Descubriendo la relación entre dos paradigmas: Filtrado por difusión no lineal y por reducción wavelet.

Ángela Mireya León Mecías

Universidad de La Habana

IV Enuentro Cuba-México, 19 de Enero 2015

Introducción

Dos métodos frecuentemente usados para el filtrado en imágenes

- Filtrado por difusión no lineal (anisotrópica)
- Reducción wavelet (Wavelet Shrinkage)

Mrázek P., Weickert J., Steidl G. Correspondes between Wavelet Shrinkage and Nonlinear Diffusion. L. D. Griffin and M. LillHolm (Eds):Scale-Space 2003, LNCS 2695, pp. 101-116, 2003.

Introducción

Filtrado

Eliminación de ruido

Ruido

nterferencia o distorsión que afecte la precisión en los datos

- 1-D calidad en la señal I = f(x)
- 2-D calidad en la imagen I = f(x, y)
- 3-D calidad en una secuencia de video I = f(x, y, t)

Introducción

Filtrado

Eliminación de ruido

Ruido

Interferencia o distorsión que afecte la precisión en los datos

- 1-D calidad en la señal I = f(x)
- 2-D calidad en la imagen I = f(x, y)
- 3-D calidad en una secuencia de video I = f(x, y, t)

lo más común

Modelo aditivo: $y(t_i) = f(t_i) + r(t_i), i = 1,..N$

• $r(t_i)$ ruido

Objetivo

Filtrar (eliminar, limpiar) el ruido $r(t_i) \Rightarrow recuperar f(t_i)$ con la mejor calidad posible

lo más común

Modelo aditivo: $y(t_i) = f(t_i) + r(t_i), i = 1,..N$

• $r(t_i)$ ruido

Objetivo

Filtrar (eliminar, limpiar) el ruido $r(t_i) \Rightarrow recuperar f(t_i)$ con la mejor calidad posible

Interés particular: eliminar ruido de imágenes digitales $I_i = f(x_i, y_j)$

- (x_i, y_j) : posición de los píxeles en una imagen
- Ii valor de la intensidad en escala de grises

Salt and Pepper noise 5%

Median Filter mask 3x3

Imagen digital

Muestreo

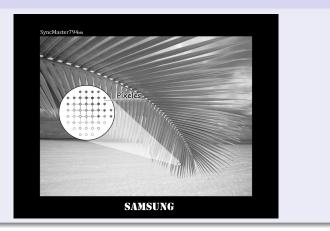
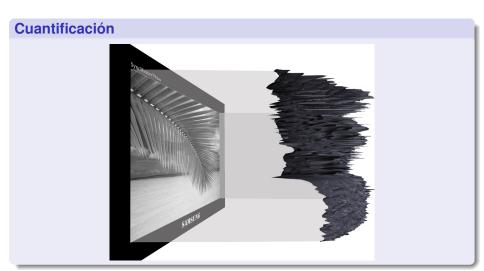


Imagen digital



La imagen:medio de comunicación poderoso

Métodos de filtrado en imágenes

En la Literatura: Image Denoising, Image Enhacement

Filtros lineales

- $g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$
- difusión lineal (filtro Gaussiano)

Desventaja

tienden a emborronar la imagen, con la pérdida de estructuras importantes

Métodos de filtrado en imágenes

En la Literatura: Image Denoising, Image Enhacement

Filtros lineales

- $g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$
- difusión lineal (filtro Gaussiano)

Desventaja

tienden a emborronar la imagen, con la pérdida de estructuras importantes

Métodos de filtrado en imágenes

En la Literatura: Image Denoising, Image Enhacement

Filtros no lineales

- métodos estocásticos
- morfología matemática
- suavizado adaptativo
- ecuaciones diferenciales parciales
- técnicas wavelet
- métodos variacionales

Eliminan el ruido preservando ciertas estructuras como los bordes

Contenido

- Difusión
 - lineal (isotrópica)
 - no lineal (anisotrópica)
 - Coeficiente de difusión
- Reducción wavelet (Wavelet Shrinkage)
 - Transformada wavelet discreta
 - Algoritmo de reducción wavelet
 - Función de reducción
- Relación entre ambos paradigmas
 - Equivalencia entre difusión no lineal discreta y reducción wavelet
 - Relación entre coeficiente de difusión y función de reducción

Modelos de difusión

Difusión

- proceso que equilibra diferencias de concentración sin crear o destruir masa
- identificar la concentración *u* con el nivel de gris
- ley de Fick $j = -D.\nabla u$, D representa el tensor de difusión que es una matriz simétrica y definida positiva.
- ecuación de continuidad (la difusión sólo transporta la masa sin destruirla o crearla)

$$\partial_t u = -\nabla \bullet (j)$$

ecuación de difusión

$$\partial_t u = -\nabla \bullet (D.\nabla u)$$

Modelos de difusión

Difusión aplicada a imágenes

Genera una familia de imágenes $I(x_i, y_j, t_k)$, k = 1, ...T i = 1, ...M j = 1, ...N recuperadas a partir de una imagen inicial $I(x_i, y_j, t_0)$ y según un modelo dado por ecuaciones diferenciales parciales. Dicho proceso es controlado por el llamado coeficiente de difusión D

Difusión lineal: *D* =**constante**

$$\frac{\partial u}{\partial t} = \Delta u$$
$$u(x,0) = u_0(x)$$

 $u_0 \in C(\Re^2)$ acotada

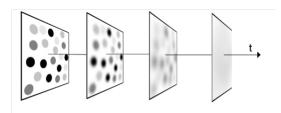
$$u(x,t) = \begin{cases} u_0(x), x = 0\\ (K_{\sqrt{2}t} * u_0)(x), t > 0 \end{cases}$$

$$\mathcal{K}_{\sigma}(x) := \frac{1}{2\pi\sigma^2} exp(-\frac{|x|^2}{2\sigma^2})$$

$$(\mathcal{K}_{\sigma}*u_0):=\int_{\Re^2}\mathcal{K}_{\sigma}(x-y)u_0(y)dy,$$
 filtro de paso bajo

• t está relacionado con el parámetro $\sigma = \sqrt{2t}$.

Características de la difusión lineal (isotrópica)



- Los bordes no son respetados
- El enlace entre regiones es destruido

Filtros de difusión lineal por primera vez en el procesamiento (T. lijima, Basic Theory of pattern normalization (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory, Vol 26, 368-388, 1962, en japonés)

Simplificar notación

Modelos unidimensionales u(x, t), u = I, nivel de gris en cada píxel

Modelo 1-D

Familia de versiones filtradas u(x,t), de la imagen f(x) como solución de

$$\frac{\partial u}{\partial t} = \partial_x \left(g(\partial_x u, t) \partial_x u \right).$$

con condición inicial

$$u(x,0)=f(x)$$

Coeficiente de difusión

 $g(\partial_x u, t)$ función no negativa que controla la difusión

Modelo 1-D

Familia de versiones filtradas u(x,t), de la imagen f(x) como solución de

$$\frac{\partial u}{\partial t} = \partial_x \left(g(\partial_x u, t) \partial_x u \right).$$

con condición inicial

$$u(x,0)=f(x)$$

Coeficiente de difusión

 $g(\partial_x u, t)$ función no negativa que controla la difusión

Intuitivamente

$$|\partial_x u|\downarrow \Rightarrow x$$
 no borde $\Rightarrow g(x,t) \to 1$
 $|\partial_x u|\uparrow \Rightarrow x$ de borde $\Rightarrow g(x,t) \to 0$

Se asegura que los bordes sean menos difuminado que el ruido

Por primera vez en el procesamiento de imágenes

P. Perona and J. Malik. *Scale-space and edge detection using anisotropic diffusion*. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-12:629–639, 1990.

$$g(\mathbf{x}) = \exp\left\{-\left[\frac{|\nabla u(\mathbf{x}, \mathbf{y})|}{k}\right]^2\right\} \quad \mathbf{y} \quad g(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + \left(\frac{|\nabla u(\mathbf{x}, \mathbf{y})|}{k}\right)^2}$$

Intuitivamente

$$egin{array}{lll} |\partial_x u|\downarrow&\Rightarrow&x ext{ no borde}&\Rightarrow&g\left(x,t
ight)
ightarrow1 \ |\partial_x u|\uparrow&\Rightarrow&x ext{ de borde}&\Rightarrow&g\left(x,t
ight)
ightarrow0 \end{array}$$

Se asegura que los bordes sean menos difuminado que el ruido

Por primera vez en el procesamiento de imágenes

P. Perona and J. Malik. *Scale-space and edge detection using anisotropic diffusion*. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-12:629–639, 1990.

$$g(\mathbf{x}) = \exp\left\{-\left[\frac{|\nabla u(\mathbf{x}, \mathbf{y})|}{k}\right]^2\right\} \quad \mathbf{y} \quad g(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + \left(\frac{|\nabla u(\mathbf{x}, \mathbf{y})|}{k}\right)^2}$$

Expresiones más usadas para el coeficiente de difusión	
g(x)=1	Difusión lineal
$g(x) = \frac{1}{1 + \frac{ x ^2}{k^2}}$	Perona-Malik 1990
$g(x) = \exp(\frac{- x ^2}{2k^2})$	Perona-Malik 1990
$g(x) = \begin{cases} \frac{1}{2} [1 - \frac{ x ^2}{2k^2}]^2, x \le \sqrt{2}k \\ 0, \text{ en otro caso} \end{cases}$	Tukey's biweight 1998,
$g(x) = \frac{1}{\sqrt{1 + \frac{ x ^2}{\kappa^2}}}$	Charbonnier 1997
$g(x) = \left\{egin{array}{c} 1, x \leq 0 \ 1 - exp\left(rac{-C_m}{(x /k)^m} ight), s > 0 \end{array} ight.$	
m = 2 Cm = 2.33666	Weickert 1998
$g(x) = \frac{1}{ x }$	Variación Total

No todas funcionan igual

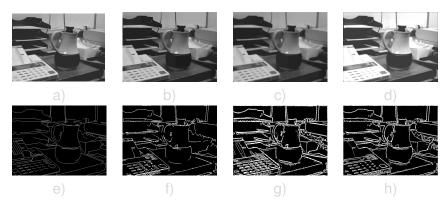


Figura: a) Imagen original. b) Suavizada por DA con KMLS. c) Suavizada por DA con p-norm. d) Suavizado Gaussiano. e) Ground truth imagen de borde f), g) and h) imágenes de borde respectivas.

No todas funcionan igual

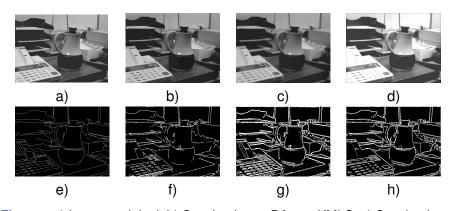


Figura: a) Imagen original. b) Suavizada por DA con KMLS. c) Suavizada por DA con p-norm. d) Suavizado Gaussiano. e) Ground truth imagen de borde f), g) and h) imágenes de borde respectivas.

Difusión no lineal

Esquema de discretización explícita

$$u_i^{k+1} = u_i^k - \tau g(|u_i^k - u_{i+1}^k|)(u_i^k - u_{i+1}^k) + \tau g(|u_{i-1}^k - u_i^k|)(u_{i-1}^k - u_i^k)$$

con condición inicial

$$u_i^0 = f_i$$
, para toda i

Transformada wavelet discreta 1-D (TWD)

- $J \ge 0$, 2^J datos $f_0, f_1, ..., f_{2^J-1}$
- Representación de f en bases wavelet

$$f(x) = \sum_{i=0}^{2^{J}-1} c_i^j \varphi_i^J(x) + \sum_{j=J}^{\infty} \sum_{i=0}^{2^{j}-1} d_i^j \psi_i^j.$$

Bases wavelet ortonormales

$$\varphi_i^j(x) = \sqrt{2^j} \varphi(2^j x - i)$$

$$\psi_i^j(x) = \sqrt{2^j} \psi(2^j x - i)$$

- $d_i^j = \langle f, \psi_i^j \rangle$ coeficientes de detalle
- $c_i^j = \langle f, \varphi_i^J \rangle$ coeficientes de aproximación

Transformada wavelet discreta 1-D (TWD)

- $J \ge 0$, 2^J datos $f_0, f_1, ..., f_{2^J-1}$
- Representación de f en bases wavelet

$$f(x) = \sum_{i=0}^{2^{J}-1} c_i^j \varphi_i^J(x) + \sum_{j=J}^{\infty} \sum_{i=0}^{2^{j}-1} d_i^j \psi_i^j.$$

Bases wavelet ortonormales

•

$$\varphi_i^j(x) = \sqrt{2^j} \varphi(2^j x - i)$$

$$\psi_i^j(x) = \sqrt{2^j} \psi(2^j x - i)$$

- $d_i^j = \langle f, \psi_i^j \rangle$ coeficientes de detalle
- $c_i^j = \langle f, \varphi_i^J \rangle$ coeficientes de aproximación

TWD de Haar

- $c_i^j = \frac{1}{\sqrt{2}}c_{2i}^{j-1} + \frac{1}{\sqrt{2}}c_{2i+1}^{j-1}$
- $\bullet \ d_i^j = \frac{1}{\sqrt{2}}c_{2i}^{j-1} \frac{1}{\sqrt{2}}c_{2i+1}^{j-1}$

Ruido en la TWD

- Si los datos f están afectados de ruido (Gaussiano), ⇒ ruido contenido en pequeñas cantidades en todos los coeficientes wavelet d^j;
- La señal original está determinada por pocos coeficientes wavelet significativos

TWD de Haar

- $c_i^j = \frac{1}{\sqrt{2}}c_{2i}^{j-1} + \frac{1}{\sqrt{2}}c_{2i+1}^{j-1}$
- $d_i^j = \frac{1}{\sqrt{2}}c_{2i}^{j-1} \frac{1}{\sqrt{2}}c_{2i+1}^{j-1}$

Ruido en la TWD

- Si los datos f están afectados de ruido (Gaussiano), ⇒ ruido contenido en pequeñas cantidades en todos los coeficientes wavelet d^j_i
- La señal original está determinada por pocos coeficientes wavelet significativos

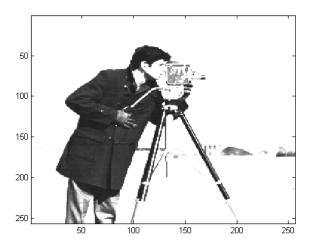
OBJETIVO

eliminar el ruido de los coeficientes wavelet

De-Noising by Soft-Thresholding, David L. Donoho. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995.

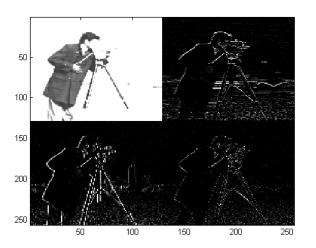
Transformada wavelet discreta 2-D

Realizar TWD 1-D por filas y luego por columnas



Transformada wavelet discreta 2-D

Un paso de la TWD 2-D de Haar



Algoritmo

- Análisis : Aplicar la TWD discreta a una señal de datos con ruido de longitud 2^N , $N \in \mathbb{Z}$
- Redución (Shrinkage): Aplicar función de reducción = umbralización de los coeficientes wavelet

$$D(d_i^j, \lambda_j^*) = \left\{egin{array}{l} sgn(d_i^j)(|d_i^j| - \lambda_j^*), ext{ si } |d_i^j| > \lambda_j^* \ 0, ext{ si no} \end{array}
ight.$$

3 Síntesis: Reconstruir la señal filtrada

$$f(x) = \sum_{i=0}^{2^{J}-1} c_i^j \varphi_i^J(x) + \sum_{j=J}^{\infty} \sum_{i=0}^{2^{j}-1} D(d_i^j, \lambda_j^*) \psi_i^j.$$

Algunas funciones de redución

$D(x) = \mu x, \mu \in [0,1]$	Umbralización lineal
$D(x,\lambda_j^*) = \left\{egin{array}{l} sgn(x)(x -\lambda_j^*), ext{ si } x > \lambda_j^* \ 0, ext{ si no} \end{array} ight.$	Umbralización suave
$D(x, \lambda_j^*) = \left\{ egin{array}{l} x - rac{(\lambda_j^*)^2}{x}, ext{si } x > \lambda_j^* \ 0, ext{si no} \end{array} ight.$	Umbralización garrote
$D(x, \lambda_j^*) = \begin{cases} x, \text{ si } x > \lambda_j^* \\ 0, \text{ si no} \end{cases}$	Umbralización fuerte

Consideraciones

- Dados $f = (f_i)_{i=0}^{N-1}$, $N = 2^J$
- Haciendo un paso de la TWD de Haar con $c_i^0 = f_i$
- eliminando los supraíndices j = 0, j = 1

Reducción para la TWD de Haar (Una combinación)

•

$$\mathbf{u}^+ = (u_i^+)_i^{N-1} = 0$$

•

$$u_2^+ i = \frac{f_{2i} + f_{2i+1}}{2} + \frac{1}{\sqrt{2}} D(\frac{f_{2i} - f_{2i+1}}{\sqrt{2}})$$

•

$$u_{2i+1}^+ = \frac{f_{2i} + f_{2i+1}}{2} - \frac{1}{\sqrt{2}} D(\frac{f_{2i} - f_{2i+1}}{\sqrt{2}})$$

•

$$u_{2i-1}^- = \frac{f_{2i-1} + f_{2i}}{2} + \frac{1}{\sqrt{2}} D(\frac{f_{2i-1} - f_{2i}}{\sqrt{2}})$$

•

$$u_{2i}^{-} = \frac{f_{2i-1} + f_{2i}}{2} - \frac{1}{\sqrt{2}} D(\frac{f_{2i-1} - f_{2i}}{\sqrt{2}})$$

Promediando ⇒ Transformación resultante por componente

$$u_i = \frac{u_i^+ + u_i^-}{2} \tag{1}$$

$$u_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4} + \frac{1}{2\sqrt{2}}D(\frac{f_i - f_{i+1}}{\sqrt{2}}) - \frac{1}{2\sqrt{2}}D(\frac{f_{i-1} - f_i}{\sqrt{2}})$$

AL FIN !!!!

Relación entre coeficiente de difusión y función de reducción wavelet

Esquema de difusión explícito (un paso)

- $u_i^0 = f_i, u_i^1 = u_i$
- $u_i = \frac{f_{i-1}+2f_i+f_{i+1}}{4} + \frac{f_i-f_{i+1}}{4} \frac{f_{i-1}-f_i}{4} \tau g(|f_i-f_{i+1}|)(f_i-f_{i+1}) + \tau g(|f_{i-1}-f_i|)(f_{i-1}-f_i)$
- $u_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4} + (f_i f_{i+1})(\frac{1}{4} \tau g(|f_i f_{i+1}|)) (f_{i-1} f_i)(1 \tau g(|f_{i-1} f_i|))$

 u_i de la DA no lineal coincide con u_i de la reducción wavelet

•
$$\frac{1}{2\sqrt{2}}D(\frac{x}{\sqrt{2}}) = x(\frac{1}{4} - \tau g(|x|))$$

AL FIN !!!!

Relación entre coeficiente de difusión y función de reducción wavelet

Esquema de difusión explícito (un paso)

- $u_i^0 = f_i, u_i^1 = u_i$
- $u_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4} + \frac{f_i f_{i+1}}{4} \frac{f_{i-1} f_i}{4} \tau g(|f_i f_{i+1}|)(f_i f_{i+1}) + \tau g(|f_{i-1} f_i|)(f_{i-1} f_i)$
- $u_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4} + (f_i f_{i+1})(\frac{1}{4} \tau g(|f_i f_{i+1}|)) (f_{i-1} f_i)(1 \tau g(|f_{i-1} f_i|))$

u_i de la DA no lineal coincide con u_i de la reducción wavelet

 \Leftrightarrow

AL FIN !!!!

Equivalencia

 Un paso de la discretización explícita de la DA no lineal es equivalente a realizar la reducción wavelet en el primer nivel de la TWD

•

$$D_{\lambda_1^*}(x) = x(1 - 4\tau g(|\sqrt{2}x|))$$

•

$$g(|x|) = \frac{1}{4\tau} - \frac{\sqrt{2}}{4\tau x} D_{\lambda_1^*}(\frac{x}{\sqrt{2}})$$

Referencias

- M. Borroto-Fernández, M. González-Hidalgo and A. León-Mecías. New estimation method of the contrast parameter for the Perona Malik diffusion equation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging Visualization, 2014 Taylor Francis, http://dx.doi.org/10.1080/21681163.2014.974289.
- 2 Bovik Al *The Essential Guide to Image Processing*. Elsevier 2009.
- Mrázek P., Weickert J., Steidl G. Correspondes between Wavelet Shrinkage and Nonlinear Diffusion. L. D. Griffin and M. LillHolm (Eds):Scale-Space 2003, LNCS 2695, pp. 101-116, 2003.
- David L. Donoho De-Noising by Soft-Thresholding. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995.
- P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-12:629–639, 1990.
- Weickert Joachim, Anisotropic Diffusion in Image Processing. B.
 G. Teubner Stuttgart, Copyright 2008.

Descubriendo la relación entre dos paradigmas: Filtrado por difusión no lineal y por reducción wavelet.

Ángela Mireya León Mecías

Universidad de La Habana

IV Enuentro Cuba-México, 19 de Enero 2015