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Abstract

A construction of a Hamiltonian path that allows the treatment
of quadratic pseudo-Boolean optimization with Adiabatic
Quantum Computing is introduced.

Any NP-hard optimization problem can be solved by reducing it
to the Maximum Independent Set problem, then through the
equivalent formulation of quadratic Boolean maps optimization
by slowly evolving the corresponding quantum system in an
adiabatic processing.
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Adiabatic Quantum Computing (AQC) was introduced to solve
optimization problems based on the Adiabatic Theorem.
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Two Hamiltonian operators are constructed: an initial
Hamiltonian H0 and an ending Hamiltonian H1, such that the
ground states of H0 are easily calculated, and the ground states
of H1 codify solutions of the given optimization problem.

If the time evolution of the quantum system is large enough,
then the system remains close to its instantaneous ground
state.

The ending Hamiltonian H1 is prepared so that its energy
function corresponds to the goal objective function.
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DECISION PROBLEM

Consists of a domain set and a partition of this set into two
subsets, the Yes-instances and the No-instances: Given an
instance, it is required to decide whether it is a Yes-instance.

SEARCH PROBLEM

Consists of a domain set and a solution set: Given a domain
instance it is required to find, to locate or to build a
corresponding companion in the solution set.

Each search problem has a decision version: Given a pair
( instance , possible solution )

it is required to decide whether the possible solution is indeed a
solution.
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OPTIMIZATION PROBLEM

Consists of a domain set, a feasible solution set, an objective
map and a goal which is either maximization or minimization:
Given a domain instance it is required to find the corresponding
feasible solution that maximizes or minimizes (according to the
goal) the objective map.

Without loss of generality, it can be assumed that the goal is
always to minimize.
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Each optimization problem poses a corresponding search
problem: Given a domain instance and a threshold, it is
required to find a corresponding feasible solution whose value
at the objective map is below the given threshold.
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ADIABATIC EVOLUTION

Let H1 = C2 be the 2-dimensional complex Hilbert space.

Let, for each n > 1, Hn = Hn−1 ⊗H1 . It is the 2n-dimensional
complex Hilbert space.

Let H : R→ GL(Hn) be a time dependent Hamiltonian operator.

The differentiable transformation x : R→ Hn is a solution of the
Schrödinger equation in the interval I ⊂ R if

∀t ∈ I : i
d
dt

x(t) = H(t)x(t). (1)
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ADIABATIC EVOLUTION

Let J ⊂ R be an interval and let τ : J → I, s 7→ t = as + b.

Let G : J → GL(Hn), s 7→ G(s) = aH(τ(s)).

If x : R→ Hn is a solution of (1),

∀s ∈ J : i
d
dt

x(τ(s)) = G(s)x(τ(s))

hence x ◦ τ is a solution of the Schrödinger equation in J for the
Hamiltonian G = a H ◦ τ .

G: continuous path in the space of Hermitian operators on Hn.
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ADIABATIC EVOLUTION

Suppose Jt0 = [0, t0] and I = [0,1].

The affine transformation is s 7→ as + b = s
t0

and the
Hamiltonian on Jt0 is Ht0(s) = 1

t0
H( s

t0
).

Let xt0 : Jt0 → Hn be a solution of

∀s ∈ Jt0 : i
d
dt

xt0(s) = Ht0(s)xt0(s). (2)

Let {λ0, . . . , λ2n−1} ⊂ RI be the spectrum of the Hamiltonian H.
Then ∀j ∈ [[0,2n − 1]]

∃yj ∈ HI
n ∀t ∈ I : H(t)yj(t) = λjyj(t) with ‖yj(t)‖ = 1.

Each yj(t) is an instantaneous eigenstate of H(t) with
corresponding energy λj .
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ADIABATIC EVOLUTION

Let us enumerate the eigenvalues paths

∀t ∈ I : λ0(t) ≤ · · · ≤ λ2n−1(t).

The path (y0(t))t∈[0,1] has extreme points y0(0),y0(1).

Let us consider Hn → C, z 7→ 〈y0(1)|z〉.

If λ1(t)− λ0(t) > 0 for all t ∈ [0,1] then, the Adiabatic Theorem
asserts:

lim
t0→+∞

| 〈y0(1)|xt0(t0)〉 | = 1.
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ADIABATIC EVOLUTION

Indeed, an upper-bound for the required time to satisfy the
Adiabatic Theorem is:

T ≥ ∆max

εδ2
min

where

δmin = min
0≤t≤1

(λ1(t)− λ0(t))

∆max = max ‖ d
dt

H(t)‖

and ε ∈ [0,1] is the approximation ratio to
the ground state of H.
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QC BY ADIABATIC EVOLUTION

The steps of an AQC algorithm are the following:
1 Prepare the quantum system in the ground state (which is

known and easy to prepare) of the initial Hamiltonian H0.
2 Encode the solution of the posed optimization problem into

the ground state of an ending Hamiltonian H1.
3 Evolve slowly enough satisfying the Adiabatic Theorem

with H(t) = (1− t
T )H0 + t

T H1 for a total time T . The final
state x(t) at time t = T will be (very close) to the ground
state of H1.

4 Perform a measurement of the state x(t) at time t = T .
With high probability the optimal solution of the
optimization problem will be found.
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THE CLASSICAL ISING MODEL

Let G = (V ,E) be a graph, E ⊂ V (2).

Let S = {−1,+1} be the set of signs.

An assignment is a map σ : V → S.

An edge weight map is of the form e : E → R and a vertex
weight map is of the form w : V → R.

Let us enumerate V = (vi)
n−1
i=0 , thus there are 2n assignments.

For respective edge and vertex weight e, w , let eij = e(vi , vj)
and wi = w(vi).

For an assignment σ, its energy is

η(e,w ;σ) = −
∑

{vi ,vj}∈E

eijσ(vi)σ(vj)−
∑
vk∈V

wkσ(vk ). (3)
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THE CLASSICAL ISING MODEL

An assignment with minimum energy is a ground state.

For β > 0, let

φ(e,w , β; ·) : σ 7→ φ(e,w , β;σ) = exp (−β η(e,w ;σ)) .

Let Φ(e,w , β) =
∑
{φ(e,w , β;σ)| σ is an assignment}.

A probability density results:

π(e,w , β; ·) : σ 7→ φ(e,w , β;σ)

Φ(e,w , β)
.
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THE CLASSICAL ISING MODEL

From (3), if the vertex weight w is null then the energy map is
“even”:

∀ assignment σ : η(e,0;σ) = η(e,0;−σ).

For an assignment σ let Spt (σ) = {v ∈ V | σ(v) = +1}.

A 2-partition of V is a collection {U,V − U} such that U ⊆ V .

Clearly σ ↔ {Spt (σ) ,V − Spt (σ)} is a bijective correspondence
among assignments and 2-partitions of V .
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THE CLASSICAL ISING MODEL

For any set U ⊆ V , let

c(U) = {e ∈ E | card (e ∩ U) = 1 & card (e ∩ (V − U)) = 1} (4)

be the collection of edges with an extreme in U and the other in
its complement. Since an assignment is an S-valued map:

∀ assignment σ : η(e,0;σ) = −
∑

{vi ,vj}∈E

eij + 2
∑

{vi ,vj}∈c(Spt(σ))

eij

=: ηs(e; Spt (σ)). (5)
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THE CLASSICAL ISING MODEL

Let us introduce the following problem:

MINIMUM WEIGHT CUT

Instance: A graph G = (V ,E) and an edge weighting map
e : E → R+.
Solution: A partition {U,V − U} of the vertex set V such that
c(U), as defined by (4), is minimum.

Clearly, this problem is equivalent to minimize the energy
operator η(e,0; ·) as defined by (3), or equivalently to find a
vertex set U which minimizes ηs(e; U) as defined by (5).
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REDUCTION TO QUADRATIC PSEUDO-BOOLEAN MAPS

Let X = {xi : 0 ≤ i ≤ n − 1} be a set of n Boolean variables.

Let Q = {0,1} be the set of the integer values 0 and 1.
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REDUCTION TO QUADRATIC PSEUDO-BOOLEAN MAPS

A Boolean function on n variables is a map from Qn into Qn,
where n is a positive integer and Qn denotes the n-fold
Cartesian product of Q with itself.

A pseudo-Boolean map of n variables is a function f : Qn → R,
where n is a positive integer.

The pseudo-Boolean maps are expressed as multilinear
polynomials.

Of particular interest are the quadratic pseudo-Boolean maps
fue : Qn → R (i.e., deg(fue) ≤ 2) expressed as

fue(X ) =
∑

i∈[[0,n−1]]

ujxj +
∑

{i,j}∈[[0,n−1]](2)
eijxixj ,

for some u ∈ Rn and e ∈ R
n(n−1)

2 .
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REDUCTION TO QUADRATIC PSEUDO-BOOLEAN MAPS

For instance, given a graph G = (V ,E), with V = [[0,n− 1]] and
E ⊆ [[0,n − 1]](2), let

fG =
∑

j∈[[0,n−1]]

xj −
∑
{i,j}∈E

xixj . (6)

An independent vertex subset of a graph G is a subset of V
such that no two vertexes in the subset represent an edge of G.

The optimization version of the Maximum Independent vertex
Subset (MIS) problem consists in finding an independent vertex
subset of maximal cardinality.

It is an NP-hard optimization problem.
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REDUCTION TO QUADRATIC PSEUDO-BOOLEAN MAPS

REMARK

Finding a maximal independent vertex subset in G is equivalent
to maximize the map fG(X ) over the hypercube Qn.

Also, quadratic maps can be considered over the n-fold
Cartesian power of the set S = {−1,+1}. In fact

PROPOSITION

Any maximization problem of a quadratic pseudo-Boolean map
over the hypercube Qn is equivalent to a minimization problem
of a quadratic map over the power Sn. In symbols:
∀e ∈ R

n(n−1)
2 ,u ∈ Rn ∃ε ∈ Qn :

ε = arg max
Qn

fue(X ) ⇔ θ(ε) = arg min
Qn

fue(X ).
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REDUCTION TO QUADRATIC PSEUDO-BOOLEAN MAPS

PROPOSITION (BOROS & HAMMER)
Every pseudo-Boolean function f over n Boolean variables can
be reduced in linear time, w.r.t. size(f ), to a quadratic
pseudo-Boolean function fue in m variables, with size
polynomially bounded w.r.t. size(f ), and such that

min
y∈Qn

fue(y) = min
x∈Qm

f (x).
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In this section we show the construction of the ending and initial
Hamiltonian operators for AQC.

The ending Hamiltonian is constructed such that it is diagonal
in the computational basis, and whose energy function
corresponds to a quadratic pseudo-Boolean function.

On the other hand, the initial Hamiltonian is constructed such
that it is diagonal in the Hadamard basis, and whose ground
state is a uniform superposition of all basis vectors.

Finally, the Hamiltonian path for AQC is stated.
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CONSTRUCTION OF THE ENDING HAMILTONIAN

The Pauli transforms σx , σz : H1 → H1, with respect to the
canonical basis, are

σx =

[
0 1
1 0

]
, σz =

[
1 0
0 −1

]
.

For any bit δ ∈ {0,1}, let τδz = 1
2(I2 − (−1)δσz).

Independently of δ, the characteristic polynomial of τδz is
pz(λ) = (λ− 1)λ and its eigenvalues are 0 and 1 with unit
eigenvectors |0〉 and |1〉, respectively.
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CONSTRUCTION OF THE ENDING HAMILTONIAN

The correspondence among eigenvalues and eigenvector is:

∀ε ∈ Q : τδz |ε〉 = (δ ⊕ ε) |ε〉 .

For any δ ∈ {0,1} and j ∈ [[0,n − 1]] let

REδjn =
n−1⊗
ν=0

sν : Hn → Hn,

where sν = τδz if ν = j and sν = I2 otherwise. In other words,
REδjn applies the transform τδz at the j-th qubit of any
n-quregister in Hn. Consequently,

∀ε ∈ Qn : REδjn |ε〉 = (δ ⊕ εj) |ε〉 . (7)
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CONSTRUCTION OF THE ENDING HAMILTONIAN

Let G = (V ,E) be a graph with vertex
set V = [[0,n − 1]] and edge set
E ⊆ [[0,n − 1]](2).

Given a vertex weight map w : V → R
and δ ∈ {0,1}, let:

Hw : Hn → Hn , Hw =
∑

j∈[[0,n−1]]

wjREδjn, (8)

such that

∀ε ∈ Qn : Hw |ε〉 =

 ∑
j∈[[0,n−1]]

wj(δ ⊕ εj)

 |ε〉 . (9)
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CONSTRUCTION OF THE ENDING HAMILTONIAN

Similarly, given an edge weight map e : E → R, let us consider

He : Hn → Hn , He =
∑
{i,j}∈E

eijREδin ◦ REδjn. (10)

From equation (7) it is satisfied that

∀ε ∈ Qn : He |ε〉 =

 ∑
{i,j}∈E

eij(δ ⊕ εi)(δ ⊕ εj)

 |ε〉 (11)

Using (8) and (10), let us define the operator

Hwe : Hn → Hn , Hwe = Hw + He (12)
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CONSTRUCTION OF THE ENDING HAMILTONIAN

and from equation (9) and (11) it follows that ∀ε ∈ Qn:

Hwe |ε〉 =

 ∑
j∈[[0,n−1]]

wj(δ ⊕ εj) +
∑
{i,j}∈E

eij(δ ⊕ εi)(δ ⊕ εj)

 |ε〉
(13)

The expression enclosed by the greatest parentheses at (13)
corresponds to a quadratic pseudo-Boolean map, and the
ground states of the Hamiltonian Hwe correspond to those
points at Qn minimizing the former quadratic form.
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CONSTRUCTION OF THE INITIAL HAMILTONIAN

The Pauli transform σx has eigenvalues +1,−1 with respective
eigenvectors c0 = W |0〉 and c1 = W |1〉, where W is the
Hadamard transform:

W =
1√
2

[
1 1
1 −1

]
.

Let (cε)ε∈Qn be the Hadamard basis, ∀ε ∈ Qn : cε =
⊗n

j=1 cεj .
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CONSTRUCTION OF THE INITIAL HAMILTONIAN

For any bit δ ∈ {0,1}, let τδx = 1
2(I2 − (−1)δσx ).

Independently of δ, the characteristic polynomial of τδx is
px (λ) = λ(λ− 1) and its eigenvalues are 0 and 1 with
respective eigenvectors c0 and c1.

The correspondence among eigenvalues and eigenvectors is
determined by δ:

∀ε ∈ Q, τδxcε = ((1− δ)⊕ ε)cε.
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CONSTRUCTION OF THE INITIAL HAMILTONIAN

For any index j ∈ [[0,n − 1]] and δ ∈ {0,1} let

RZδjn =
n−1⊗
ν=0

rν : Hn → Hn,

where rν = τδx if ν = j and rν = I2 otherwise. In other words,
RZδjn applies the transform τδx at the j-th qubit of any
n-quregister in Hn.

Consequently,

∀ε ∈ Qn : RZδjncε = ((1− δ)⊕ εj)cε. (14)
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CONSTRUCTION OF THE INITIAL HAMILTONIAN

Given a vertex weighting map h : V → R, let us introduce the
operator

Hh : Hn → Hn , Hh =
∑

j∈[[0,n−1]]

hjRZδjn.

From eq. (14), ∀ε ∈ Qn:

Hhcε =

 ∑
j∈[[0,n−1]]

((1− δ)⊕ εj)hj

 cε.
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CONSTRUCTION OF THE INITIAL HAMILTONIAN

The ground state of Hh is x0 = 1
2

n
2

∑
ε∈Qn |ε〉 with corresponding

eigenvalue equal to 0.

The problem of finding the ground state of the operator Hwe
given at eq. (12) can be approximated by adiabatic evolution
with the following path operator:

Ht =

(
1− t

T

)
Hh +

t
T

Hwe

for some large enough T ∈ R+.
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CONSTRUCTION OF THE INITIAL HAMILTONIAN

Thanks for your kind attention!!

Questions?

gmorales@cs.cinvestav.mx

http://delta.cs.cinvestav.mx/∼gmorales
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