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IV. Autonomous Systems

Throughout this chapter we will consider an autonomous system of differential equa-
tions

¥ = f(x), (4.1)

where f : D — IR" is a continuous mapping defined on an open, connected subset D C IR".
As indicated in Remark 1.2, such equations describe physical systems which are isolated
from external influences. We will always assume that f is such that every initial value
problem z’ = f(z), z(tg) = 2° for 2° € D has a unique solution; for example, it suffices
that f be locally Lipschitz in D. Finally, we make the convention that, unless otherwise
specified, when we refer to a solution of (4.1) we always mean a solution which is defined
on a maximal interval. With this convention, uniqueness implies that two solutions of the
IVP have the same interval of definition as well as the same values there.

4.1 Orbits and asymptotic limit sets

The following simple lemma is basic to the understanding of what makes autonomous
systems so special.

Lemma 4.1: Suppose that x(t) is a solution of (4.1) defined on an interval I, and that
h € R. Then the function y(t) = x(t+h), defined on the interval J =I—h = {t | t+h € I},
15 also a solution.

Proof: Forte J,y'(t) =2'(t+h) = f(x(t+h)) = f(y(t)). Moreover, J must be maximal,
for an extension of y to § would yield an extension Z = g(t —h) of z. =

In the notation of Chapter II, the lemma says that
#(t;to,2°) = &(t + hyto + h,2°). (4.2)

Note also that while we have assumed above that the initial value problem given by (4.1)
and the condition z(tg) = 2" has a unique solution for all (¢g,z"), the argument of the
lemma, implies that it would suffice to assume this for any one to and all 2° € D.

We next introduce some terminology associated with autonomous systems.

Definition 4.1:  An orbit or trajectory of the system (4.1) is a set C' C D of the form
{z(t) | t € I}, where x(t) is a solution of (4.1) defined on I.

Definition 4.2: An equilibrium point of the system (4.1) (also called a critical or singular
point) is a point #° € D such that f(z°) = 0.

Theorem 4.2: (a) Every point of D belongs to precisely one orbit of the system (4.1).
(b) If 2° is an equilibrium point of the system then {z°} is an orbit.

Proof: If 2° € D then the IVP 2/ = f(z), (0) = 2° has a solution, and z° lies on the

corresponding orbit. On the other hand, if x0~belongs to the orbits C' and C then there
must exist solutions x(t), Z(t) defined on I, I satisfying C' = {z(¢)}, C = {Z(t)}, and

x(tg) = Z(to) = 20 for some tg,tp € R. Then by Lemma 4.1, y(t) = z(t + to — to) is a
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solution defined on J = {t | t +to — to € I}, and since y(fy) = Z(tp) = 2", y and 7 are
identical, by uniqueness. Hence

C={zt)|tel}={yt)|teJ}={3t) |[tel}=C. m

(b) This is an immediate consequence of the fact that the constant function x(t) = 2 is a

solution of (4.1): 2/(t) = 0= f(2%) = f(x(t)).

Remark 4.1: (a) The function f: D — R" is sometimes called a vector field on D. We
may visualize f(z) as a vector with its tail at x; then the orbits C' are tangent to these
vectors, and a solution z(t) has speed given by the length of the vector.

(b) Suppose that f and D are such that every solution of (4.1) is defined on all of R. Then
for each t € R we define a mapping ®; : D — D by ®,(x) = Z(tg + t; to, z); @, considered
as defined on R x D (that is, as a function of both ¢ and x) is called the flow generated by
the system (4.1). By Lemma 4.1 the flow is independent of the value of ¢y used to define
it. Equation (2.16) becomes

Dyps(z) = O (Ps(x))  or  Dpyy = Ppo Dy, (4.3)

a formula which is summarized by saying that the maps ®; form a one parameter group. For
each fixed ¢, Theorem 2.11 implies that ®; is continuous and hence is a homeomorphism
(a continuous map with continuous inverse ®_;) from D to D. If f € C'(D) then, by
Theorem 2.15, ®; and (®;)~! = ®_; are also C!, i.e., are diffeomorphisms of D.

(c) Even if the special hypothesis of (b) is abandoned—if some solutions of (4.1) have
domain a proper subset of R—we may define ®,(x) = &(to + t; o, z); as a function of ¢
and x, ® will now have domain {(t,x) | to+t € I(4,4)}. The first formula in (4.3) will now
hold whenever the right hand side is defined.

Before stating our next result, we recall a standard definition: a simple closed curve
in R™ is the image of a continuous mapping v : [a,b] — R" such that y(s) = y(¢) with
s < t if and only if s =a and t = b.

Theorem 4.3: If x(t) defined on I is a solution of (4.1) which is not constant, and if
there exist distinct t1,to € I with x(t1) = x(t2), then

(a) I =R;

(b) x is periodic;

(c) the set of strictly positive periods of x contains a minimal element h;

(d) two points t,t" € R satisfy x(t) = x(t') if and only if t —t' = kh for some k € Z; in
particular, the set of all periods is W% = {kh |k € Z};

(e) the orbit corresponding to x(t), called a periodic orbit, is a simple closed curve.
Proof: Let T' denote the set of all 7 € R such that z(typ + 7) = z(to) for some ¢y, € RR.
Of course, 0 € T, but by hypothesis also to —t; € I and to — t; # 0. Choose 7 € T" and
let y(t) = x(t + 7); y is defined on J = {¢t | t + 7 € I}. Since y is a solution of (4.1) and

y(to) = z(to) for the ¢y whose existence is guaranteed by 7 € I',  and y are identical by
uniqueness; in particular, I = J.

49



NOTES: ODE SPRING 1998

Now if 7 in the above argument is chosen nonzero, then since I = J = I — 7 the
interval [ is invariant under a non-zero translation; this is possible only if I = R, proving
(a). Moreover, since 7 € I' implies y(t) = x(t +7) = x(¢) for all ¢, z(t) is periodic, proving
(b) and implying that I' is precisely the set of periods of x. From this property it follows
easily that I is a group under addition.

Now I' cannot contain arbitrarily small positive numbers, since if {7, } were a sequence
of points of I with 7, \, 0, then

F@(0) = /(0) = Tim 7 () - 2(0)] = 0.
so that z(0) would be an equilibrium point and z(¢) a constant solution, contradicting the
hypothesis. The infimum h of the positive elements of I' must lie in I, since if 7, \, h with
Tn € I', then by continuity of z, z(t + h) = lim,, ,cc z(t + 7,) = lim,, 00 2(t) = x(t) for all
t € IR; this verifies (c¢). Further, I' = hZ (which is all that remains to prove in (d)) by the
group property of I': clearly I' D hZ and if 7 € I’ with kh <7 < (k+ 1)h then 7 —kh € T
is a positive element smaller than h. Finally, the orbit is x(]0, h]) and for s < t € [0, h],
x(s) = z(t) if and only if s = 0 and ¢ = h; this verifies that C' is a simple closed curve. =®

We now turn to the question of the limiting behavior of a solution z(t) as ¢t approaches
infinity. The simplest possibility is that lim;_,. x(t) actually exists, but there are more
general cases in which we want to say that x(t) has a well defined limiting behavior. For
example, one typical behavior of solutions in the case n = 2 is shown in Figure 4.1; a
solution may spiral outward and approach a closed curve C which is itself a periodic orbit.

_—

Figure 4.1

Definition 4.3: Let z(t) be a solution of (4.1) whose interval of definition contains some
interval [a,00). A point 2 € D is an w-limit point of this solution if there is a sequence
{t,} of real numbers with ¢, — oo as n — oo such that lim, . z(t,) = 2°. The set of
w-limit points of x is denoted Q[z]. a-limit points are defined similarly, but with a sequence

of times {t,} such that ¢, — —oc.
If limy 00 2(t) = 2¥ exists then Q[x] = {z"}. In the case shown in Figure 4.1, Q[z] is

the entire limiting curve C.
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The basic properties of the set of w-limit points are contained in the next theorem.
To state it, we need one more definition: we call a set £ C D invariant for the equation
(4.1) if for every z° € E the solution of the IVP 2’ = f(x), x(tg) = 2" satisfies z(t) € E
for all ¢; equivalently, if every orbit which intersects E is contained in F.

Theorem 4.4:  Let x(t) be a solution of (4.1) which is defined for all t > a. Then
Q = Qx| is relatively closed in D and invariant. If also there is a compact subset K C D
with x(t) € K for t € [a,00), then ) is nonempty, compact, and connected; moreover,

every solution y(t) whose orbit intersects Q0 (and hence is contained therein) is defined on
all of R.

Proof: To see that Q is relatively closed, suppose that {2*} is a sequence of points of
with limy o 2% = 2° € Q. Then there exists a tx with |z(tx) — 2¥| < 1/k; we may choose
the t;, inductively so that ¢, — oo and hence 2° = limj_, o x(tr) € Q. To check invariance,
suppose that y(t) is a solution with y(tg) € 2, and let ¢; be any number in the domain of
y. There exists {sx} with s — oo and x(sr) — y(to); then by (4.2),

2(sk + 1 —to) = &(s + 1 —tos sw, 2(si)) = E(tr3to, 2(sx)) — &(t15t0,y(to)) = y(ta),

where in taking the limit we have used the continuity of Z in the initial conditions. Thus
y(tl) e Q.

Now suppose that K C D is compact and that z(t) € K for t € [a,00). Then Q C K
and hence, since K is closed, every limit point of €2 belongs to K and hence to D; thus
Q) is closed, not just relatively closed, and since K is compact, so is ). The sequence of
points {z(k)}?2, lies in K for k > a and hence contains a convergent subsequence, say
{w(kj)}521; limj o0 2(ky) € 2 and therefore € is non-empty. Moreover, since {2 is compact,
our extension theorem Theorem 2.19 immediately implies that the domain of any solution
contained in 2 is R. Finally, to verify that 2 is connected, suppose the contrary; by
definition this means that we may write = Q7 U )3 with Q7 and 2 closed (and hence
compact) and disjoint. Let d = d(€21,{22) > 0 be the distance between these two subsets.
For i = 1,2 choose ¢ € ; and a sequence {t;;} with t;;z — co and z(t;x) — z*; we may
clearly suppose that t1x < tor and, by discarding an initial segment of these sequences
if necessary, that |z(t;x) — 2| < d/4 for all k. Consider now the continuous function
g(t) = d(x(t),1), which satisfies g(t1x) < d/4 and g¢(t2x) > 3d/4. By the intermediate
value theorem, g(si) = d/2 for some s € (tix,t2r). Because x(t) lies in the compact set
K for sufficiently large ¢t we may choose a convergent subsequence of {z(si)}; the limit 2°
of this subsequence lies in Q = ; U )y but satisfies d(z°, Q1) = d/2 and d(2°,Q2) > d/2,
which is clearly impossible.

Remark 4.2: The hypothesis z(]a, o)) C K in the second part of the theorem is certainly
necessary. For example, in the system 2’ = v, where v is some fixed element of IR", all
orbits are straight lines parallel to v and no solution has any w-limit points. Figure 4.2
shows one possible behavior of a system (with n = 2) which leads to a disconnected and
non-compact Q[z].
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Figure 4.2

4.2 Two dimensional autonomous systems and linearization

In this section we discuss some examples of two dimensional autonomous systems, as
well as the general technique of linearization for obtaining information about the behavior
of non-linear systems. The Euclidean space IR? in which the the variable z lies is usu-
ally called the phase plane, and one reason that the qualitative behavior of specific two
dimensional systems is relatively easy to understand is that we may draw typical orbits
in this phase plane, and thus visualize the flow generated by the system of o.d.e.’s. In
such drawings, we usually put an arrow on the trajectories to indicate the direction of
increasing t.

Ezxample 4.1:  Two-dimensional constant coefficient homogeneous linear systems. It should
be noted first that every constant coefficient homogeneous linear system is autonomous, so
that the concepts of orbit, equilibrium point, w-limit point, etc. make sense for the systems
studied in Section 3.2. The origin is always an equilibrium point, and other equilibrium
points exist if and only if zero is an eigenvalue of the coefficient matrix. Here we specialize
to the two dimensional case: 2’ = Az with € IR?, A a constant 2 x 2 matrix. The
qualitative picture of the phase plane depends only on the Jordan form of A.

If both eigenvalues A1, Ay of A are real, then from (3.17) the general solution has the
form

z(t) = creut + coet2u?, (4.4a)
when \; # A9 and when A\; = A9 but the Jordan form is diagonal, or
x(t) = (c1 + tea)eult + coetul? (4.4b)

when A\; = A2 = X\ and the Jordan form is one 2 x 2 block. To say more it is necessary
to consider various special cases. The resulting phase planes are shown in Figure 4.3a and
4.3b; in these figures we write J = D to indicate the case of a diagonal Jordan form, J # D
to indicate a 2 x 2 block.
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; X %
)M =X<0:J=D  ()A=Xl<0:J£D
(d))\1>)\2>0 )\1_)\2>0J D )\1_)\2>0 J#D

Case 1: A1, Ao real, A A > 0: stable and unstable nodes

Figure 4.3a

Case 1: A\, Ay real, A\ A2 > 0: We number the eigenvalues so that |[As| < |Ai|. Suppose
first that both eigenvalues are negative: A\; < Ao < 0.

(a) If A1 # A2, then solutions will have the form (4.4a); as t — —oo typical solutions will
approach infinity parallel to u!, while as ¢ — oo they will approach the origin parallel to
u?. There are also two special solutions which lie along the vector u! (corresponding to

c2 = 0 and two possible signs of ¢1), two along u?, and the zero solution.

(b) If Ay = A2 and J is diagonal then the solution (4.4a) is always parallel to the vector
ciut + cou?; orbits (other than the origin itself) are rays directed inward to the origin.

(c) If Ay = A2 and solutions have the form (4.4b) then for ¢ — oo solutions are parallel
to u'!, but in opposite directions. There are still two special solutions along u'! and the
zero solution.

In all these cases, the flow of every solution is into the origin; the origin is called a stable
node. If both eigenvalues are positive, the same considerations apply (leading to cases
(d)—(f)), but solutions now flow from the origin to infinity; the origin is now called an
unstable node.

Case 2: A1, A\ real, A\ A2 < 0: Suppose that \; > 0 > Ay. Solutions necessarily have the
form (4.4a), typical solutions approach infinity parallel to u? as t — —oo, and parallel to
u' as t — oo. There are also two special solutions along each of u! (oriented out of the
origin) and u? (oriented into the origin), and as usual the origin is itself an orbit. In this

case the origin is called a saddle point.

53



NOTES: ODE SPRING 1998

Case 3: A\, \2 real, A\; A2 = 0: This special case is less important than the others because
the origin is not an isolated equilibrium point, that is, there are other equilibrium points
arbitrarily close to it, and this makes the linear analysis difficult to apply to nonlinear
problems. Nevertheless, we include it for completeness.

(a,b) If A2 = 0 but A\; # 0 then (from (4.4a)) all points of the form cu' are equilib-
rium points, and other trajectories lie on straight lines parallel to u?, (a) approaching the
equilibria as t — oo if A\ < 0, or (b) approaching infinity as ¢t — oo if Ay > 0.

(c) If A1 = A2 = 0 and A is diagonal, then A = 0 and every point of the plane is an
equilibrium point.

(d) If A1 = A2 =0 and A is not diagonal, then from (4.4b) the orbits are on straight lines
parallel to u'!l; here each straight line is a single orbit (rather than three orbits as in (a,b)).

><

Case 2: A1, Ao real, Ay > 0 > \g: saddle point

)\1<0 Ao =0 )\1>0 Ao =10 )\1_)\2_0 )\1_)\2_0
Case 3: A1, Ag real, )\2—0

Figure 4.3b

We now turn to

Case 4: A\, \2 complex: We now write the eigenvalues as A = a £ i3, where we take
B > 0 by convention. By (3.18) every solution has the form

z(t) = e"*[(c1 costB + cosintB)v — (c1 sintf — co cos tB3)wl]
= ce'®[cos(tB — 6)v — sin(tf — &)wl, (4.5)

1/2

where in to obtain the second line we have set ¢ = (c +c ) and ¢y = ccosd, cg = c¢sind.

Again we consider various cases, shown in Figure 4.4.
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(a) If & = 0 then the solution is periodic, with period 27/3; inspection of (4.5) makes it
clear that orbits are closed curves encircling the origin. In this case the origin is called a
center. In fact, these curves are ellipses, and they are traced clockwise if det B > 0 and
counter-clockwise if det B < 0, where B = [v w] is the 2 x 2 matrix with columns v, w.
To see this, let Z(t) denote the curve given by (4.5) in the case v = el and w = €?; it is
clear that 7 is a circle traced clockwise; in fact, Z(t)T #(t) = ¢%. But z(t) = BZ(t) and thus
2(t)TCx(t) = 2, where C is the symmetric matrix C = (BBT)™!; this is the equation
of an ellipse. Moreover, B preserves the orientation in going from the basis [e!, €?] to the
basis [v, w] if det B > 0, and reverses it otherwise, and this orientation is equivalent to the
direction of rotation.

(b,c) If @ # 0 then a growth or decay in x(t) is superimposed on the periodic behavior of
(a), leading to solutions which (b) spiral inward if a < 0, or (c) spiral outward if o > 0.
The origin is then called a stable or unstable spiral point, respectively. The direction of
rotation is determined as in (a).

-
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(a) a = 0: center (b) a < 0: stable spiral (¢) a > 0: unstable spiral

Figure 4.4: Complex eigenvalues A = o £ (3.

Having analyzed the phase plane for these linear systems, we now want to show how the
analysis can be applied to gain insight into non-linear systems. We first turn from the two-
dimensional case to consider the general idea of using linearization to study a non-linear
autonomous system. Suppose that f € C1(D), and that 2° € D is an equilibrium point
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of the system (4.1). For x near 2° we have a natural approximation f(z) ~ Df,o(z — 2°),

and setting u = x — 2° we are led to approximate (4.1) by a constant coefficient linear
system

u' = Au, A=Dfo. (4.6)
Such an approximation should be useful when u is small (z ~ zV).

Remark 4.3: We are interested not in numerical approximation but rather in gaining
some qualitative understanding of the behavior of the solutions of the non-linear problem.
Linearization is an important tool in this endeavor. What success can we hope for from
its application?

(a) If A = Df,o has any eigenvalues with real part zero then the qualitative behavior of
(4.1) and (4.6) may be quite different. For example, the system 2’ = z|z|?> = 2 2? has an
isolated equilibrium point at the origin, but the linearization ' = 0 has every point of R"
as an equilibrium point. Similarly, it is easy to find systems for which the linearization has
the origin as a center but for which the higher order terms cause solutions to spiral either
inward or outward. For this reason we confine our attention to equilibrium points at which
A has no eigenvalues with real part zero; such equilibrium points are called hyperbolic.

(b) The ideal situation for a hyperbolic equilibrium point would be that solutions of (4.6)
give a qualitatively exact picture of the solutions of (4.1) near 2°—in fact, that the two
equations differ by a change of variable. Thus we would seek an invertible map F': U — V,
with U and open neighborhood of 2° and V' an open neighborhood of 0, such that x(t) is a
solution of (4.1) if and only if F'(x(t)) is a solution of (4.6). It can be shown (see Hartman)
that a continuous F' with this property always exists. In most problems, however, f has
certain differentiability properties, say f € C*, and we would like F also to be in C!. It is
not always possible to find such an F’; certain “obstructions” may occur. Again, we refer
to Hartman.

(c) A lesser goal, which we will discuss in some detail later, is to prove that the true system
near a hyperbolic equilibrium x° inherits some of the properties of the linear system. For
example, we will show that if all eigenvalues of A have strictly negative real part, so that
every solution u(t) of (4.6) satisfies lim;_, u(t) = 0, then every solution z(t) of (4.1) with
x(to) sufficiently near 2° satisfies lim; o z(t) = z°.

In the next example we ignore the difficulties discussed above and assume that the
linearization gives a good qualitative picture of the behavior of solutions near a hyperbolic
critical point. This assumption can in fact be justified because the dimension of of the
phase space is only two. We will thus refer to an equilibrium as a stable node if the
corresponding linearized problem has two negative eigenvalues, and similarly for unstable
nodes, saddle points, and stable and unstable spiral points.

Ezxample 4.2:  Competing species. We consider a simple ecological model of competing
species, a model somewhat similar to those considered in Example 1.1. (This model is
also discussed in Hirsch and Smale.) Let 21 and z2 denote the populations of two species
inhabiting the same environment and competing for the same resources. We suppose that
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x1 and xy satisfy the autonomous system

r] = (r1 — a1x1 — fra2)w1,
) (4.7)
Ty = (7“2 — Q29 — 52:171):172.
For the interpretation of these equations we refer to the discussion of Example 1.1. Briefly,
r; is the growth rate of species ¢ at very low population levels, and «; and [3; represent the
effect respectively of intra- and of inter-species competition on the growth of this species.
All these coefficients are positive, and we suppose that ayas # 3152 to avoid consideration
of special cases.
There are four equilibrium points in the model:

Eo = (0,0), EQ = (0,7“2/042),
Ey = (r1/a1,0), B3 = (ajag — B12) M agry — Pire, airy — fary).

The ecological interpretation of these equilibria is simple: at Ey no individuals of either
species exist; at E; and Fo one species has died out and the second is existing at the carry-
ing capacity of its environment. Since populations are non-negative, E3 has an ecological
interpretation only if both its components are non-negative; in this case, it represents a
situation in which the two species are coexisting.

Further discussion of the model depends on the relative sizes of the coefficients. For
simplicity we analyze only one of several possible cases: we assume that

aory < ﬁﬂ“g and a1rg < 527“1. (48)

Note that (4.8) implies that
arag < [z, (4.9)

and hence Fj3 lies in the first quadrant; (4.9) may be interpreted as a statement that
intraspecies competition is weaker than interspecies competition. Linearization at the
equilibria shows that Fj is an unstable node, F/; and F> are stable nodes, and FEj is a
saddle point. To illustrate the method we discuss E;. Linearized equations are most easily
obtained by substituting z1 = uy + 1 /1 and xo = ug into (4.7) and dropping quadratic
terms in the ui, ug; the resulting linearized equations are

uy = —riuy — (r181/on)ue,
U’g = —[(527“1 - 0417°2)/Oé1]u2-
The eigenvalues here are Ay = —ry and Ay = —(f2r1 — ayr2)/a1, both negative. The first

eigenvector is u! = (1,0), the trajectory directly along u! in the linearized problem persists
in the non-linear problem, since the x-axis is invariant.

We are now ready to sketch the first quadrant of the phase plane. Preliminary sketches
are shown in Figure 4.5. The first summarizes the information from the local behavior
at the equilibria; the second introduces a second simple technique frequently of use in
such problems—indication of the various regions and curves in the plane corresponding to
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known signs (positive, negative, or zero) of the derivatives of the components of x. The
final sketch is shown in Figure 4.6. Note that the final state of the system may correspond
to the survival of either species, depending on the initial conditions; the survival of both
is a practical impossibility because the equilibrium FE3 is not stable.

Sketches of the phase plane may be prepared similarly for other choices of parame-
ters. When the inequalities (4.8) are reversed, so that intraspecies competition is stronger
than interspecies competition, the equilibrium for joint coexistence becomes stable. The
resulting phase plane is sketched in Figure 4.7.

Ezxample 4.3: The Van der Pol oscillator. We study the autonomous system
o' = fi(z,y) = -y,
y' = falry) =z+y -y,

and will let z € R? denote the pair (z,y), so that (4.10) is 2/ = f(z). Our analysis will be
closely based on that of Hirsch and Smale, to whom we also refer for a discussion of how

(4.10)
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(4.10) may be viewed as the equations of an electrical circuit with a non-linear resistor.
We make two preliminary observations. First, the origin is the unique equilibrium point of
the system, and linearization there yields an unstable spiral point in the linearized system

1 1
R :R? — IR? given by Rz = —z; specifically, if z(t) is a solution, then so is Rz(t).
Our goal is to prove

-1 o . . -
u' = {0 } u. Second, the system is invariant under the reflection (through the origin)

Theorem 4.5:  The system (4.10) has a unique periodic orbit Cp, with the origin in
its interior. FEwvery solution z(t) is defined on some interval [a,00) and if z is not the
identically zero solution then Q[z] = Cp.

A limit cycle of an autonomous system is a periodic orbit which is contained in the
set of w-limit points (or a-limit points) of some solution z(¢) but which is not identical
with the orbit of z(¢). The theorem implies that C), is a limit cycle for the Van der Pol
oscillator. We will see that in fact every solution starting outside C,, spirals inward to
C)p, and every non-zero solution starting inside C), spirals outward to C,,. The behavior of
typical solutions is shown in Figure 4.8; note that following the inward spiraling solutions
backwards does not lead to an infinite outward spiral; in fact, we can show that for such
a solution x(t) there exists a 17" > —oo such that lim; .74 |z(¢)|] = oo, and that for ¢
sufficiently close to T the solution remains in one of the two regions As and A, defined
below.

Proof: We present the proof in a series of steps. It may appear at times that we are
appealing to geometric intuition; in fact, however, it is fairly easy to convert these appeals
into rigorous proofs, and we try to alert the reader to check our work in such cases. Some
verifications are also left as explicit exercises for the reader.

(a) We first partition IR? into (nine) sets corresponding to the signs (positive, negative, or
zero) of the functions fi(x,y) = —y and fa(x,y) = ¥ +y — y>, or equivalently the signs
of the derivatives 2’ and 3’. The origin {0} corresponds to fi = fo = 0. There are four
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sets where precisely one of fi, fo vanishes: the positive z-axis, a;, the negative x-axis,
a3, and the branches as, a4 of the curve x = y2 — y lying respectively in the upper and
lower half planes. Finally, there are the four connected open sets obtained by removing
{0} and a4, ...,as4 from IR?, on which both f; and fo are non-zero and have fixed sign:
Al ={z]le>y—y, y>0}, Ao ={z|z<y3—y, y >0}, A3 = R(A1), and A4 = R(A>).
See Figure 4.9.

(b) Suppose now that z(t) is a solution and ¢y a point in its interval of definition. We
claim that (i) if z(¢9) € ai, then z(tp + s) € A; for all sufficiently small s > 0; (ii) if
z(ty) € A;, then there exists a T > o such that z(t) € A; for to <t < T, and 2(T) € aj+1
(where if i = 4 then a;4; is interpreted as a1). To verify (i) we simply inspect the signs
in (4.10); for example, when z(ty) = (z°,0) € ay, 2’(to) = 0 and y/(ty) > 0, so that, for
small s, 2/(to + s) = —y(to +s) <0 and y/'(to + s) > 0, i.e,, 2(to + s) € A;. To check (ii),
suppose first that z(tg) = (2°,3°) € A1; then while 2(t) € A; we have y/(t) > 0 and hence
2/ (t) = —y(t) < —y° and z(¢) < 2° — ty°. This clearly implies that the solution intersects
az in finite time. The argument for z(ty) € As is similar but slightly more complicated;
we leave it as an exercise. The cases z(t) € As, A4 follow from these by application of the
symmetry R.

(c) Now suppose ¢ > 0 and consider the solution z.(t) = (z.(t),y.(t)) which satisfies
2(0) = (¢,0) € a;. From (b) it follows that z.(¢f) must return to a; in finite time after
a trip around the origin; let 7(c) be the smallest positive number such that z.(7(c)) =
(¢(c),0) € a;. The map ¢ : Ry — Ry is the key to our further analysis. It is an exercise
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to check that ¢ is continuous and remains so when extended by ¢(0) = 0 (this follows
from continuous dependence on initial conditions, but a little work is needed). ¢ must be
monotonic increasing since if ¢ > d but ¢(c¢) < ¢(d) then z. and z4 would intersect but
not coincide (check!). If ¢(c) > ¢ then the solution is spiraling outwards, if ¢(c) < ¢ then
the solution is spiraling inwards, and if ¢ is a fixed point of ¢, that is, if ¢ = ¢(c), then the
solution corresponds to a periodic orbit of the system. We will prove the

Claim: There exists a number ¢ such that ¢(co) = co, ¢(c) > cif ¢ < ¢y, and ¢(c) < c if
c > Cp.

The claim immediately implies the statement of the theorem and most of the qualitative
properties of the orbits indicated in the paragraph following its statement (the exception is
the ¢ — —oo behavior of the solutions outside Cp). C), is just the orbit of z.,. Any solution
through a point outside C), must coincide (up to a time shift) with z. for some ¢ > co;
then ¢, ¢(c), p*(c), ... is a decreasing sequence which must decrease to cp, since any limit
point of this sequence is a fixed point of ¢ by continuity. This implies that C), = Qz].
Solutions beginning inside C), are treated similarly.

(d) Now consider again the solution z.(t), and introduce two new notations. First, let
o(c) be the smallest positive number such that z.(c(c)) = (—¢(c),0) € as. We will prove
the claim with ¢ replaced by v; since ¢ = 1 o ¢, the claim as stated follows immediately.
Second, let ¢ be the unique point in IR such that when ¢ = ¢; the solution first intersects
ay at the point (0, 1); such a point must exist because the solution satisfying z(¢;) = (0, 1)
may be shown by methods similar to those of (b) to intersect a; at some finite time to < ¢;
(check!). For c € Ry let

F(e) = ¢® = ¢(e);
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we will show that F'(¢) < 0 for ¢ < ¢q but that F'(¢) monotonically increases for ¢ > ¢ and
eventually attains a positive value; this will establish the claim for 1, with ¢y the unique
zero of F.

(e) Define G(z,y) = 2% + 32, so that

o(c)
=—2A et)? — ye(t)") dt. (4.11)

If ¢ < ¢; then 0 < y(t) < 1 on (0,0(c)) (since y(t) must reach its maximum at the
intersection of z.(t) with a2, and this intersection point must lie between the origin and
(0,1), by choice of ¢;) and hence (4.11) implies that F'(c) < 0 (check!—see Figure 4.10a).

Y
(z(s2),1)
————————— —u—\—\———yzl ———>
AN
\
\
|
—9(c) ¢ a7 —(c)
Figure 4.10a Figure 4.10b

If ¢ > ¢; then z.(¢) must intersect the line y = 1 for precisely two values s1, s in the
interval 0 <t < o(c), because y.(t) increases monotonically until z.(t) intersects as, then
decreases monotonically until ¢ = o (check!-—see Figure 4.10b). We split the integral in
(4.11) into the sum of three terms Fi, Fb, and F3, given by integrating over the intervals
[0,51], [s1,$2], and [s2, 0], respectively. On the first interval y.(¢) is a monotonically
increasing function and hence y = y.(t) may be introduced as a variable of integration:

1 2 4

y: —y
Fi(c) =—-2 dy,
1(e) /o:ic(y)+y—y3 Y

where we have used dy/dt = x + y — y3 and have written Z.(y) = x.(y.(y)) in this
reparameterization. It is clear that Z.(y) is an increasing function of ¢ (check!) and is easy
to verify that in fact Z.(y) — oo uniformly as ¢ — oo (check!), so that Fi(c) increases to
0. The same argument shows that F3(c) increases to 0 as ¢ — oo (check!). Finally, the
integral for Fy(c) may be parameterized by z:

xe(s1)
FM@=2/()[%@P—%@HW,
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where as above J.(z) = y.(z- 1 (z)). Since g.(x) > 1 for z.(s2) < x < z.(s1), the integrand
is positive; moreover, as ¢ increases the function §.(z) increases, z.(s2) decreases, and
zc(s1) increases, so that Fo increases (check! check! check!). We conclude that F(c)
is increasing and is eventually positive. In fact, one may verify that lim. .., Fa(c) =
lim,—, o F(c) = 0.

4.3 The Poincaré-Bendixson Theorem

Throughout this section we take f(z) as a continuous vector field defined on an open,
connected set D C R?, and such that the autonomous system (4.1), 2’ = f(z), has unique
solutions. Our main goal is to prove the Poincare-Bendixson Theorem:

Theorem 4.6: Suppose that x(t) is a solution of (4.1) which is defined on some interval
[a,00), and satisfies x(la,0)) C K for some compact set K C D. Suppose further that
Qx] contains no equilibrium point of f. Then Q[x] is a periodic orbit of (4.1).

Note that Theorem 4.4 implies that [z] is nonempty and connected, and that Q[z]
and x(t) may be related in either of two ways: x(t) may be a periodic solution, in which
case (Q[z] is identical with the orbit of x(t), or Q[z] may be a limit cycle disjoint from this
orbit but contained in its closure.

We will try to give a careful proof which does not rely on geometric intuition. To do
so we must introduce a certain amount of machinery.

Definition 4.4: A transversal to the vector field f is a finite, open straight line segment
L={u+7v|uveR?v+#0; 7€ (ab)} such that the closure L of L is contained in D
and such that, if £ € L, then f(£) is not parallel to L, that is, f(£) # av for any a € IR.
(We denote points of transversals by £ or (.) Points of L have a natural order, up to an
overall reversal: if £ = u + 7v for i = 1,2 we write ! < €2 iff 7y < 5. Finally, we let n
be the unit vector normal to L (n - v = 0) oriented so that f(&) - n is positive for £ € L;
then L € L = {x € R? | 2 - n = ¢} for some constant c.

Remark 4.4: Tt is clear that if € D is not an equilibrium point, i.e., if f(z) # 0, then
there exists a transversal L with x € L.

Lemma 4.7: Let L be a transversal to f. Then there exists an € > 0 such that, if
W = (—¢,€) x L, then:

(i) ¢ : W — D with ¢(t,&) = ®¢(§) is well defined, i.c., t € Ijg¢) for £ € L and |t| < ¢;
(i1) ¢ is injective on W

(iii) (W) is open and ¢~ is continuous there.

Remark 4.5: The mapping ¢ of this lemma is called a flow box; it may be thought of as
a non-linear change of coordinates which converts the flow in D into a simple flow along
parallel straight lines in W (see Figure 4.11). The lemma extends immediately to the

construction of a flow box in any dimension, if the transversal L is replaced by an open
subset of a hypersurface which is transverse to f. The proof is considerably simplified if
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we assume that f is a C'! vector field, in which case (iii) is an immediate consequence of
the inverse function theorem. See Hirsch and Smale.

Proof: Tt follows from the proof of uniform existence, Corollary 2.8, taking the compact
set K of that corollary to be L, that for any open set V satisfying L C V C V C D there
exists an € > 0 such that ®;(¢) is defined and lies in V for |[t| < € and & € L; this verifies
(i). We may choose V' small enough so that a = inf__37 f(z) -n > 0. Then for (¢,£§) € W,

d)(t,§)~n:§~n+/0 f(&(s,€)) -nds = c+ at, (4.12)

with @ = ¢! fot f(&(s,€)) - nds > a, so that

sgn(¢(t,€) -n—c) = sgn(t), (4.13)

where the signum function sgn is 0 or +1 according to the sign of its argument. Since
z-n = c is the equation of the infinite extension L of L, (4.13) says that all points ¢(t, )
with the same sign of ¢ lie on the same side of L. Thus if ¢(t,&) = ¢(s,¢) then s and ¢ have
the same sign—say 0 < s < t—so that { = ®;_4(§) = ¢(t — s,£). Again, since £,( € L,
(4.13) implies that ¢ = s and hence € = (. This verifies (ii).

Now suppose that 4 = ¢(to,£") € ¢(W); we show that there is a neighborhood N of
yY such that if y! € N, then y* € (W), and that [¢~(y') — ¢~ (y°)| may be made small
by choosing N sufficiently small. Since ®_;,(y°) = £ is well defined, Theorem 2.11 implies
that @, (y) is well defined for (7,y) close to (—tg,y"); specifically, there exists an > 0 and
a neighborhood U of y° with compact closure such that ®,(y) is defined on the compact
set specified by y € U, |7 +to| < n. By the same theorem, ®.(y) is continuous and hence
uniformly continuous on this compact set; thus for any d > 0 there exists a neighborhood
N(= Ns,,) C U of y° such that, for y* € N and |s| <17, ®_,45(y") is defined and satisfies

D ty1s(y") = Ptors(U7)] = [P ros(y') — 0(s,6°)| < 0. (4.14)
Fix n; then for ¢ sufficiently small, (4.13) and (4.14) imply
Sgn(q)ftoﬂ:n(yl) "N C) = Sgn(¢(:|:€,7 50) N = C) = =£1,
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i.e., that the two points ®_;, 1, (y"') lie on opposite sides of the line L, so that D _yors, (yh) =
¢! e L for some sy, |s1| < 7 (see Figure 4.12). Finally, if we choose § less than the distance
from {¢(s,£%) | |s| < n} to L\ L, we see that &' € L. By choosing 1 < € — |to| we may
guarantee that |[tg — s1| < € thus y! = ¢(t1,£L) € ¢(W) for t; = to — s1. To verify
continuity of ¢~!, we set M = supyr | f| and observe that

[(t1,6") = (t0, €M) < Isa| +1€" — €]
< sa 1€ — @y (€] + 1@, (€1) — €
< sal 4+ Mlsa| + @4, (y') — Pty (3°)]
<n(l+ M)+,

which may be made arbitrarily small by choice of  and then §. m

51 - q)*to Sl(yl) yl
i \q)t0+77(y1)
q)“’"(yl)\/./'l/'y/o
/ €0
L
Figure 4.12

To prove the next lemma we need a classical topological result, which we quote without
proof.

Jordan Curve Theorem: Let I' C R? be a simple closed curve. Then R*\ T is the
union of two disjoint nonempty open sets O1 and Oz such that 001 = 002 = I'. One of
01,032 is bounded and is called the interior of I'; the other is unbounded and is called the
exterior of T'.

Lemma 4.8: Suppose that L is a transversal to f, that x(t) is a solution to (4.1) in D,
and that x(t) € L for values t1 < ta < ... and no other values of t greater than ti. Then
the points x(t;) are arranged monotonically in the natural order on L.

Proof: Tt suffices to consider three successive crossings of L at times t1, t2, and t3; we
write £ = x(t;) for i = 1,2,3. If & = & then z(#) is periodic and the result is immediate;
hence we suppose that ¢! < ¢2. Let T' be the curve obtained by following z(¢) from &*
to &2, then following L back to £!; since x(t) does not intersect L for t; < t < ta, I' is a
simple closed curve. Let ¢ : W — D with W = (—¢,¢) x L be a flow box for L; ¢~ 1(I")
certainly contains the three line segments {(0,€) | €& < € < &2}, {(t,€) | 0 < t < €},
and {(t,€?) | —e < t < 0}, and in fact must equal their union, for if ¢(s,&) = z(¢) for
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Figure 4.13. The set W; the heavy line is ¢~ 1(I').

t1 <t <ty then £ = O_4(p(s,§)) = P_s(x(t)) = x(t —s) € L but z(t — ') ¢ L for s
between s and 0; so that either s > 0 and £ = ¢! or s < 0 and £ = £2. Thus W \ ¢~ }(T)
consists of two connected components

S1={(t¢ <& t>00r <€t <0}
So={(t, ) |~ &, t<0or& =&t >0}

(see Figure 4.13). The Jordan curve theorem implies that ¢(S1) and ¢(S2) must be con-
tained in different components O1, Oy of R? \ I, since if both belonged to, say, O,
then the interior of the segment of I' coincident with L would not lie in 003. Now the
points z(t2 + €/2) and x(t3 — €/2) are connected by a path (z(t) itself) which does not
intersect I', and hence these points must belong to the same component of R? \ T'; since

o7 ((ta+€/2)) = (€/2,€2) € So, 97 (x(tzs—€/2)) = (—€/2,&%) € Sy also, ie., &3 = 2. m

Lemma 4.9: Let x(t) be a solution of (4.1) satisfying the hypotheses of Theorem 4.6,
and suppose that x° € Q[x] and that L is a transversal to f which contains x°. Then

(a) there exists a sequence {ty} with tx — oo such that z(tx) € L and limy_ o x(ty) = 2°;
(b) L intersects Q[x] in the single point x°.

Proof: Since 2° € Q[x] N L there exists a sequence of times ¢ — oo such that z(t}) — z°

and for sufficiently large k we must have x(t},) € ¢(WW), where ¢ is a flow box for L. But
then x(t}) = ¢(sk, &), and the points ¥ = x(ty,) for t = ¢t} — si, all lie in L; moreover,
¢* — 20 by the continuity of ¢~!. If y° were a point of Q[z] N L distinct from 2° we
could generate a similar sequence (, — y°, but the existence of two such sequences would
certainly violate the monotonicity required by Lemma 4.8. =

Proof of the Poincaré-Bendizson Theorem. By Theorem 4.4, Q[z] is not empty. Choose
y € Q[z]; by Theorem 4.4 the solution y(t) of (4.1) which satisfies y(0) = y" is defined
for all t € R and lies in Q[z]. Again, Q[y] # 0; choose y' € Q[y]. Since Qy] C Q[z], the
hypotheses of the theorem imply that y! is not an equilibrium point of f; hence (Remark
4.4) we may choose a transversal L to f which contains y*. Now application of Lemma,
4.9 to y(t) implies both that y(¢) must intersect L infinitely often and, since y(t) € Q[z],
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that the orbit of y(t) can intersect L in at most one point. We conclude that y(¢) must be
a periodic orbit and that Q[y] is identical with this orbit.

Now we have found a periodic orbit C, = [y] contained in Q[z], and it remains
to be shown that Q[z] is identical with C,. Suppose it is not. We may write Q[z] =
Cp U (Q[z] \ Cp); since by Theorem 4.4, Q[z] is connected and C, = Q[y] is closed, and
since a connected set cannot be the union of nonempty disjoint closed sets, Cp, U (Q[z]\ Cp
is not closed. But Q] is closed, so there must exist a point 2 € C, and a sequence of
points {2} with 2% € Q[z]\C} and 2° = lim;_,« 2z°. As above, we may choose a transversal,
called again L, through 2°, and construct a corresponding flow box ¢. Choose i so large
that 2* = ¢(s,¢%) € ¢(W); then ®_4(2) = (' € L. But because Q[z] is invariant we also
have ¢* € Q[z], and because z° lies on the periodic orbit Cj, and 2* does not, ¢* # 2°. Thus
L intersects Q[z] in the two points ¢* and 2°, contradicting Lemma 4.9. =

Remark 4.6: The Poincaré-Bendixson Theorem may be used to establish the existence of
periodic orbits in plane autonomous systems. To do so, we would typically seek an open
set U with U C D such that (i) a solution x(t) with x(tg) € U satisfies z(t) € U for t > tg
(U is then called positively invariant), and (i) no equilibrium point 2° of U can lie in
any w-limit set other than Q[x°]. From these properties it follows that U must contain a
periodic orbit.

(a) One possibility for verifying (i) is an energy conservation argument as sketched in the
discussion of Theorem 2.22; we will consider similar, more general techniques when we
discuss Lyapunov functions in Chapter V. Another, related approach is the following: U
will be positively invariant if the boundary AU is a smooth curve such that, if 2° € U,
then f(z") is transverse to OU at x° and is oriented inward to U. (To see this, suppose
that x(tp) € U, let t; = inf{t > to | z(t) ¢ U}, and consider the flow near z(¢;).) There
are also simple generalizations of this criteria when OU is not smooth.

(b) The simplest way to verify (ii) is to show that U contains no equilibrium points. It is
also easy to verify that no equilibrium at which linearization yields an unstable node or
an unstable spiral point can be an w-limit point; see Exercise 6.1 of Cronin.
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