constants. The rules (3.2) imply that for
suchap
P (2) =amz"' + ai(n — 1)z" 2 + o0 + @y,
Thus p’ is also a polynomial.
It is a rather strong restriction on a function defined on a disk D ¢

demand that it be differentiable at a point 2, in D. To illustrate this we not
that the real-valued function f given by

f(z) = ||,

for all real z, is differentiable at all z » 0. Indeed f(z) is +1 or —1 accor
ing a8 z is positive or negative. However the continuous complex-valu
function ¢ given by

g(z) = _u_~

for all complex z, is not differentiable for any z. Suppose z, = 2o+ S.a 1
for example, and let z = x - yi. Then for z # 2,

(22 + 49" = (a3 + )

2] =] 2]

., u -2 (z — x) + i(y ~ %)

_ @+ — @+ )
[ =2 +ily — o) (2 + )" + (&} + y3) ]

I we et |2 — 25} — 0 using z of the form z = z, + yi (that is y —
" we see that

,__N_,.:___ s ,‘
2= i@+ (
whereas if we let |z — 2| — 0 using z of the form z ='z + ya (th:
z — xy) we obtain
[zl = %] To

— - {

s~z (=3 +.yde
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The two limits (3.3) and (3.4) are different. However, in order that g be
differentiable at z, we must obtain the same limit no matter how
|2 — 2] — 0. This shows that g is not differentiable at z,.

(d) Other functions. Other types of functions which are important for
our study of differential equations are usually combinations of the types
discussed in (b), (¢) above. Typical is a complex-valued function f which
is defined for real z on some interval |z — x| < a (z real, a > 0), and for
complex z on some disk |z — 2| < b (20 complex, b > 0). Thus the do-
main D of f is given by

v

D: |z—m| e |z—a]lsh,

and the value of f at (z, z) is denoted by f(z, z). Such a function f is said to
be ¢ontinuous at (¢, 9) in D if

|f(z,2) — f(£,m)| >0, as 0< |z—¢| + |z —19]—0.

There are two important facts which we shall need in Chap. 5 concern-
ing such continuous functions. The first is that a continuous f on the D
given above (with the equality signs included) is bounded, that is, there is a
positive constant M such that

[f(z,2)| = M,

for all (z,2) in D. This result is usually proved in advanced calculus

¢

courses. The second result relates to “plugging in”’ a complex-valued func-
tion ¢ into f. Suppose ¢ is a complex-valued function defined on

_Ql&o_ MQ.

which is continuous there, and has values in |z — 20| < b. Then if f is
continuous on D, the function F given by

F(z) = f(z, ¢(2)),
for all z such that |z — 24| < g, is continuous for such z.

A slightly more complicated type of complex-valued function f is one
which is defined for real z and complex 2y, « +«, 2, on a domain

D: _&l.ec_ =a, _n—lns_ + eee 4+ _ualnao_ = b

Here 2o is real, 2y, - - +, zn0 are complex, and @, b are positive. The value of
fatz z, « - -, 2, is denoted by f(z, 21, + * », 2»). Continuity of f is defined just

Sec. 3 Preliminaries 15
as in the case of one z. Thus f is continuous at £, g, =+, 9. in D if

_.\-A&&N—. ..J&:v |\.Am~d¢ ...»d:v_ lO..

OA—&llm_l*l*N»ldu_+-..+_N=|8=_|vo.

Such an f is bounded on D, and if ¢y, *++, ¢» are n continuous complex-
valued functions defined on |z — 2| < a, having the property that

_.?A&V - NS_ + .o+ _ﬁaﬁav - nae_ =b
for all such z, then the function F given by
F(z) = f(z, $1(2), ** -, ¢a(2))

for |z — 2| < a is continuous there.

EXERCISES

1. Leta =2+ 143,b =1~ ¢ If forall real x
fz) = az + (bz)’,

compute:
@ (Ref)() (b) (Im (@)
1
© @ @ [ @ s
1]
2. If for all real 2
2
f& =+t g@) =7,

compute:
(a) The function F given by F(z) = f(g(x)) (b) F'(z)

3. If e is a real-valued function defined on an interval I, and f is a complex-
valued function defined there, show that

Re (af) = aRe f), Im (ef) = a(Im f).
4. Let f(z) =22 for all complex 2, and let
uz,y) = (Re iz + i), vz, y) = Am iz + @)
() Compute u(z, y) and v(z, y).
du v Ou _ v

(b) Show that %% oy P
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(¢) Show that
u o v
Wi wty”

5. Let f be a complex-valued function defined on a disk

0.

D: |z <r (r>0),
which is differentiable there. Let
uz,y) = Re Nz +1y), o(z,9) = (Im Nz + iy).
Show that
du v ou dv

|..|| ....ull. *
9z dy' Iy ax’ ®)
forallz =z + dyin D. (Hint: If 20 = 2o+ iyoisin D,let 0 < |2 — 20| — 0,

in the definition of f'(zo), through z of the form z = z + tyo, and then of the
form z = zg 4 iy, to obtain

a3
fe) = m? )+ § ootan,

= .MI“?: Yo) — s.wlmﬁs Yo).
The equations (*) are called the Cauchy-Riemann equations.)
6. Let f be the complex-valued function defined on
D: jz|s1l, |z]=2,
(x real, z complex) by
Sz, 2) = 32+ 2z + 22,
and let ¢ be the function defined on |z | < 1 by
¢(z) = =+ 1.
(a) Compute the function ¥ given by
F@) = f@,¢@), (=z|s 1.

(b) Compute F'(z).
(c) Compute

\._ F(z) dz.
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7. If r is a complex number, and
p@) = (z— ),
where 7 is a positive integer, show that

p) = p'lr) = «o0 = p V() =0, p() = nl.

4. Polynomials

We have defined a polynomial as a complex-valued function p whose
domain is the set of all complex numbers and which has the form

p(@) =a@” +az"t + oo 0 + @uyz + an,

where 7 is a non-negative integer, and ao, a; - - +, a, are complex constants.
The highest power of z with non-zero coefficient which appears in the
expression defining a polynomial p is called the degree of p, and written
deg p. A root of a polynomial p is a complex number r such that p(r) = 0.
A root of p is sometimes called a zero of p. We shall require, and assume, the
following important result.*

Fundamental theorem of algebra. If p is a polynomial such that
deg p = 1, then p has at least one root.

This is a rather remarkable result, and justifies our introduction of the
complex numbers. We have seen that not every polynomial with real
coefficients (for example z* + 1) has a real root, but polynomials of degree
greater than zero with complex coefficients always have a complex root.
The remarkable fact is that we do not need to invent new numbers, which
include the complex numbers, to guarantee a complex root.’

We derive some consequences of this fundamental theorem.

Corollary 1. Let p be a polynomial of degree n = 1, with leading coeffi-
cient 1 (the coefficient of z*), and let r be a root of p. Then

p(z) = (z — r)q(2)
where q 18 a polynomia! of degree n — 1, with leading coefficient 1.
Proof. Let p(z) have the form
p(2) = 2" +ag™ '+ +++ + ansz +
* A proof can be found in G. Birkhoff and 8. MacLane, A survey of modern algebra,

New York, rev. ed., 1953, p. 107, and also in K. Knopp, Theory of functions, New York,
1945, p. 114,
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and let ¢ be any complex number. Then

p(2) = ple) = (@ —c) + (e =) + o0 +aaa(z—0)
= (z — ¢)q(2), g
where ¢ is the polynomial given by
qgiz) =214 ezt t A eee ot
-1 -l SRR ' I SEETIE F S

Clearly deg ¢ = n — 1 and ¢ has leading coefficient 1. In particular if
¢ = r, a root of p, then we have

o p(z) = (z = 1)a2),
as desired.

Ifn — 1 2 1, the polynomial ¢ has a root, and this root is also a root of
p by Corollary 1. Thus applying the Fundamental Theorem of Algebru
n times, together with Corollary 1, we obtain ,

Corollary 2. If p is a polynomial, deg p = n 2 1, with leading coeffi-
cient a9 7~ 0, then p has exactly n roots. If 1y, ra, « + +, T are these roots, then

P(2) = ag(z — 1) (2 = 13) oo (2 = 14). (4.1)

Note that a3'p is a polynomial which has leading coefficient 1. We re-
mark that the roots need not all be distinet. If » is & root of p, the number
of times z — r appears as a factor in (4.1) is called the multiplicity of r.

Theorem 1. If r is a root of multiplicity m of a polynomial p,deg p = 1,
then ,
p(r) =p'(r) = +oo = p™V(r) =0,
and )
ﬁ....v (r) #0.

Proof. Let p have leading coefficient ag » 0, and degree n 2= m. It
follows from Corollary 2 that

p(2) = auz - r)q(), (42)

where ¢ is & polynomial of degree n — m, and ¢(r) # 0. Clearly p(r) =0
by the definition of a root. Alsp

7(2) = am(e — 1)™1g(z) + aals = )"¢(5),
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and this implies that,if m — 1 > 0, p’(r) = 0.If m = 1 we have
P (@) = ag(2) + an(z — )¢ (2), .

and thus p’(r) = awg(r) #= 0.
The general argument can be based on (4.2) and the formula

k(k —
()@ = 09 + kpevg + B D pungr 1t g (43)

for the k-th derivative of the product fg of two functions rm&:m k deriva-
tives. Formula (4.3) can be established by induction. Applying (4.3) to
the functions f(2) = (2 — )™, g(2) = ¢(2) in (4.2), we obtain

pW(2) = alfm(m — 1) <o+ (m ~ k + 1) (z — r)»*g(z)
+ (terms with higher powers of (z — r) as a factor)].
It is now clear that

p(r) =p'(r) = +++ = p=-V(r) =0,
and
p™(r) = agm!q(r) # 0,

which is the desired result.

EXERCISES

1. Compute the roots, with multiplicities, of the following polynomials:
(@) 24+:—6 b) 24241
(c) #— 32+ 4 @~ Q2+d24+ 1+ i2z—4
(e) £—3

2. If rissuch that v = 1,and r » 1, prove that 1 + r 4 12 = (.
3. Let p be the polynomial given by
p(e) = a” -+ aw*t + - 4 an,
with ao, a3, *++, aa all real. Show that
2@ = p(@).
buwEﬁgﬁuro#agm?.muouooeo*v.ggaowm.

4. Prove that every polynomial of degree 3 with real coefficients has at least
one real root.
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Hence . .
cos 8 + i sin 0 ~+&+,A.W_H+A|Nv|.+:.

]

IG?.S.I...
Wm o = e

A consequence of (5.8) is that

£ =cosf — ising, (5.9)
since cos (—0) = cos 6, and sin (—f) = — sin 6. Using (5.8) and (5.9)
we can solve for cos § and sin 6, obtaining
@ @
cos Q e QllWhl ,
T R—
sin § = Wt'MlI .
2

If z is a complex number with polar coordinates (r, 6) , then
2z = r(cos @ + ¢sin 6), (r=z0,0=s06<2r),
and we have, using (5.8),
z = re¥, (5.10)

Note that |z| =r, [e?| = 1 for every real 6. The relation (5.10) can be
employed to find the roots of polynomials p of the form

p(2) =2"—¢, (5.11)

where c is a complex constant. Suppose ¢ = |c|eis, where aisreal, 0 < a <
2x, and re? is a root. Then

e = |c|ete,
and taking magnitudes of both sides we see that
= |cf, or r=|c|tm
where the positive n-th root is understood. Further

e™ = ¢gla, or oin—a) = ],
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There are exactly n distinct values of 0 satisfying this relation and 0 5 6 <
2x, namely, those for which
nd — a = 2xk,
or
_a+ 2xk

'] , (k=0,1,+++,n —1).
n

Thus the roots 2y, « + +, 2, of the polynomial p in (5.11) are given by

1 = _ ¢ _:.-Q-.QI.»HS\:

= _a_:.._”ocmAmi.*s.'wlawv+ s.mmzAnl.Tlm“wv“_. (k=0,1,++,n —1).

Zh4

n n

Geometrically we can describe the roots of p as follows. All roots lie on a
circle about the origin with radius |c¢|¥". One root has an angle a/n with
the real axis, if ¢ has angle  with the real axis. The remainder of the roots
are located by cutting the circle into n even parts, with the first cut being
at the root at angle a/n.

As a particular example let us find the three cube roots of 4¢. Thus we
want the roots of 22 — 4¢. Here ¢ = 47, and hence the cube roots will all
have a magnitude of |4¢|¥3 = 43, If we write ¢ = |c|es, we see that
a = x/2 in this case. Thus the three cube roots of 47 are given by

z = QIS gy = 4UgRriS g = 4iigde

Imaginary
axis

Real
4 axis

Figure 2. Three cube roots of 4¢
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or since x/6 represents 30°,
V3 ¢ 3 4
= 417{ = b = AU . -2 -
2 A 2 + mv, zn =4 2 + wv.
zs = — 4%,

These roots are sketched in Fig. 2.

EXERCISES
1. Find the three cube roots of 1.
2. Find the two square _.omﬁ of . '
3. Find all roots of the uo_v.uoimm._m" ,
?Vv..+§_ , (b) #+ 64
© #+ 42+ 4 ‘ @ -1

4. If z = z 4 iy, where z, y are real, show that | ¢*| = ¢*. As a consequende
show that thete is no complex 2 such that ¢ = 0. e

8. If a, b, 2 are real show that:

(8) Re [¢/et®*] = ¢ cos bz (b) Im [efot®2] == g8* gin by

6. (a) If r'= g - ¢b < 0, where a, b are real, show that (¢'%)’ = re™=.
(b) Using (a) compute:

@) \.._,a&
(i) \,_%sas%

1
i) | o s bo da

7. (8) If ¢(x) = e, where r is 8 comnlex o,SuS_ne. and z is real, show that
¢'(z) — rd(z) = 0. o . '
. (b) If ¢(z) = %%, where g is a real constant, show that:

(@) ¢'(x) — iag(z) =0 ‘

(i) ¢"@)+ a%(z) =0
u.awmw. what values of ss constant r will the function ¢ given by ¢(z) = ¢*
o . .

¢"(z) + 3¢'(x) — =

for all real z? &@ us‘ﬁa.v ,.o
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9. Let a; = k! + (i/kl). For what real z are the following series convergent?

@ > e o) ® 3 (m aet
k=0 k=0
(c) MU a.s.,
0
10. Consider the series
Fa ®
=0
where 2 is complex.
(a) Show that the partial sum
n 1— N.l.n
tale) = D 2% = ,
o 1—2z

ifz 1. ,
(b) Show that the series (*) converges absolutely for 2] < 1.
(¢) Compute the sum s(z) of the series A.J for|z2| < L.

6. Determinants

We shall need to know the connection between determinants and the
solution of systems of linear equations. Suppose we have such a system of n

equations
Guti + a2 + o0 TGz = 0

anZ1 -+ GnZs + <0 + GaZa = 0 - (6.1)

A1 + Gn2s + **° + GanZa = Cn,

where the ay; and ¢; are given complex constants. The problem is to find
complex numbers 2, +++, z. satisfying these equations. Such a set of n
numbers is called a solution of (6.1). We say that two solutions z;, * =+, 2»
and z), +++, 2. of (6.1) are equal if 21 = 2;, * =+, 20 = Z.Ifep=cp= oo =
¢ = 0 we say that the system is a homogeneous system of n linear equations,
otherwise we say (6.1) is a non-homogeneous system. The determinant A
of the coefficients in (6.1) is denoted by

Gy G °*°* O

G @“ see ?
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5. Prove that if p is & polynomial, deg p = 1, and r is a complex number such
that

pir) =p'(r) = +=c = p™V(r) =0, p™i() =0,
then r is a root of p with multiplicity m. This is the converse of Theorem 1.
6. ?V Use the result of Ex. m to-show that i is a root of the polynomial

given by
Pe) =&+ (2— 3)A 4 (=1 — 6))2+ (—6— 502+ (—6+ 2)z + 2i,
and compute the multiplicity of i.

(b) Find the other roots of the polynomial p in (a).
7. Prove the formula (4.3). This can be written in the form

0@ = g+ o0y + ({) re-og
4 eee 4 AWV\ATGQAG + oo .\\s

3 M
AT Y|

is & binomial coefficient. Hint: Use induetion, and show that
k4 _v A k v va
A 1 -1 + \i/’

5. de!u_an series -E_ the exponential function

where

Huswaw_ u:Bvﬂ. Ei:mﬁ.avwma».o:gu%:_.p:omsaavg.a.o
number e¢* exists, and :

=35 @@=,

where the series converges for all real z. Indeed, this series may ‘be taken
a8 the definition of ¢=. We shall need to know what e* is ..o_. 831«3 2. Ouo

way is to define e* by
e )

SR

Now we have to prove that this series converges for all complex 2, and in
fact there is the problem of aomssm what we mean by a convergent series
with complex terms. The method is the same as that used 8 a&bo con-
vergent series with real terms.

Sec. § Preliminaries ; 21

A series
M Cx, (6.2)
L]
where all ¢; are complex numbers, is said to be convergent if the sequence of
partial sums
?IMQ! ASIO_M.N.:-V.
fromry

tends to a limit 8, as n — «. That is, s is a complex number such that
|sa — 8| =0, (n— ),

where the magnitude is the magnitude for complex numbers. If the series
(5.2) is convergent, and s, — s, we call 8 the sum of the series, and write

.u - Mnr..

If the series is not convergent we say that it is m.&é«i
The series (5.2) with complex terms ¢, gives rise 8 two series in.
real terms, namely

MU Re cs, M“ Im a, ?.8
=0 e

and it is not difficult to see that the series (5.2) is convergent with sum

8 = Res + ¢Im s if, and only if, the two real series in (5.3) are ¢pn-

vergent with sums wonnbm Im s respectively. In principle, Eﬂ&o_d. ,Fm

study of series with complex terms is the study of pairs of real series. ,,
The series (5.2) is said to be absolutely convergent if the series

,,M,_e_ | (54)

is convergent. It can be shown that every absolutely convergent series is
convergent. Since the series (5.4) has terms which are real and non-negative,
any condition which _Bv—su the convergence of such series can be applied
to guarantee the convergenoe of the series (5.2). One of the most important
tests for §<§859o3§§ One <ma_on°:rﬁs the following.

anog QSS.&ZERJ&
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where the cy are complez. If |ci| > 0 for all k beyond a certain positive
tnleger, and

—L (k> =), (5.5)

then the series t8 convergent if L < 1, and divergent for L > 1.

Thus the series (5.2) is convergent if (5.5) is valid foran L < 1.
An immediate application of this result is to the series

2
=43
Here ¢; = 2*/k! and ,
alil 1) I £2 BN
+D 2 k41

_a.t_u
| a |

0, (k- =).

Thus this series converges for every z such that |z| < o, that is, for all
complex 2. Hence our definition (5.1) of e* as the sum of this series makes
sense. The function which associates with each z the complex number e*
is called the exponential function.

The series defining e* is an example of a power series

M a(z — 2)* (5.6)

about some point 2y, the a, being complex. Many of the properties of a
power series of the type

3 aiz — o),
=0

where the ax, 2, 2o are real, remain true for series of the form (5.6), and
the proofs are identical. In particular, if a series (5.6) is convergent on a
disk D:|z —~ 29| < r (r > 0), then the function f defined by

/@) = Sa -2 (zinD),
=0

__szmamﬁn?ommbb.gn?ﬁagwgooBvcsmv%&ma__gawngSnE
by term. Thus . ,

@) = 3 ka(z — 2 = 3 kaz — ),
f ] | ]
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where the last series converges in D. Applying this result to (5.1) we find
that
P z+1 Pl
' = —_ = —_— — = @b,
() Mw & k=D Sk
Another important property of the exponential function is that
enrtss = ghiets AQ.NV

for every complex 2;, z;. This can be proved by justifying the following
steps
o, 2} 25
wo = (ERNED - S
B\ k! =

s
k. n—..

Here
2

%= & - ninl

1
= (21 + 22~

Thus formally we have the product of the series defining e and et is Ee
series defining e*r**, and these steps can be justified to give a proof of the
equality (5.7). A consequence of (5.7) is that

Aauva = ens

for every integer n. In particular 1/e* = e,
Another property of the exponential function is that for all real 8,

e? = cos® + tsin 6, (5.8)
and the proof results from adding the series involved. Indeed, ¢* = I_,.
# = —i, ¢t = 1, ete., and thus , ;

A
cosf =1~ + 5= e

(10)* | (i8)*
) =14+ 21 + 41 + eery
%Q"Ql,%lTMl....
@, @

m&nmn&+.lw_|+ B!
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and is shorthand for the number A given by

A= 3 (£)010,014y ** Gugy,

where the sum is over all indices ¢, « « «, ta such that ), - -+, ¢, is 8 permuta-~
tion of 1, ««-, n and each term occurs with a + or — sign according as }
f1, *+*, 1 i3 an even or odd permutation of 1, « ++, n. Thus L

G111 Gn
=010 — G1aln,
an On
and
G G O
= (110003 — GuGnds + Gialandy
an On On
= Gu0103 + GulnGa — GG,
Gn G G

The principal results we require concerning determinants are contained in
the following theorems. They are usually proved in elementary texts on
linear algebra.

~ Theorem 2. If the determinant A of the coefficients in (6.1) s not gero
there 13 a unique solution of the system for 2y, + ++, 2. It 18 given by

Ay
= —,

A Awlu.....av.

where Ay is the determinant oblained from A by replacing its kth column
”:.....P:.,G%c—-....ov. '

Proof for the case n = 2. In this case suppose z,, 2, satisfly

auz1 + a2 = ¢
(6.2)
anZ1 + anes = 0.

Multiply the first equation by ax, the second equation by —~ay, and add.
There results

€1 On

£1A = Guc, — anty = = A

Gy On
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Multiply the first equation by —ax, and the second by ay, and add, ob-

taining
an €

71A = —ant + aues = = A

G O

Thus if A » 0, 2z, must be Ay/A (k = 1,2), and it is readily verified that

these values satisfy (6.2). .
We note that for a homogeneous system (¢, = & = *** = Ca =0 in
(6.1)) there is always the solution

N—l”“... “nnﬂuon

This solution is called the irivial solution.

Theorem 3. If ¢, = ¢3 = ++- = ¢, = 0 in (6.1), and the determinant
of the coefficients A = 0, there is @ solution of (6.1) such that not all the g, are 0.

Proof for the case n = 2. We are dealing with the case
anz + auzs =0

anz + 6oz = 0,
where
81,013 — anan = 0.
If an >~ O-
—0O1s

n=— zm=1,
an

is a solution. If ay = 0, and an # 0,

—an
" MTh

is a solution. If ay = 0, and an = 0,
5 = u- 5 = O.

is a solution. ]
Combining Theorem 3 with Theorem 2 we obtain

Theorem 4. The system of equations (6.1) has a unique solution if, and
only if, the determinant A of the coefficients 18 not zero.

Proof. If A # 0 Theorem 2 says that there is a unique solution. Con-
versely, suppose there is a unique solution 2y, ***, 2 of (61).1f A =0, by
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and is shorthand for the number A given by

A = T (£)a14014 *+* Gusy,

Avgevoucn;mo@aw:mb&oﬁ?....szorevw::....m-mmwvmgzs..
tion of 1, ---, n and each term occurs with a + or — sign according as

%1, **+, ia is an even or odd permutation of 1, -+ +, n. Thus

G Oy
=010 — G12Cs,
G31 Gy
and
311 Qi3 O3 :
= G100 — G1Guds + G10nay
an G G
= 012105 + GuluGy — G1GnGy.
331 G2 Gy

The E.Fom.vu_ results we require concerning determinants are contained in
».ro following theorems. They are usually proved in elementary texts on
linear algebra.

.—.—..3-.2:.». If the determinant A of the coefficients in (6.1) s not zero
there 18 a unique solution of the system for 2y, « - +, z,. It {8 given by

A
N'-ID- AN&!#-...~=V~.

where Ay {8 the determinant oblained from A by replacing its kth column
”—Dv ] p‘.ﬁv% Ou- ey Cn.

Proof for the case n = 2. In this case suppose z,, z; satisfy

Gu21 + G132y = ¢
6.2
an2) + anty = 0. 632)

Multiply the first equation by an, the second equation by —au, and add,
There results

61 Oy

2)A = GuC — Guty = = A

Cx On
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Multiply the first equation by —on, and the second by a,;, and add, ob-

taining
an O

2:A = —anc1 + Gutr = = Ay

Gn C3

Thus if A 0, z; must be A,/A (k = 1,2), and it is readily verified that

these values satisfy (6.2).
We note that for a homogeneous system (¢, = ¢; = +++ = ¢a =0 in

(6.1)) there is always the solution
o =23 = °°° uNlnucn
This solution is called the érivial solution.

Theorem 3. If ¢y =¢; = =+ = ¢, =0 in (6.1), and the determinant
of the coefficients A = 0, there is a solution of (6.1) such that not all the zx are 0.

Proof for the case n = 2. We are dealing with the case
anz; + auzs =0

a2 + Gnza = 0,

where
anaxn — ana;s = 0.
If any # O‘

is a solution. If an = 0, and an # 0,

5= Hhu. 7 =1,
Gn
is a solution. If ay = 0, and an = 0,
=1, 2 =0,

is a solution.
Combining Theorem 3 with Theorem 2 we obtain

Theorem 4. The sysiem of equations (6.1) has a unique solution v, and
only if, the determinant A of the coefficients 18 not zero.

Proof. If A # 0 Theorem 2 says that there is a unique solution. Con-
versely, suppose there is 8 unique solution 2, <<+, 2 of (6.1).If A =0, by
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Theorem 3 there is a solution ¢
e . 1, ***, {» of the corresponding hom .
system, which is not the trivial solution. Then it-is %NS o&MomeMN“M ”
21+ 8y 00,20 + £a I8 8 solution of (6.1) distinet from 2y, e+, 2, and "
) #ny

forces us to conclude that A » 0.

EXERCISES
1. Consider the system of equations
inta=144¢
21+ 2—1z=1

{(a) Compute the determinant of the coefficients.
(b) Solve the system for z; and 2.

2. Bolve the following system for zy, 23 and z;:
3+t 22— 23=0

22 - =1

23+ 223, = 2

3. Does the following system of equati
quations ha i
o p T Systam « ve any solution other than

&N—+ NN»+ 223=10
321+ Tzg+ 223 = 0
2+ 244+ z3=0

4. MoumEm_. the homogeneous system corresponding to (8.1) (the case ¢; =
Mw === 0). Show that if the determinant of the coefficients A = 0

e.o. are an infinite number of solutions. (Hint: If 21, *°*, 25088 :o:.ﬁiwm
solution, show that azy, - -+, az, is also a solution for any o.oBv_ox number a.)

5. Prove that if the determinant A of the coefficients in (6.1) is zero then

either there is no soluti s o s
(Hing: Use Ex., Mvno ution of (6.1), or there are an infinite number of solutions.

7. Remarks on methods of discovery and proof

Often a student studying mathematics has difficulty in und i
M,Mw. m“nro_uo“ vE.ao:mE. :M::. or method of proof, ﬂww ever ooMMM“uaMEmM
e Ewnuswn_w moB.ermm -.%Km seem to appear from nowhere. Now it is
s matt mB_MQQ._ geniuses do invent radically new results, and meth-
o P 8o results, im-or often appear quite strange. The most

ordinary people can do is to accept these brilliant ideas for what
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they are, try to understand their consequences, and build on them to
obtain further information. However, there are a few general principles
which, if followed, can lead to a better understanding of mathematical dis-

covery and proof.
Concerning discovery, we mention two principles:

(a) use simple examples as a basis for conjecturing general resulls,
(b) argue in reverse.

Both of these principles are illustrated in the proof we gave of Theorem 2
for the case n. = 2. We were faced with trying to find out whether the
system (6.1) of n linear equations has a solution or not, and what condition,
or conditions, would guarantee a unique solution. We looked at the simplest
example, which occurs for n = 2 (using (a)). Then we assumed that we
had a solution (principle (b)), and found out what must be true for a

solution, namely, that

z7A = A, 2A = As.
We immediately saw that if A » 0, then

D. Du
| &= A’ 2 = D. Aﬂ.Hv
Note that at this point we have not yet shown that there is a solution. All
we have shown is that #f z;, 2: is a solution, and A # 0, it must be given by
(7.1). We can now guess that if A 0, then z,, 2; given by (7.1) is a solu-
tion. This can be readily verified by substituting (7.1) into the given
equations. An alternate procedure is to check that the steps leading to
(7.1) can be reversed, if A # 0. Once we have discovered the right condi-
tion for the case n = 2, it is natural to conjecture that a gimilar condition
will work for a general n.
Three important methods of proving mathematical results are:

(i) @ constructive method,
(ii) method of contradiction,
(iii) method of induction.

A typical example of aconstructive method appears inthe proof of Theorem3
for the case n = 2. We wanted to show that nontrivial golutions of the
two homogeneous equations exist if A = 0. To do this we constructed
solutions explicitly. An example of the method of contradiction appears in
the proof of Theorem 4. We supposed that the system (6.1) had a unique
solution. We assumed that A = 0, and, using logical arguments, we arrived
at the fact that (6.1) does not have a unique solution. This is a contradic-
tion, and the only thing that can be wrong is our assumption that A = Q.
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M”Mou_u. other alternative is that A » 0, which is the conclusion we de-

The method of induction is concerned with proving an infinite number
W». statements 8 &, -+, one for each positive integer n. If & is true, and
if for any positive integer k the statement s, implies the mﬁamﬁg». 81
then all the statements s,, 8y, + ++, are true. An example of a result aEam
can be proved using induction is the formula

L/ k
(fo)® = Av b= g (1) Avullmwll
)1 1k -1’
for the k-th derivative of the product of two compl i
4 ex-valued
\..n which have k derivatives; see (4.3). The proof is eﬂo mmBozpm nwﬁu-”__“u%
tion used to prove the binomial formula

.»

?+$.u MUAvan. inmw...v

oy N & ’

for the powers of the sum of two com

. 2 PO ; plex numbers @, b. The method of

induction is equivalent to a property of the positive integers, and 8_“5“.

a:n.ﬂ”% we assume that this method is a valid method of proof

_ 'The principles of discovery (a), (5), and the methods of proof (i

Mm_“v. MEvmvﬂEevM E&SB»%% times throughout this book. It will vﬂ Euanmwh
e for the stu ent to identify which principles and meth being

used in any particular situation. P methods are

CHAPTER 1

Introduction—Linear Equations of the

First Order

1. Introduction

In Sec. 2 we discuss what is meant by an ordinary differential equation
and its solutions. Various problems which arise in connection with differ-
ential equations are considered in Sec. 3, notably initial value problems,
boundary value problems, and the qualitative behavior of solutions. In a
succession of easy steps we solve the linear equation of the first order in

Secs. 4-7. :

2. Differential equations

Suppose f is a complex-valued function defined for all real z in an
interval I, and for complex y in some set 8. The value of f at (z,y) is
denoted by f(z,y). An important problem associated with f is to find a
(complex-valued) function ¢ on I, which is differentiable there, such that
for all z on I, , _

(i) ¢(=)isin 8§,

(i) ¢'(z) =f(z,6(2)).

This problem is called an ordinary differential equation of the first order,
and is denoted by
y =f(z9). (2.1)

The ordinary refers to the fact that only ordinary derivatives enter into
the problem, and not partial derivatives. If such a function ¢ exists on I
satisfying (i) and (ii) there, then ¢ is called a solution of (2.1) on I.
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