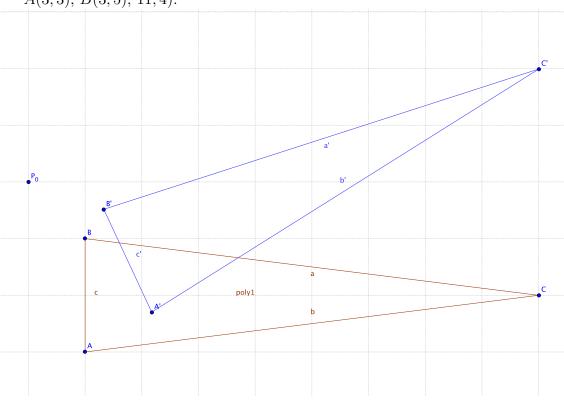
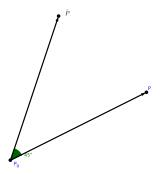
Geometría Analítica I Trabajo 20

Prof. Pablo Barrera


Jueves 13 de noviembre, 2014

Problema 1 Calcule la transformación de la forma


$$T(p) = \mathbf{A}p + b$$

que rota un punto p con respecto al punto $p_0(2,6)$ a un ángulo de 25°.

De manera particular, calcule el triángulo que se obtiene al rotar $\triangle ABC$, de $A(3,3),\,B(3,5),\,11,4).$

Para rotar un punto p(x,y) con respecto a $p_0(x_0,y_0)$ obtenemos $\tilde{p}(\tilde{x},\tilde{y})$, la idea es sencilla, desde p_0 y hacia p se forma un vector el que debe ser rotado con respecto a un ángulo θ obteniendo el vector $p_0\tilde{p}$ como se muestra en la figura

la transformación en forma vectorial se expresa como

$$\vec{p_0p} = A\vec{p_0p}$$

donde A es la matriz de rotación

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

si realizamos las cuentas tenemos que

$$\tilde{p} - p_0 = Ap - Ap_0$$

y de aquí,

$$T(p) = \tilde{p} = Ap - Ap_0 + p_0$$

observe que $-Ap_0+p_0$ es un vector y que no depende del punto que deseamos transformar (en este caso rotar) por lo que podemos calcularlo de manera independiente primero como

$$b = -Ap0 + p_0$$

y la transformación simplemente se escribe en la forma

$$T(p) = Ap + b$$

Fecha de entrega: Viernes 14 de noviembre, 2014