TRABAJO 25

1. Teniendo la siguiente ecuación de un cono

$$z^2 = x^2 + y^2$$

y la ecuación del siguiente plano

$$z = ax + by + c$$

Diga que ocurre cuando el plano y el cono se intersectan. Diga cuando esta intersección es:

- a) Una elipse
- b) Una hipérbola
- c) Una circunferencia
- d) Una parábola
- e) Un par de rectas

RESPUESTAS

Primero veremos esto de una manera muy algebráica. Igualemos las ecuaciones para obtener la ecuación de nuestro objeto de estudio

$$(ax+by+c)^2 = x^2 + y^2$$

$$\Rightarrow \zeta : (a^2 - 1)x^2 + 2abxy + (b^2 - 1) + 2acx + 2bcy + c^2 = 0$$

La ecuación anterior es como la ecuación general de segundo grado para las cónicas, es decir:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

por lo tanto podemos obtener lo que llamamos el indicador I,

$$I = B^2 - 4AC$$

y de nuestra ecuación tenemos que el indicador es

$$I = 4a^2b^2 - 4(a^2 - 1)(b^2 - 1)$$

 \Rightarrow I = 0, tenemos una parábola

I < 0, tenemos una elipse

I > 0, tenemos una hipérbola

sin embargo estas relaciones no nos dicen nada con respecto a la posición del plano con respecto al cono, o bien los casos especiales en los que obtendríamos rectas o una circunferencia.

Por ello supongamos lo siguiente: Tenemos nuestro cono circular con vértice V, el cual esta cortado por nuestro plano anterior π , y que no pasa por el vértice V. Consideremos

dos esferas S, y S', dos esferas inscritas en el cono y tangentes al plano π en dos puntos, f y f', respectivamente. Ahora sean π_1 y π_2 los planos respectivos de los círculos de contacto de las esferas S, y S' y el cono, los cuales son perpendiculares al eje del cono. También sean ℓ y ℓ' las intersecciones entre π y π_1 , π_2 , respectivamente.

Ahora tomemos un punto P cualquiera de la curva C que se forma al intersectar el cono con el plano π .

Tracemos ahora la recta \overline{PA} , la cual es perpendicular a ℓ . Así mismo tracemos \overline{VP} , a la que llamamos generatriz del cono, y que toca a los círculos de contacto de las esferas inscritas en los puntos B y B' respectivamente. Ahora nos fijamos en los segmentos \overline{PF} y \overline{PB} , vemos que estos son tangentes a S, por lo tanto

$$|\overline{PF}| = |\overline{PB}|$$

Ahora consideremos al ángulo α formado por π y π_1 , el cual es también el ángulo formado por la recta \overline{PA} y el plano π_1 . Imaginemos que trazamos por P, una recta perpendicular \overline{PN} y luego tracemos e segmento \overline{AN} , con esto obtenemos un tríangulo rectángulo con uno de sus ángulos internos igual a α . Y por ello tenemos que:

$$\|\overline{PN}\| = \|\overline{PA}\| \operatorname{sen} \alpha$$

Ahora consideremos cualquier generatriz, del cono y el ángulo β formado por esta y el plano π_1 , consideremos a esta generatriz como el segmento antes mencionado \overline{PB} . El ángulo β es constante para cualquier cono circular recto. Ahora análogamente a lo que hicimos anteriormente tracemos el segmento \overline{BN} sobre el plano π_1 . Así obtenemos un triángulo rectángulo PNB. Por lo tanto

$$\|\overline{PN}\| = \|\overline{PB}\| \operatorname{sen}\beta$$

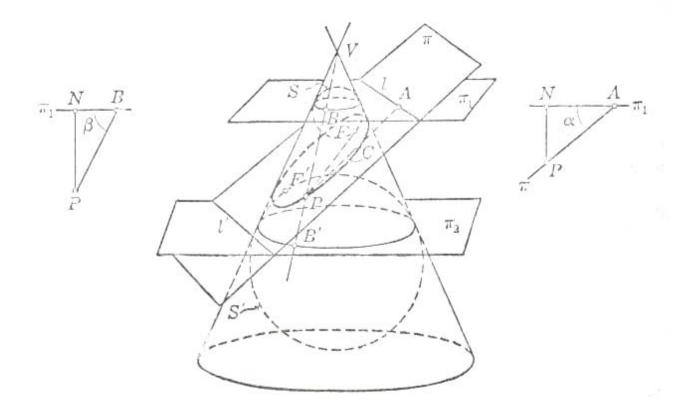
Y de las relaciones anteriores obtenemos lo siguiente

$$\frac{\|\overline{PF}\|}{\|\overline{PA}\|} = \frac{sen\alpha}{sen\beta},$$

Ahora bien, para cada plano π , que corte al cono, el ángulo α es constante, asimismo el ángulo β es constante. Por lo tanto el lado derecho de la expresión anterior es una constante a la que llamaremos e, la excentricidad de la cónica.

$$\frac{\|\overline{PF}\|}{\|\overline{PA}\|} = e$$

El procedimiento anterior lo podemos observar en la siguiente figura.



Ahora consideremos los siguientes casos:

Primero como ya habíamos dicho β es una constante para cualquier con dado, sin embargo el ángulo α cambia conforme las posiciones que vaya tomando el plano π .

- Supongamos que el ángulo $\alpha = \beta$, entonces e = 1, y la curva es una **parábola**, dado que el plano π es paralelo a una generatriz de la parábola.
- ightharpoonup Si $\alpha < \beta$ tenemos que e < 1, y tenemos una **elipse**. Aquí el plano π corta todas las generatrices sobre la superficie del cono.
- $ightharpoonup Si \ \alpha = 0$, el plano π es perpendicular al eje del cono, y obtenemos claramente una **circunferencia**. Este es un caso particular del anterior dado que aquí el plano π también corta a todas las generatrices de la superficie del cono.
- Ahora si $\alpha > \beta$, tenemos que e > 1, y obtenemos una **hipérbola**. Aquí el plano π corta a las dos hojas que forma el cono (forma dos hojas dado la naturaleza de la ecuación del cono, es decir la raíz cuadrada).
- Si el plano π pasa por el vértice V del cono y $\alpha < \beta$, entonces el plano π no toca a ninguna generatriz del cono, y lo corta en **un solo punto**, es decir el vértice V.
- \triangleright Si el plano π pasa por el vértice V del cono y $\alpha = \beta$, el plano π es tangente a la superficie a lo largo de una generatriz del cono, y obtenemos **una recta**.
- \triangleright Si el plano π pasa por el vértice V del cono y $\alpha > \beta$, el plano pasa por dos generatrices distintas del cono, y tenemos como intersección a un par de rectas que se cortan por el vértice.