
Part I

Classical Geometry

γῆ, earth (including land and sea) ...
μετρέω, measure out ...

(Liddel and Scott, Greek-English Lexicon, Oxford)

“In the tomb of Khaemhet at Thebes we see a number of men
equipped with ropes and writing material measuring a field, ...”

(T.E. Peet, Rhind mathematical papyrus, 1923, p. 32)

“The Mathematick Lecturer to read first some easy & usefull prac-
tical things, then Euclid, Sphericks, the Projections of the Sphere,
the Construction of Mapps, Trigonometry, Astronomy, Opticks,
Musick, Algebra, &c.” (I. Newton, Of Educating Youth
in the Universities, MS.Add. 4005, fol. 14–15, Cambridge 1690)

“Development of Western science is based on two great achieve-
ments: the invention of the formal logical system (in Euclidean
geometry) by the Greek philosophers, and the discovery of the
possibility to find out causal relationships by systematic experi-
ment (during the Renaissance).”

(A.Einstein in a letter to J.S. Switzer, 23 Apr. 1953)

“Quoique la Géométrie soit par elle-même abstraite, il faut avoüer
cependant que les difficultés qu’éprouvent ceux qui commencent
à s’y appliquer, viennent le plus souvent de la maniére dont elle
est enseignée dans les Elémens ordinaires. On y débute toûjours
par un grand nombre de définitions, de demandes, d’axiomes, &
de principes préliminaires, qui semblent ne promettre rien que de
sec au lecteur”. (A.-C.Clairaut, Elémens de Géométrie, 1741)

We see in the chronology below that Euclid, who lived around 300 B.C., was
not the first great geometer, despite the fact that his famous Elements “with
all its definitions, postulates, axioms & preliminary principles, which seem to
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promise nothing but arid reading” (see the above quotation from Clairaut)
usually serve as a model for the beginning of a course on geometry. But
mathematical results had already been obtained in the preceding centuries,
in order to measure (μετρέω) land (γῆ), to survey fields after the regular
floods of the Nile, to compute the quantity of corn in a cylindrical container,
and to construct spectacular temples and pyramids. We therefore start in
Chap. 1 with “some easy & usefull practical things”, the theorems of Thales
and Pythagoras, which are the oldest theorems of humanity and fundamental
tools for geometry. They allow one to deal with most practical applications.

A first flaw in this paradise was revealed by the discovery of irrational
numbers, which showed that the concept and the proof of Thales’ theorem
were not as simple as had been thought. In parallel with this were the efforts,
influenced by the Greek philosophers, from the Pythagoreans to Plato, to
separate geometry from its practical applications, to raise it to an abstract
science studying unchangeable objects and to lift the soul towards eternal
truth. The nails, ropes and walls used by the temple builders were replaced
by mathematical points, lines, rectangles etc., objects of pure reasoning, which
require a list of definitions, axioms and postulates (see Chap. 2). This is the
origin of the style of nearly all mathematical thought and exposition since
then.

In Chaps. 3 and 4 we describe the achievements of the post-Euclidean
period, the new curves and theorems invented by Apollonius, Nicomedes,
Archimedes and Pappus, often in order to solve one of the three great prob-
lems of Greek geometry: squaring the circle, trisecting any angle or duplicating
the cube. Chap. 4 also contains many more recent beautiful results, which the
Greeks could have found with their methods.

Chap. 5 is devoted to the last great creation of the Greek period, plane and
spherical trigonometry by Hipparchus and Ptolemy and their application to
one of the dreams of mankind, understanding the movements of the heavenly
bodies. This gave rise to modern astronomy and the physical sciences.

Classical Geometry
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Thales and Pythagoras

“... la théorie des lignes proportionnelles et la proposition de
Pythagore, qui sont les bases de la Géométrie ... [the theory of
proportional lines and the theorem of Pythagoras, which form the
basis of geometry]” (J.-V. Poncelet, 1822, p. xxix)

“... the original works of the forerunners of Euclid, Archimedes and
Apollonius are lost, having probably been discarded and forgotten
almost immediately after the appearance of the masterpieces of
that great trio.” (T.L. Heath, 1926, vol. I, p. 29)

The most beautiful discoveries of this period concern relations between lengths
(Thales’ intercept theorem), angles (the central angle theorem or Eucl. III.20)
and areas (the Pythagorean theorem). A quick look at the index shows that
these three theorems are by far the most basic and frequently used results of
geometry.

The only original documents which have survived from the pre-Euclidean
period are some cuneiform Babylonian tablets (from approximately 1900 B.C.),
the Egyptian Rhind papyrus and the Moscow papyrus from approximately
the same period. The achievements of Thales, Pythagoras and his pupils
the Pythagoreans are only documented in commentaries, often contradictory,
written many centuries later.

1.1 Thales’ Theorem

“I tried (unsuccessfully) to get each high school in which my chil-
dren were enrolled to go outside during geometry and find out how
tall the oak in the yard really is.”

(D.Mumford, President IMU; Preface in H.
M. Enzensberger, Zugbrücke außer Betrieb [Drawbridge Up], 1999)

Thales was born in Miletus (Asia Minor, nowadays Turkey). He travelled to
Babylon and to Egypt, calculated the height of the pyramids by measuring

A. Ostermann and G. Wanner, Geometry by Its History,
Undergraduate Texts in Mathematics, DOI: 10.1007/978-3-642-29163-0_1,
! Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1. The “oak” in Mumford’s school yard and Thales’ theorem for ratio 2

the length of their shadow, calculated the distance of ships from the shore,
and predicted a solar eclipse in 585 B.C.

Thales is certainly the man to tell us how to measure the height of a tree
B′C′, without having to climb it (see Fig. 1.1, left). Let AB′ be the shadow of
the tree; we erect a vertical stick BC in such a manner that AB is the shadow
of the stick.1 We then measure the distance AB, say 4 metres, the distance
AB′, say 8 metres, and the stick BC, say 5 metres. By parallel displacements
of the triangle ABC we see that, since AB′ measures twice AB, the height
B′C′ will measure twice BC (see the middle picture), hence B′C′ = 2 ·5 = 10
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Fig. 1.2. The proof of Thales’ theorem; right: Neolithic stele, Sion 2500 B.C. (cour-
tesy Prof. A.Gallay)

1As recorded by Plutarch; see Heath (1921, p. 129)

1 Thales and Pythagoras
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metres. The same argument can be applied to translations of any triangle
ABC (see Fig. 1.1, right). We see that if a side of a triangle is doubled and
the angles are preserved, then the other two sides are also doubled.

If our tree were still taller, we might have to displace our triangle three
times and would arrive at the situation of Fig. 1.2 (upper left) where the sides
of AB′C′ are three times as long as the sides of ABC.

By using still finer subdivisions, we arrive at the lower left picture of
Fig. 1.2 where the ratios of these lengths are 8:5. We have thus discovered
that the following theorem is valid for any rational fraction. We call this
proof, which could have been inspired by the Neolithic stele from 2500 B.C.,
and which will be severely criticised later, the Stone Age proof.

Theorem 1.1 (Thales’ intercept theorem). Consider an arbitrary triangle
ABC (see Fig. 1.3, left) and let AC be extended to C′ and AB to B′, so
that B′C′ is parallel to BC. Then the lengths of the sides satisfy the relations
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These proportions are also preserved when the triangle is displaced and ro-
tated, see Fig. 1.3 (right). As a consequence we get the following result. If
corresponding angles of two triangles are equal, then corresponding sides are
proportional. Triangles having these properties are called similar.

1.2 Similar Figures

A more general view of Thales’ theorem appeared in the works of Clavius,
Viète and others: figures are said to be similar with similarity centre O when
corresponding points Ai, Bi, Ci lie on lines through O, and the corresponding
lines AiAj , BiBj , CiCj are parallel (see Fig. 1.4). Applying Thales’ theorem
to selected pairs of triangles with a vertex in O shows that all correspond-
ing lengths of similar figures are proportional. Such similar figures were an
important source of inspiration for many of the great masters (see Fig. 1.5).
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Fig. 1.4. Similar figures: illustration inspired by Clavius and Viète, improved by
modern computer technology

(Clavius’ ed. of Euclid 1574)

(Fermat, 1629a)

(Steiner, 1826a)

(Viète, 1600)

(Apollonius; Simson, 1749)

Fig. 1.5. Similar figures in the publications of several masters

Constructing rational lengths. Consider two distinct points 0 and 1 on
a line. We call the length of the segment joining these two points the unit
length. By carrying this unit forward on the line, we easily construct the
integer points 2, 3, etc. But how can we construct points corresponding to
rational values? For this we draw an arbitrary ray, not parallel to the line,
through the point 0. We then carry forward several times (five times, say)
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Fig. 1.6. Constructing rational lengths

an arbitrary length a. This construction yields a point C, see Fig. 1.6 (left).
If we now draw the corresponding parallels to the line joining C with 1 (see
Fig. 1.6, right), we obtain by Thales’ theorem the required points 1

5 ,
2
5 , etc.

(this procedure will later be called Eucl.VI.9).

1.3 Properties of Angles

Emil Artin (1898–1962) was famous for the extremely clear and
extraordinarily well presented lectures that he always gave without
any notes. One day, midway in a proof, he suddenly hesitated and
said: “this conclusion is trivial”. After a few seconds, he repeated:
“it is trivial, but I no longer know why”. He then thought about
the question for another minute and said: “I know that it is trivial,
but I no longer understand it”. He reflected on it a few moments
more and finally said: “excuse me, I have to look at my lecture
notes”. He then left the room and came back ten minutes later
saying: “it really is trivial”.

(Witnessed by Prof. Josef Schmid, Fribourg)

“I still remember a guy sitting on the couch, thinking very hard,
and another guy standing in front of him, saying, ‘And therefore
such-and-such is true.’ ‘Why is that?’ the guy on the couch asks.
‘It’s trivial! It’s trivial!’ the standing guy says ...”

(R.P. Feynman,
souvenir from the math-physics common lounge at Princeton;
quoted from Surely You’re Joking, Mr. Feynman, 1985, p. 69)
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Fig. 1.8. Angles in a triangle (Eucl. I.32)

Angles in a triangle. Some basic equality properties of angles (parallel
and orthogonal angles) are shown in Fig. 1.7. As in pre-Euclidean times, we
consider (for the moment) these properties to be “trivial”. A more thorough
treatment will follow in Chap. 2.

“Die Winkelsumme im Dreieck kann nicht nach den Bedürfnissen
der Kurie abgeändert werden. [The sum of the angles of a triangle
can not be modified according to the requirements of the Curia.]”

(B. Brecht, Leben des Galilei, 1939, scene 8)

Theorem 1.2 (Eucl. I.32). The sum of the three angles of an arbitrary trian-
gle ABC is equal to two right angles: 2

α+ β + γ = 2 = 180◦. (1.1)

For its proof, the Pythagoreans draw a line p through C parallel to the opposite
side AB, see Fig. 1.8 (a). Euclid extends the side AB, draws a parallel to AC
through B (Fig. 1.8 (b)) and uses the parallel angles α and γ.

Euclid’s method yields the following corollary.

Corollary 1.3. Each exterior angle is the sum of the non-adjacent interior
angles, see Fig. 1.8 (c):

δ = α+ γ . (1.2)

Angles in a circle. On a circle with centre O and diameter AB, we choose
an arbitrary point C (other than A or B) and join it to A and to O, see
Fig. 1.9 (a). Since the triangle AOC is isosceles, we have the same angle β at
A as at C (see Eucl. I.5 in Sect. 2.1). Hence, by (1.2), the angle BOC is twice
the angle BAC. We shall call BOC the central angle on the arc BC, and
BAC an inscribed angle on this arc. More generally, in Fig. 1.9 (b), we call
CAD an inscribed angle on the arc CD and COD the central angle on this
arc. We next choose an arbitrary point D on the circle, such that C and D are
on opposite sides of the diameter AB, see Fig. 1.9 (b). Deleting this diameter,
we obtain in Fig. 1.9 (c) an important relation for α = β + γ :

2Inspired by Euclid (cf. Euclid’s Postulate 4 in Sect. 2.1), we use a specific symbol
for a right angle; similarly, Steiner (1826c) used the symbol R, and Miquel (1838a)

the symbol d (angle droit), so we are in good company.
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Theorem 1.4 (Eucl. III.20). A central angle of a circle is twice any inscribed
angle on the same arc, see Fig. 1.9 (c).

Theorem 1.5 (Eucl. III.31). If AB is a diameter and C a point (other than
A or B) on the circle, then ACB is a right angle, see Fig. 1.9 (d).

Proof. This follows from the equality of the two angles denoted by α and β and
Eucl. I.32, because 2α+2β = 2 implies α+β = . It can also be considered
as a special case of Eucl. III.20 by taking 2α = 2 in Fig. 1.9 (c).

The Thales circle. The circle with a given segment AB as diameter is called
the Thales circle of the segment, see also Fig. 2.1, Def. 21. Any triangle ABC
with C on this circle is right-angled. For the converse to Theorem 1.5, see
Exercise 4 of Chap. 2, page 54.

1.4 The Regular Pentagon

Regular polygons have fascinated geometers since
the dawn of science. The Babylonians had under-
stood the equilateral triangle and the square (see
Sect. 1.6 below), therefore the Greeks directed
their attention to the regular pentagon, a polygon
with five vertices.

Length of the diagonal. By drawing all the
diagonals of a regular pentagon, we obtain a star as shown in Fig. 1.10 (b).
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This beautiful star was for the Pythagoreans a symbol of recognition between
members, a tradition which has survived until today in revolutionary move-
ments and luxury hotels.

We will determine the length, say Φ, of the diagonal of a regular pentagon
of side length 1, see Fig. 1.10 (a). Since the central angles on the arcs AB, BC,
etc. are 72◦ by construction, the inscribed angles on these arcs are α = 36◦

(Eucl. III.20). We consider the triangle ACD, see Fig. 1.10 (c). It contains the
smaller triangle CDF which is similar to ACD. Hence, we get

Thales: s =
1

Φ
isosceles: Φ = 1 + s (1.3)

which leads to
Φ2 = Φ+ 1 and s2 + s = 1 . (1.4)

A geometrical construction for these values, showing that Φ =
√
5
2 + 1

2 and

s =
√
5
2 −

1
2 , was probably known to the Pythagoreans, and is numbered II.11

in Euclid’s Elements (see Exercise 15 on page 57).
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Fig. 1.10. The regular pentagon

The number Φ is called the golden ratio. The fact that many beautiful ancient
buildings, in particular the Parthenon on the Acropolis, fit so perfectly into a
“golden rectangle” (a rectangle with sides length 1 and Φ) led to the notation
Φ in honour of Φειδίας, its architect.

The discovery of irrational numbers. All is number, claimed Pythagoras,
who apparently had only rational numbers in mind. However, it was soon
discovered that

√
2 and Φ are not rational.

To give a proof for Φ, we assume that the rational number m
n is a solution

of (1.3). We further assume that this fraction is reduced, i.e. that m and n
are relatively prime. Hence, by (1.3), we have

m

n
= 1 +

1
m
n

= 1 +
n

m
=

m+ n

m
. (1.5)

But if m and n are relatively prime, so are m and m + n (for more details,
see Eucl.VII.2 in Sect. 2.4, in particular Fig. 2.19). Hence, the fractions m/n
and (m+ n)/m cannot be equal and Φ cannot be a rational number.
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The fact that the regular pentagon, considered holy by the Pythagoreans,
has a non-measurable diagonal was a real shock. A legend says that Hippasus,
having discovered this fact and talked too much, was drowned at sea.

This discovery was also a major upset to the theory: the proof given above
for Thales’ theorem is not valid for irrational proportions. This considerably
complicated Euclid’s Elements, see Chap. 2.

1.5 The Computation of Areas

A study for the Department of Education ... found nearly one in
three adults (29%) in England could not calculate the floor area
of a room in feet or metres—with or without calculators or paper
and pens.

(BBC News Online [Education], Sunday, May 5, 2002)

The calculation of areas will lead us to the Pythagorean theorem, the third
pillar of this chapter, after Thales’ theorem and Eucl. III.20. We start with
the area of a rectangle, which is a · b. This is the number of wine bottles (28)
that can be stored in a bin holding 4 layers, each of 7 bottles, see Fig. 1.11,
left.
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Fig. 1.11. Areas of rectangle, parallelogram, triangle and trapezium

The area of a parallelogram is a · h, where h is the altitude of the parallel-
ogram (Eucl. I.35). There are two ways to see this: (a) We cut off the triangle
on the left and add it on the right to obtain a rectangle (Euclid’s proof, see the
second figure in Fig. 1.11); (b) We cut the parallelogram parallel to AB into
a large number of very slim rectangles (“method of exhaustion” of Eudoxus
and Archimedes, in this form in the commentaries of Legendre (1794); see also
Fig. 2.34, right).

The area of a triangle is half the area of the parallelogram,

A = area of triangle = base × altitude divided by 2 =
c · h
2

(1.6)

(Eucl. I.41), see third picture of Fig. 1.11.
Finally the area of a trapezium (see Fig. 1.11, right) is found by cutting

the trapezium into a parallelogram and a triangle, which gives by combining
the two previous results A = bh+ a−b

2 · h = a+b
2 · h.
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Fig. 1.12. Area calculations in Rhind papyrus; rectangle 10 · 2 = 20 (No. 49, left);
triangle 4·10

2
= 20 (No. 51, middle); trapezium 4+6

2
· 20 = 100 (No. 52, right); repro-

ductions of transcriptions by Peet (1923)

The Rhind papyrus. In 1858, the Scottish egyptologist A.H. Rhind bought
in a market place at Luxor two pieces of a papyrus roll (now papyri 10057
and 10058 of the British Museum) which was written around 1650 B.C. and
claimed to be a copy of a still older document from the 19th century B.C. The
first extensive analysis and translation was made by A.Eisenlohr (1877), who
numbered the examples of the papyrus from 1 to 84. In 1898 a facsimile was
published by the British Museum. A very careful treatment with transcrip-
tions directly from the papyrus was given by T.E.Peet (1923). The Egyptians
noted numbers in a decimal system, using the symbols 1 = , 10 = , 100 = ,

1000 = , so that, for example, the number

4678 =

requires a great deal of writing. In the Rhind papyrus, the area of a rect-
angle is treated in No. 49 (see Fig. 1.12, left). The result for the rectangle of
sides and khet , which should be setat , is unfortunately buried under
“scribe’s errors of the worst description” (Peet 1923, p. 90). However, in No. 51
(Fig. 1.12, middle) the area of a triangle of base and altitude is correctly
computed as , but the discussion of whether the Egyptian scribe correctly
understood the meaning of the altitude, fills four pages in Peet (1923), pp. 91–
94). In No. 52 we find the correct computation of the area of a trapezium
with sides and and altitude . Again the meaning of the altitude
is not completely clear (Fig. 1.12, right).

Areas of similar triangles. Take the triangle ABC of Fig. 1.2 (Stone Age
proof of Thales’ theorem) with sides that are 5 times longer than those of the
triangle AB′′C′′. It is composed of

1 + 3 + 5 + 7 + 9 = = 52 (1.7)

copies of the small triangle (this was one of the favourite arguments of
Pythagoras). In the same way, the triangle AB′C′ contains 82 copies. Hence,

the area of AB′C′ is 82

52 times that of ABC.
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We thus obtain the following result.3

Theorem 1.6 (Eucl. VI.19). A similar triangle with q times longer sides has
q2 times larger area.

1.6 A Remarkable Babylonian Document

Figure 1.13 displays a Babylonian tablet dating from 1900 B.C., hence much
older than Nebuchadnezzar or Tutankhamun. This tablet shows a square with
sides of length 30. On its diagonal the sexagesimal digits 1, 24 51 10 and
42, 25 35 are engraved (in Babylonian notation ‘ ’ stands for 1, ‘ ’ stands for
10).

30

1,24 51 10

42 25 35

Fig. 1.13. Babylonian cuneiform tablet YBC7289 from 1900 B.C. (image enhanced
by S.Cirilli)

30

30

c =?

a

a

c2=2a2

Fig. 1.14. Length of the diagonal of a square (left); ornamental tessellation seen in
an old chapel in Crete (right)

3Another way of obtaining this result is based on (1.6).
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Explanation. If we have a square of side length a = 30 and diagonal c
(Fig. 1.14, left), the square on its diagonal is twice as large (composed of
8 triangles instead of 4; Fig. 1.14, middle). Thus, c2 = 2a2 and c = a

√
2.

Another way of obtaining this result would be to meditate on one of the or-
namental tessellations (Fig. 1.14, right) which were so frequent in antiquity.
The above numbers, written in base 60, are
√
2 = 1, 24 51 10 7 46 6 4 . . . , 30 ·

√
2 = 42, 25 35 3 53 3 2 . . .

and we see that the digits shown on the tablet are all correct (see Exercise 7
below for the computation).

The tablet thus gives evidence that Pythagoras’ theorem (for the case of
an isosceles triangle) was already known to the Babylonians, as were the rules
of proportions. This knowledge was combined with an admirable ability for
calculation.

1.7 The Pythagorean Theorem

“This great theorem is universally associated with the name of
Pythagoras. Proclus says ‘If we listen to those who wish to recount
ancient history, we find some of them referring this theorem to
Pythagoras and saying that he sacrificed an ox in celebration of
his discovery.’ ” (T.L. Heath, Euclid in Greek, 1920, p. 219)

Millions of pupils around the world have had to learn the formula

a2 + b2 = c2

c

a b
(1.8)

relating the three sides of a right-angled triangle; fewer by far know a proof,
or even its precise meaning. This theorem, often considered the first great
theorem of mankind, is attributed to Pythagoras (see the quotation), but it
is not known how the original discovery was achieved.

Classical proofs. Figure 1.15 spans three civilisations: Chinese, Indian and
Arabic. We start with the square of area c2, slightly tilted as in Fig. 1.15 (a).

The Chinese proof. Adding four right-angled triangles with sides a and b, we
arrive at Fig. 1.15 (b) and get the large square of area (a+ b)2 = a2+2ab+ b2.
Since the areas of the four triangles add up to 2ab, the square of area c2 also
has area a2 + b2. This is the proof of Chou-pei Suan-ching (China, 250 B.C.;
see van der Waerden, 1983, p. 27). In the pictures of Fig. 1.15 (right), this
transformation is obtained by translating the three triangles 2, 3 and 4. The
fact that the lower picture is precisely the picture of Eucl. II.4 on page 38
gives strong evidence that this was also Pythagoras’ original proof.
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Fig. 1.15. Left: three classical proofs (Chou-pei Suan-ching (b), Bhāskara (c),
Thābit ibn Qurra (d)); right: transforming Chou-pei’s figure by translating triangles
into Eucl. II.4

c2

a2

b2

Fig. 1.16. Manuscript by Nas.̄ır al-Dı̄n al-T. ūs̄ı 1201–1274 with Thābit ibn Qurra’s
proof of Pythagoras’ theorem (left); explanation (right)

The Indian proof. Bhāskara (born in 1114 A.D. in India) removes these four
triangles to get (a − b)2 and concludes the proof by saying simply “Look!”,
see Fig. 1.15 (c).

The Arabic proof. But why not remove two triangles and add them on the
opposite sides, see Fig. 1.15 (d) and Fig. 1.16? By this construction, the square
of area c2 is transformed directly, without any additional triangle calculation,
into two squares of total area a2 + b2. This elegant proof is attributed to
Thābit ibn Qurra (826–901).

Proofs using tessellations. A legend says that Pythagoras discovered his
theorem by observing a tiled floor in the palace of Polycrates, the tyrant of
Samos. Since the legend does not describe the floor he considered, we have
to rely on conjectures. Some possible patterns are displayed in Fig. 1.17. The
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Fig. 1.17. Various patterns which could have tesselated Polycrates’ palace

first picture shows a tessellation of a hypothetic hall in this palace by squares
of two different areas, say a2 and b2, the two kinds in equal number. Looking
at the dotted lines, we can also imagine this floor tiled by the same number of
squares of area, say, c2. It is thus intuitively clear that a2+ b2 should be equal
to c2 (see also Penrose, 2005, pp. 26–27). In order to convert this intuition
into a more convincing proof, we isolate one square of area c2 and transform
it by parallel translations of the quadrilaterals 2, 3 and 4 as in Fig. 1.18 into
two squares of areas a2 and b2. The truth of Pythagoras’ theorem is now
immediately obvious. If we place the stars at one of the vertices of the squares
c2 (and not at their centres), we obtain in a similar way the Arabic proof (see
also Exercise 11 below).

c

1

2
3

4

a b

1

2
3

4

Fig. 1.18. Displacing tiles in Polycrates’ tessellations for Pythagoras’ theorem

The second pattern in Fig. 1.17 (proposed by Antje Kessler) might give the
idea for the Chinese proof. Finally, the third pattern, with the Swiss crosses
of area 5, indicates the truth of Pythagoras’ theorem for a particular triangle,
with sides 1, 2 and

√
5.

Euclid’s proof. This brilliant proof was much admired by Proclus (see
Heath, 1926, vol. I, p. 349). The idea is to attach the three squares of areas
a2, b2 and c2 to the right-angled triangle ABΓ as in Fig. 1.19. The two grey
triangles BA∆ and BZΓ are identical and just rotated by 90◦. The triangle
BZΓ has the same base and altitude as the square BAHZ; the triangle BA∆
has the same base and altitude as the rectangle B∆Λ. These two quadrilater-
als thus have the same area. The same proof applies to the quadrilaterals on
the right. The Pythagorean theorem now follows by adding the two results.
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Z

H
Q
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Fig. 1.19. Left: Euclid’s proof; middle: Greek manuscript; right: Arabic manuscript
(Thābit ibn Qurra, Baghdad 870)

Leonardo Pisano’s proof. Leonardo Pisano (Fibonacci) proved Pythago-
ras’ theorem in his Practica Geometriae (1220) by using Thales’ theorem (“ut
Euclides in sexto libro demonstravit”) as follows (see Fig. 1.20).

Drawing the altitude through C gives two pairs of similar triangles: DBC,
CBA and DAC, CAB; see Fig. 1.20. We thus get

a

p
=

c

a
=⇒ a2 = pc

b

q
=

c

b
=⇒ b2 = qc





=⇒ a2 + b2 = (p+ q)c = c2 . (1.9)

Note for later use that we also have

p

h
=

h

q
=⇒ h2 = pq (the altitude theorem). (1.10)

Naber’s proof. B.L. van der Waerden (1983, p. 30) attributes this proof to
H.A. Naber (Haarlem 1908); Heath (1921, p. 148) presents it as one of the
most probable original proofs of Pythagoras.

Without doubt, this proof is the most elegant of all. The four triangles in
Fig. 1.21 are similar. If the area of the first, with hypotenuse 1, is denoted by
k, the areas of the others are, by Theorem 1.6, equal to ka2, kb2, and kc2,

c

q p

b a

h

α

α

β

β

A B

C

D

Fig. 1.20. A proof using Thales’ theorem
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kb2 ka2

b a

kc2

c

k
1

Fig. 1.21. Naber’s proof

respectively. By comparing the figures, we see that, obviously, ka2+kb2 = kc2,
and it only remains to divide this formula by k.

For more proofs of the Pythagorean theorem, we recommend some exer-
cises below and the book by Loomis (1940), which enumerates 370 proofs.
One of these proofs is even due to a president of the United States (James
Garfield), from those beautiful times when mathematics was more fascinating
than oil.

Application to regular polygons. The above pre-Euclidean results allow
us to demystify many regular polygons and to compute the radii ρ of their
incircle and R of their circumcircle. The results are collected in Table 1.1.

Table 1.1. Radius of incircle (ρ) and radius of circumcircle (R) for regular polygons
with side length 1

n R ρ

3 R =

√
3
3

ρ =

√
3
6

4 R =

√
2
2

ρ =
1
2

5 R =
1√

3− Φ
=

√
2 + Φ√
5

ρ =

√
3 + 4Φ

2
√
5

6 R = 1 ρ =

√
3
2

10 R = Φ ρ =

√
3 + 4Φ
2

Proofs. One always has ρ =
√
R2 − 1

4 by Pythagoras. For n = 3 and 5, the

quantities h and * (defined in Fig. 1.22) are calculated with Pythagoras; *
simplifies by using Φ2 = Φ+ 1. This gives

h =

√
1−

1

4
=

√
3

2
, * =

√

1−
Φ2

4
=

√
3− Φ
2

.
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1 1

R

h

1

2

1

2

ρ
30◦ 60◦

30◦

1

Φ
2

' 1

2

ρ

R

A

O

36◦

72◦

Fig. 1.22. Equilateral triangle and pentagon

The values for R are obtained by applying Thales’ theorem to the grey tri-
angles in Fig. 1.22. For n = 10, see Fig. 1.10 (c) ; since α = 36◦, ten of these
triangles arranged as in a cake form a regular decagon.

1.8 Three Famous Problems of Greek Geometry

The following three problems appeared during the pre-Euclidean period and
occupied the Greek geometers for at least three centuries. The new curves and
algebraic tools which were needed to solve them contributed for another two
millennia to the development of geometry, algebra and analysis.

Squaring the circle. Finding a square whose area is equal to that of a given
rectangle was an easy exercise after the altitude theorem (1.10) was discovered.
The next challenge was then to find areas of certain regions bounded by
curves. In particular, the squaring of a given circle exercised great fascination
throughout the centuries. The earliest known result is given in the examples
No. 48 and 50 of the Rhind papyrus, see the pictures of Fig. 1.23 (left): a circle
in a square of 9× 9 = 81 units is squared by cutting off corners with two sides
of length 3 units. This creates a surface of 81−18 = 63 units. Since 63 is close
to 64 = 82 = (9− 1)2, we obtain the “Egyptian algorithm”

subtract one ninth of the diameter, then square .

This is demonstrated in No. 50, where (reproductions from Peet, 1923)

the area of a circle of diameter 9 is 64
.

In Rhind No. 42, while computing the volume of a cylindrical container, the

area for diameter 10 is given as 79 1
108 + 1

324 or , which

is 79 1
81 , the correct value. In modern notation these values correspond to the

approximation π ≈ 256
81 = 3.1605. Only during the Greek period were rigorous
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results obtained. Archimedes showed is his celebrissimo work (Measurement
of a circle, Heath, 1897, p. 91), with virtuoso estimates from above and below
that

3
10

71
< π < 3

1

7
. (1.11)

The details are given in Exercise 22 on page 58. In Chap. 8 we will see why all
the efforts of the Greek geometers to obtain an exact solution were doomed
to failure.

d
3

d
3

d
3

d

F

Fa

Fb

Fig. 1.23. Squaring the circle in Rhind papyrus (left pictures, reproduced from
Rhind No. 48 in Peet, 1923); the quadrature of the lunes of Hippocrates (right)

The lunes of Hippocrates. However, one precise result in this direction
was found during the Greek period, the squaring of the lunes by Hippocrates
of Chios.4 Let two lunes be cut out by three semicircles drawn on the sides
of a right-angled triangle (see Fig. 1.23, right). Then their areas satisfy the
relation

Fa + Fb = F (area of the triangle). (1.12)

To see this, let F ′
a, F

′
b and F ′

c be the areas of the semicircles with diameters a, b
and c. Then we see from the figure that F ′

a+F ′
b +F = Fa +Fb+F ′

c. We have
to know that Theorem 1.6, i.e. the fact that the areas of the semicircles are
proportional to the squares of the diameters, remains valid here (this result
will later be Eucl.XII.2). Then the terms F ′

a+F ′
b and F ′

c cancel by Pythagoras’
theorem.

Doubling the cube. The problem is: find a cube whose volume is twice that
of a given cube (see Fig. 1.24, left). Ancient sources give two different versions
for the origin of the problem: according to one source, King Minos of Crete
wanted Glaucus’ tomb to be doubled (see Heath, 1921, p. 245); according to
the other source, the oracle of Delos ordered the altar to be doubled in order
to stop a plague epidemic. When the people went to Plato asking for help with
the solution, he replied that the oracle did not mean that the actual doubling
of the altar would heal the people, but that the advances in mathematics
required for this construction would do so. For the geometers, who already
knew how to double a square (see Section 1.6), this problem, which consists in

4who lived in the 5th century B.C., not to be mistaken with his contemporary
Hippocrates of Kos, the famous physician.
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α
A

B

Fig. 1.24. Doubling the cube (left; the picture is a stereogram, if you stare at it by
merging the two images with the left and right eye, you’ll see it in 3d); trisecting an
angle (right)

constructing 3
√
2, was an interesting challenge. We will see how this problem

led to the discovery of the first conic sections (Chap. 3) and many other new
curves, one of which is the conchoid (see Chap. 4). Today’s science would not
be the same without the theory of conics (Chap. 5).

Trisecting an angle. The regular polygons with their divine beauty have
fascinated geometers since time immemorial. The square and the equilateral
triangle were known to the Babylonians, the regular pentagon was demys-
tified by the Greeks (see above). Since it is easy to bisect an angle (e.g.
with Eucl. III.20), we have no difficulty in constructing a hexagon, octagon,
decagon, dodecagon or any 2k-gon. The next challenges are thus the regular
heptagon (7-gon) and the regular enneagon (nonagon, 9-gon). This last prob-
lem would require one to trisect the angle of 120◦. From this question arose
(probably) the challenge of trisecting any given angle (see Fig. 1.24, right).
The solution of these problems contributed considerably to the development
of algebra (see Chap. 6).

1.9 Exercises

1. Ptolemy gives the approximation
√
3 ≈ 1, 43 55 23

in base 60 (see Heath, 1926, vol. II, p. 119). Check whether he is accurate.

2. Modify the proof of Theorem 1.4 for the case in which the points C and
D are not on opposite sides of AB, see Fig. 1.25 (left). This time, α will
be the difference of two angles β and γ.

3. Let ABC be a triangle inscribed in a circle, as in Fig. 1.25 (right). Show
that the size of α is independent of the position of A on the circle
(Eucl. III.21).

4. In order to approximate the golden ratio we consider the sequence of
rational numbers given recursively by
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O
A B

α 2α

D
C

α

α

C

B

A

Fig. 1.25. Eucl. III.20 modified (left); Eucl. III.21 (right)

rk+1 = 1 +
1

rk
, k ≥ 0

with r0 = 1. Find a relation to (1.3) and discover, by considering the
denominators of the fractions rk, an interesting sequence, the Fibonacci
numbers .

5. Let a “golden” rectangle with sides Φ and 1 be given. Show that cutting
off a square from this golden rectangle produces another golden rectangle
with sides smaller by the factor 1/Φ (see Fig. 1.26). The procedure can be
repeated and produces an embedded sequence of golden rectangles. If we
draw a quarter of a circle in each of these squares, we obtain a beautiful
spiral which is said to possess great mystical power ...

Φ

1
1

Φ

1

Fig. 1.26. A golden rectangle and its subdivisions

6. Find the error in the “proof” presented in Fig. 1.27, where different ar-
rangements of identical pieces suggest that 273 = 272.

Fig. 1.27. A curious proof that 273 = 272
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7. The Ancients were skilled at extracting square roots as this was neces-
sary for applying Pythagoras’ theorem (see also Exercise 22 of Chap. 2).
Rediscover the method which (probably) allowed the Babylonians, nearly
4000 years ago, to find the excellent value 1, 24 51 10 in base 60 for

√
2.

Hint. On another Babylonian tablet, which lists squares of numbers, you
will discover that a square of sides 1, 25 has an area very close to 2, because
(1, 25)2 = 2, 00 25 in base 60. Cut two strips of width δ from this square
in order to reduce the area to 2.

8. Triangular arrangements of dots of the form

= 1, = 3, = 6, = 10, = 15, . . .

were sacred figures for the Pythagoreans, especially the holy tetractys
with 10 dots, by which the Pythagoreans used to swear. Find a general
expression for tn, the number of dots of the n-th figure.

9. Find a general formula for the pentagonal numbers

= 1, = 5, = 12, = 22, . . . .

10. (Inspired by a picture of Eugen Jost, 2010.) Guess a formula for the num-
ber of dots forming an equilateral triangle on a hexagonal grid

= 1, = 4, = 9, = 16, = 25, . . .

and explain the result.

11. Glue the drawings of Fig. 1.28 onto some cardboard (or make a Xerox
copy if you want to preserve this beautiful book undamaged). Carefully
cut out the pieces to obtain two jig-saw puzzles that allow one to grasp
(literally) a 2500-year-old theorem. Which theorem is this?

12. Explain another version of Euclid’s proof of Pythagoras’ theorem (see
Fig. 1.29, left and middle pictures): Produce ZH and KΘ to find a point
Π such that Π, A,Λ are collinear and ΠA = B∆ (why?). Move the area
a2 first upwards parallel to ZH and then downwards parallel to ΠA.

13. (A discovery of Heron.) Show that in Euclid’s figure for the proof of
the Pythagorean theorem the lines ΓZ, BK and AΛ are concurrent, see
Fig. 1.29 (right).



24 1 Thales and Pythagoras
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Fig. 1.28. Two jig-saw puzzles of high educational value
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Fig. 1.29. Another proof of Pythagoras’ theorem (left); Heron’s discovery about
Euclid’s figure (right)

14. Given an angle AOB with vertex O and a point P inside the angle, con-
struct perpendiculars PA, PB, and OC, PD, see Fig. 1.30 (left). Then
show that AC = BD (Hartshorne, 2000, p. 62).

A

B

C

D

O

P

Fig. 1.30. Diagonal in a particular quadrilateral (left); Archimedes’ Lemma (right;
copied from Peyrard’s edition of Archimedes’ Opera, vol. 2, Paris 1808)
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15. Prove one of Archimedes’ Lemmata (see Fig. 1.30, right): The area of the
moon-like region bounded by the semicircles AC, CD and DA is equal to
the area of the circle with diameter BD.

16. A young couple, to celebrate their golden wedding, set up a tent whose
base is a square of side length the golden ratio Φ (what else), held up by
5 tubes of length 1, see Fig. 1.31. Show that the polygons AEB, BEFC,
CFD and DFEA are parts of a regular pentagon. Further, show that
the angles of the faces AEB and BCEF with the base add up to a right
angle . With these two results we at once understand the construction
of the dodecahedron (Eucl. XIII.17) by attaching six of these tents to a
golden cube, see Fig. 2.37 in Sect. 2.6.

Φ
Φ

Φ

1 1

1
1

1

A

B

C

D

E

F

golden tent

Fig. 1.31. The golden tent

17. (Pythagorean triples.) Find (all)
right-angled triangles with all sides
of integer length.

5

3 4

18. Show that

x =
1− u2

1 + u2
, y =

2u

1 + u2
, u ∈ Q (1.13)

represent all points with rational coordinates on the unit circle, except
(−1, 0) (which corresponds to u =∞).

P

(a)
(b) (c)

Fig. 1.32. Geneva duck theorem (a); ornamental figure (b); ornament from a reli-
quary casket, 8th century, Abbey church of Saint Ludger, Essen-Werden (c)
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19. Prove the famous “Geneva duck theorem”: A duck moves on the Lake
of Geneva at constant speed towards a point P and creates circles at a
constant rate (see Fig. 1.32 (a)). Prove (with Thales) that any half-line
through P is cut by the circles into intervals of the same length (the
situation is slightly more complicated if the movement is “supersonic”).

20. An ancient ornamental figure (see Figs. 1.32 (b) and (c)) consists of a circle
(which we take of radius 1) from which a cross is cut out. The cross is
bordered by eight circular arcs which are either tangent to each other or
cut orthogonally at the centre. Find the area of the part shaded in grey.

(a)

r

r

a

b

r−aA B

C(b)
a2 c2

b2
d2

(c)

Fig. 1.33. Leonardo’s proof (a); altitude theorem (b); four squares (c)

21. Explain Leonardo da Vinci’s proof (see Fig. 1.33 (a)) of Pythagoras’ the-
orem, which is striking by— its beauty!

22. Use Fig. 1.33 (b) to deduce the altitude theorem (1.10) for triangle ABC
from Pythagoras’ theorem for the small dark triangle, and conversely.
(This will be Eucl. II.14 in the next chapter.)

23. Solve a “beau problème de géométrie”, inspired by a serigraph of Max
Bill (1908–1994) and communicated to the authors by P. Zabey, Geneva:
Let ABCD be a square whose side length is taken as 1. Let E be the
midpoint of BC. Construct a square EFGH such that D is the midpoint
of FG. This creates six triangles whose angles and areas are requested.

24. The oldest theorems of humanity in this chapter provide nice discov-
eries even now in the 21st century. Prove the following result, due to
Nelsen (2004): If two chords of a circle intersect at right angles forming
four segments a, b, c, d, then a2+b2+c2+d2 = D2, whereD is the diameter
of the circle (see Fig. 1.33 (c)).

25. Analyse Dürer’s
circling of the square
(Underweysung, book 2)
and its error for π.

 1 1

 2 2

 3 3

 4 4
 5 5

 6 6

 7 7
 8 8

 9 9

1010

⇒
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The Elements of Euclid

“At age eleven, I began Euclid, with my brother as my tutor. This
was one of the greatest events of my life, as dazzling as first love.
I had not imagined that there was anything as delicious in the
world.” (B. Russell, quoted from K.Hoechsmann,
Editorial, π in the Sky, Issue 9, Dec. 2005. A few paragraphs later
K.H. added: An innocent look at a page of contemporary the-
orems is no doubt less likely to evoke feelings of “first love”.)

“At the age of 16, Abel’s genius suddenly became apparent.
Mr. Holmboë, then professor in his school, gave him private lessons.
Having quickly absorbed the Elements, he went through the In-
troductio and the Institutiones calculi differentialis and integralis
of Euler. From here on, he progressed alone.”

(Obituary for Abel by Crelle,
J. Reine Angew.Math. 4 (1829) p. 402; transl. from the French)

“The year 1868 must be characterised as [Sophus Lie’s] break-
through year. ... as early as January, he borrowed [from the Uni-
versity Library] Euclid’s major work, The Elements ...” (The
Mathematician Sophus Lie by A. Stubhaug, Springer 2002, p. 102)

“There never has been, and till we see it we never shall believe that
there can be, a system of geometry worthy of the name, which has
any material departures ... from the plan laid down by Euclid.”

(A. De Morgan 1848; copied from the Preface of Heath, 1926)

“Die Lehrart, die man schon in dem ältesten auf unsere Zeit
gekommenen Lehrbuche der Mathematik (den Elementen des Eu-
klides) antrifft, hat einen so hohen Grad der Vollkommenheit, dass
sie von jeher ein Gegenstand der Bewunderung [war] ... [The style
of teaching, which we already encounter in the oldest mathemati-
cal textbook that has survived (the Elements of Euclid), has such
a high degree of perfection that it has always been the object of
great admiration ...]” (B.Bolzano, Grössenlehre, p. 18r, 1848)
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