
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

A Semantics-Based

Proof System for

Gamma

Francisco Hernández Quiroz

A thesis submitted for the degree of

Doctor of Philosophy of the University of London

and for the

Diploma of Imperial College

September 1999

Abstract

Gamma is a simple yet powerful parallel programming language whose

only data structure is the multiset or bag. Gamma programs can be com-

posed either sequentially or in parallel. The language has been applied to

graph algorithms, to scheduling problems and to image processing, among

other areas.

Mathematical correctness is especially important for a language whose

main use is to test and prove algorithms. In order to have a mathematically

sound language there are at least two issues to be considered: a semantic

model and a program logic.

Some attempts have been made to give Gamma a denotational seman-

tics. A new approach, partially based on S.D. Brookes model for shared

variable languages is used to propose a fully abstract model. This work

extends an earlier proposal of Sands which failed to be fully abstract.

A logic for proving properties of programs is also presented. This logic

is built upon: a) the denotational semantics previously introduced and

b) a multiset logic, developed specifically for this purpose. Correctness

and (conditional) completeness of the logic are also proved. The result-

ing system can be used to prove termination of programs and satisfaction

of properties (useful in testing programs against specifications) and is also

compared with previous (less general) approaches.

Some examples of the use of the program logic are given, which are

taken both from previous proof systems and from non-formal sources.

Finally, the thesis discusses the possibility of extending the proof system

and the semantics to higher-order Gamma.

Contents

1 Introduction 5

1.1 Gamma . 5

1.2 Semantics . 7

1.3 Gamma and program verification 8

1.4 Aims and plan of the thesis 9

1.5 Acknowledgements . 10

2 Gamma, program logics and domain theory 12

2.1 Multisets and their operations 13

2.2 The Gamma language . 14

2.3 Program logics . 17

2.4 Domain theory in logical form 18

2.4.1 Domains . 19

2.4.2 A metalanguage for denotational semantics 24

2.4.3 The logical/semantic sides of a language 26

2.4.4 Stone duality . 30

3 Gamma semantics 32

3.1 Operational semantics . 33

3.2 Denotational semantics . 38

3.3 Compositionality of the semantics 41

3.4 Full abstraction . 43

3.5 Domain constructions for the semantics 46

4 Gamma logic 56

4.1 Multiset logic . 58

3

CONTENTS 4

4.2 Transition trace logic . 66

4.3 Termination . 71

4.4 Examples . 76

5 Locales, bags and pipelining 81

5.1 A locale for the multiset logic 83

5.2 Multisets logic and bag languages 89

5.3 Program transformations . 92

6 Conclusions and further work 99

6.1 What has been done . 99

6.2 What is to be done . 102

Bibliography 105

Chapter 1

Introduction

Nowadays, the parallel computational paradigm is as firmly established

as the old sequential model. From hardware and software architecture to

programming languages and applications, parallelism is a normal feature of

the landscape. There has been an explosion of parallel languages (both for

specification and programming) and extensive research on mathematical

models for them.

Another topic whose legitimacy nobody questions any longer is program

verification. Since Dijkstra’s (1976) famous book, proofs of correctness in

programming—as opposed to just trial and error techniques—is an aim

serious programmers and computers scientists should reach for. Proof sys-

tems for programming languages are the ultimate tool for this task.

This study of the Gamma programming language covers both areas: a

mathematical model and a proof system for a parallel language.

1.1 Gamma

Parallelism and sequentiallity are just two sides of a coin. The problem of

coordinating components of a system embraces both sequential and par-

allel solutions. Additionally, coordination and computation are distinct,

albeit related, issues. In many cases it is natural to divide a task into differ-

ent subtasks, assigning them to separate components which perform spe-

cific computations, and then coordinate the interaction between the com-

5

CHAPTER 1. INTRODUCTION 6

ponents according to the particular nature of the problem: the result of the

computation of a given component can be the input for another and then

they require a sequential execution, while other computations are indepen-

dent and can be done in parallel.

On the other hand, many solutions in computer science have tended to

be constrained not by the nature of the problem itself, but by the arbitrary

data structures chosen for dealing with the problem. Take the common

problem of finding the maximum value of a given set (with possible repe-

titions). Many solutions rely on a specific representation of the set, usually

an array or list, and the resulting algorithm is normally sequential, as this

is the most “natural” way of searching through an array or list.

The Gamma programming language addresses explicitly these ques-

tions. Its very simple syntax distinguishes clearly between computational

and coordination issues and it helps to handle better their specific nuances.

Its only data structure, namely the multiset or bag, imposes the least con-

straints on the way programs may access data.

Banâtre & Le Métayer (1990) proposed the language as a device for

systematic program derivation in the spirit of Dijkstra’s (1976) discipline

of programming. Interest in the language grew steadily and its theoretical

aspects have been studied extensively. Gamma has also been used as a

real programming language, and some of its applications are scheduling

(Bourgois (1997)) and image processing (Creveuil & Moguérou (1991) and

McEvoy (1996)).

The inspiration for the design of Gamma is the chemical reaction meta-

phor: a collection of atomic values reacting freely in a given medium (a

multiset in this case). The atomic values change the medium until no fur-

ther reaction is possible. (See chapter 2 for a full description of the lan-

guage.) Gamma is then related to the chemical abstract machine of Berry

& Boudol (1992). It is also an example of the composed reduction systems

of Sands (1996).

Some extensions to Gamma have been proposed too. Le Métayer (1994)

introduced higher-order Gamma (see chapter 6) and Fradet & Le Métayer

(1996) proposed structured Gamma.

CHAPTER 1. INTRODUCTION 7

1.2 Semantics

Programming languages, in the same way as languages in general, can be

studied from different points of view. From a syntactic outlook, program-

ming languages are fairly well understood and we will say no more about

this facet. Semantics, in its turn, offers different perspectives. Operational

semantics defines the meaning of terms in a programming language accord-

ing to the changes in the state of the variables modified by that term. In

denotational semantics, programs are regarded, roughly, as mathematical

functions acting on values and producing values. Normally, these values

are elements in a particular domain (again, see chapter 2 for a definition of

domain). Denotational semantics is important because it provides a more

mathematically tractable way of explaining a language. A denotational

model of a language can also be the basis upon which to build a proof

system for verification of programs.

Of course, when two or more points of view exist, the question of their

total or partial equivalence arises. There are different notions of equiva-

lence between operational and denotational semantics, among them those

of adequacy and full abstraction. The latter is a fairly strong equivalence

and has the advantage of facilitating the generalization of results found in

the operational view to the denotational one, and vice versa. We say that

a denotational semantics is fully abstract if, given any two programs P and

Q, they are equivalent in terms of the operational semantics if and only if

they are also equivalent in denotational terms.

A simple syntax does not necessarily mean a simple semantics in pro-

gramming languages and Gamma is not the exception. There are at least

three competing operational semantics for Gamma (see chapter 3). Never-

theless, one can safely say that there is a good understanding of this topic,

up to the point of characterizing where the competing models differ. The

same cannot be said about Gamma denotational semantics.

Using ideas advanced by Brookes (1992, 1985, 1993) in the context

of a shared-variable programming language, Gay & Hankin (1996b) pro-

duced a denotational semantics for Gamma. Sands (1993a) made another

proposal, with the additional virtue of being compositional, that is, the

CHAPTER 1. INTRODUCTION 8

denotation of a program could be derived from its syntax (ie, the way its

components are connected). But the two models lacked full abstraction,

making it difficult to go from operational to denotational reasoning.

1.3 Gamma and program verification

When reasoning about correctness of programs, parallelism is inherently

more difficult than sequentiality. Two programs can behave well in isola-

tion, that is, they will terminate and produce a correct output, but when

they act in parallel they may block each other’s actions (deadlock is an

instance of this problem) or fail to terminate. A proof system or program

logic for correctness is the most powerful tool to deal with these undesired

possibilities.

Gamma poses special challenges to the design of a proof system. To

begin with, the program logic has to face the particular problems of par-

allelism. Although some help can be drawn from past experiences with

parallel languages, there are some specific issues we shall explain in chap-

ter 3 and 4. Secondly, we need a logic to reason about multisets, as it is the

only data structure in the language. Contrary to what one might think on

a first approach, the definition of a multiset logic is not a trivial problem.

Thirdly, a complete proof system should have inference rules to deal with

all the normal problems of program verification: total and partial correct-

ness, termination etc. Finally, we have to prove soundness and at least a

certain form of completeness of the system (see section 2.3).

Denotational semantics and proof systems are not unrelated fields. De-

notational semantics appeared as a better way of understanding the be-

haviour of programs, making it easier to assess their correctness. Abramsky

(1991) made an explicit connection between the two subjects explaining

how a proof system for a programming language can be derived from its

denotational semantics. Abramsky called his method domain theory in log-

ical form, because it is based in domain theory and its purpose is to build

program logics.

The relevant literature contains many examples of partial proof systems

CHAPTER 1. INTRODUCTION 9

for Gamma. Banâtre & Le Métayer (1990) already offered a method for

designing correct Gamma programs. Errington, Hankin & Jensen (1993)

presented a more complete program logic, although its design made it very

difficult to apply. Gay & Hankin (1996a) presented a simpler system, but

some of its inference rules were unproven. Chaudron (1998) and Reynolds

(1996) are other proposals. Unfortunately, none of them constituted a full

and integrated proof system.

1.4 Aims and plan of the thesis

We have already hinted at the two main topics of the present work: a deno-

tational semantics and a proof system for Gamma. In looking for a answer

to these questions, some other topics arose: the theoretical foundations of

a multiset logic, its relationship with work on multisets in the context of

databases and, finally, the application of the newly developed concepts to

the study of program transformation.

The latter aims inform the structure of the thesis. Chapter 2 covers

background issues, while chapters 3, 4 and 5 contain all of the original

results. The last chapter is devoted to conclusions and future work. Each

chapter opens with a brief survey of the situation in the field and the spe-

cific contributions of the present thesis. References to past or related work

are given too. Here is a more detailed description of the content of each

chapter:

Although domain theory is a staple component of theoretical computer

science, domain theory in logical form is not so widely known. Thus, we

present a brief summary of the theory in chapter 2, preceded by a formal

introduction to Gamma and some notational issues.

Chapter 3 is devoted to Gamma semantics. It opens with Gamma opera-

tional semantics and some related concepts. A new denotational semantics

comes afterwards. The next subject is the proof of full abstraction of the

denotational semantics. Some other results appear also at this point. The

chapter concludes with a functional version of the semantics.

Chapter 4 starts with the multiset logic, with some illustrative examples.

CHAPTER 1. INTRODUCTION 10

The Gamma proof system is then built upon the concepts introduced in

chapter 2. Soundness and (conditional) completeness of the proof system

are the next results. As with the multiset logic, some examples of correct-

ness of programs are presented.

In chapter 5, related issues are dealt with. In the first place, the multiset

logic is analyzed from a more theoretical point of view. Next, some rela-

tionships between the logic and the bag-language of Libkin & Wong (1993)

are established. Finally, there is an example of application of the multiset

logic to program transformation analysis.

Apart from two presentations in workshops—Hernández Quiroz (1998,

1999)—, the main results have not appeared before.

1.5 Acknowledgements

In the first place, I’d like to mention Chris Hankin, whose dedication and

support towards my work exceeded by far what one can normally expect

from a supervisor. His advice and direction made my PhD a very fruit-

ful experience. Secondly, I want to thank Steve Vickers—also at Impe-

rial College—for the many discussions and comments. I would have never

achieved some results without his guidance.

Prahladavaradan Sampath was always a valuable source of ideas and

references. Carlos Duarte and Russell Harmer made useful comments on

previous versions of my work. David Sands discussed with me a preliminary

version of the Gamma semantics. Simon Gay, Mauricio Álvarez Manilla and

Philipp Sünderhauf offered some pointers to relevant literature.

I also want to thank the people who made my studies abroad possible.

I start with Felipe Bracho: his encouragement and help were fundamental.

Olbeth Hansberg, Adolfo García and Elisa Viso also help me with practical

issues.

The work for a PhD is not only an academic pursuit, but also a personal

challenge. Therefore, I’d like to name the people who played an important

role during this period. Ana Rosa Pérez, apart from being my mentor during

my years in Philosophy, influenced my decision to come to Britain. Ena

CHAPTER 1. INTRODUCTION 11

Lastra, Arturo G. Yáñez and Concepción Abellán also contributed in that

direction. The friendship of Eugenia O’Reilly, Ángela Cenarro, Lei Yu and

Virginia Aguirre was an unmissable part of the experience.

Finally, I thank my parents for their caring support and my brother, to

whom this thesis is dedicated.

The DGAPA of the UNAM (National University of Mexico) sponsored my

PhD. The ESPRIT Working Group “Coordina” funded an academic trip to

the conference Coordination ’99 in Amsterdam as part of my research.

Chapter 2

Gamma, program logics and

domain theory

The purpose of this chapter is to introduce some notational devices and

background theory which will be used in the rest of the thesis:� We will start by presenting multisets and some other assorted concepts.� Secondly, there will be a formal introduction to the Gamma program-

ming language, including some examples, operations and relations use-

ful to understand the behaviour of the language.� Thirdly, comes a brief summary of what a program logic looks like, to

clarify the goals of chapter 4 (and indeed of most of the thesis).� Finally, domain theory in logical form (DTLF for short) will be explained.

This theory is the basis for our Gamma proof system.

The Gamma programming language was first introduced by Banâtre

& Le Métayer (1990). In a further paper, Banâtre & Le Métayer (1993)

gave some examples of problem solving with Gamma including graph and

string problems. More applications have appeared afterwards: scheduling

(Bourgois (1997)), image processing (Creveuil & Moguérou (1991) and

McEvoy (1996)), among others.

The field of program logics has a very long history. Among the first

attempts we have Hoare (1969) and his logic of partial correctness, Dijk-

12

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 13

stra (1976) and his discipline of programming and weakest preconditions.

Regarding parallel programming languages, Brookes (1985), Chandy &

Misra (1988) and Lamport (1994) are some of the numerous examples.

Banâtre & Le Métayer (1990) themselves offered a simple proof system

for specifying and developing Gamma programs, taking some ideas about

multiset orders from Dershowitz & Manna (1979).

One of the explicit aims of DTLF is precisely to address program logics.

Abramsky (1991) intended to unify denotational semantics (in its domain-

theoretical version as developed by Scott (1982) and Plotkin (1981) and

many others) and program logics. The Stone duality theorems (Stone

(1936)) are the mathematical foundation of Abramsky’s work.

This approach has proved very fruitful: Abramsky (1987) generated a

logic for labelled transition systems which subsumed Hennessy & Milner’s

(1985) logic. Jensen’s (1992) strictness logic is an application of DTLF to

the abstract interpretation of programs.

Zhang (1991) explored DTLF in the context of SFP and stable domains

and their corresponding domain logics, and it is a very complete presenta-

tion of the subject.

Gay & Hankin (1996b, 1996a) have built proof systems for Gamma

based on DTLF methods. Their results were the inspiration to apply DTLF

to my own work.

2.1 Multisets and their operations

In plain language, a multiset is a collection of elements with repetitions.

More formally, a multiset of elements in D is a function M : D ! N . We

will only be interested in finite multisets, that is functions where there is

only a finite number of elements in D with M(x) > 0. We shall also use the

following notation for multisets:fjx1, : : : , xnjg,

where the xi’s are not necessarily distinct. The set of finite multisets of

elements in D will be denoted by M (D). If M and N 2 M (D) the following

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 14

functions define their union, difference and intersection, respectively:(M ℄ N)(x) = M(x) + N(x)(M � N)(x) =
�

M(x)� N(x) if M(x) � N(x)
0 otherwise(M\+ N)(x) = minfM(x), N(x)g.

In a way analogous to set inclusion, M � N if and only if M(x) � N(x) for

every x 2 D.

A bijection � : f1, : : : , ng ! f1, : : : , ng is called a permutation. It is clear

that fjx1, : : : , xnjg = fjx�(1), : : : , x�(n)jg,
although the labels of the elements in the multiset have been changed.

The set of booleans is B = ftrue, falseg. Given an arbitrary set T, a

predicate of cardinality n is a function Rn : Tn ! B . The set of predicates

of cardinality n is Rn and the set of all predicates isR =
[
n2N Rn .

We will also call predicates reaction conditions.

Let f1 : Tn ! T, f2 : Tn ! T, . . . , fm : Tn ! T be functions. The function

An : Tn ! M (T) defined by

An(x1, : : : , xn) = fj f1(x1, : : : , xn), : : : , fm(x1, : : : , xn)jg
is called an action. The notation (x1, : : : , xn) ! An(x1, : : : , xn) is also com-

mon for denoting actions. A n = fAn : Tn ! M (T)g is the set of actions of

cardinality n. Again, A =
[
n2N A n .

Reaction conditions and actions are the basic ingredients of Gamma.

2.2 The Gamma language

The intentions of the creators of Gamma are clearly visible in the language’s

simplicity: coordination between components rather than computation is

the main issue.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 15

Intuitively, Gamma programs are made of atomic reactions (also called

rewriting rules) which take a multiset, check if a certain reaction condi-

tion is met and then transform the multiset according to the rules of an

action. Atomic reactions can be combined sequentially or in parallel. More

formally, the syntax of a Gamma program is:

P ::= (x1, : : : , xn) ! An(x1, : : : , xn) (Rn(x1, : : : , xn) j P Æ P j P + P,

where Rn is a predicate and An an action. The set of all Gamma programs

is G .

The effect of an atomic reaction in a multiset M is to take out a tuple

satisfying Rn and replace it with the result of An applied to the same tuple.

If there is not such a tuple in M then the multiset remains unchanged and

the atomic reaction finishes.

P2 Æ P1 is the sequential composition of two programs, where P2 is

applied to a multiset M if and only if P1 cannot react with M any longer.

P1 + P2 is the parallel composition, where any of P1 or P2 can react with

a multiset at a given time. To terminate, both P1 and P2 should simultane-

ously be unable to react any longer with the multiset. A more mathemati-

cally precise way of describing the behaviour of Gamma programs will be

given in chapter 3 by means of an operational semantics.

To abbreviate programs, a reaction(x1, : : : , xn) ! An(x1, : : : , xn) (Rn(x1, : : : , xn)
can also be written as x̄ ! A(x̄) (R(x̄) (implying that R, A and x̄ have the

same cardinality) or even as A (R.

A rewriting rule A (R can be considered a function from multisets to

sets of transformed multisets. To describe this view let us introduce yet

another function S : A n � Rn � M (T) ! Pfin(M (T)) defined as follows:

S(An, Rn, M) = fN j N = (M � fjx1, : : : , xnjg) ℄ An(x1, : : : , xn)g
where fjx1, : : : , xnjg � M and Rn(x1, : : : , xn) holds. According to this defini-

tion, when the rewriting rule cannot react with a multiset M (ie, it termi-

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 16

(0,0)

(-1,-1) The Sierpinski triangle

nates) then S(An, Rn, M) = ;. S can be generalized to arbitrary programs

(of course, after changing its domain to G):

S(P2 Æ P1, M) =
�

S(P2, M) if S(P1, M) = ;
S(P1, M) otherwise

S(P1 + P2, M) = S(P1, M) [S(P2, M).
To finish this section let us present some examples of Gamma programs:

2.2.1 McEvoy (1996) offers a program for generating the Sierpinski trian-

gle. The Sierpinski triangle is a fractal object (Barnsley (1993) gives a good

introduction to the subject) and the program will produce a multiset with the

points in the triangle up to k iterations. The elements in the multiset are tuples

of the form (x, y, z), where x and y correspond to the coordinates of the point

and z is the number of iterations which have produced that point:

Sier = ((x, y, z)) !fj(x=2� 2=5, y=2� 2=5, z + 1), (x=2� 2=5, y=2 + 2=5, z + 1),(x=2 + 2=5, y=2 + 2=5, z + 1)jg(z < k

The execution of the program should start with the multiset fj(0, 0, 0)jg.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 17

2.2.2 A program for calculating the product of the two biggest elements in a

multiset, taken from Reynolds (1996)’s paper. The program can be applied to

any M 2 M (N).
Max = (x, y, z)! fjx, yjg (x � z ^ y � z

Prod = (x, y)! fjxyjg (true

P = Prod Æ Max.

2.2.3 A program to produce the n-th Fibonacci number when applied to the

multiset fjnjg. This program was originally proposed by Hankin, Le Métayer &

Sands (1993).

Pred = x ! fjx � 1, x � 2jg ((x > 1)
One = x ! fj1jg ((x = 0)
Sum = (x, y) ! fjx + yjg (true

Fib = Sum Æ (Pred + One).
The correctness of the three programs will be proved in chapter 4.

2.3 Program logics

In broad brush strokes a program logic consists of a language to make asser-

tions about programs (which can be called specification) and axioms and

rules to prove them (also known as verification). Hoare triples are expres-

sions like fSgPfRg, where S and R are sets of assertions and P is a program.

The meaning of the expression is: if S is true before the execution of P and

P terminates, then R is true after the execution of P (Hoare (1969)).

In general, let us suppose we have a series of well-formed formulas L,

expressing properties of programs in a certain programming language P. If

P 2 P and � 2 L, we want to prove statements of the form:

P j= �,

where ‘j=’ means ‘satisfies’. This is what Abramsky (1991) calls an endoge-

nous logic, in which formulas describe properties of single programs.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 18

We can also have exogenous logics: programs are embedded in formu-

las as modal operators. In this way, a Hoare triple like f�gPf g can be

represented by �) [P℄ .

To build a proof system about every possible realm of application from

scratch is clearly impossible. Rather, we will assume there are already

working proof systems for actions and basic types (numbers, booleans,

etc). Then those systems will be used as components of a multiset logic

(namely a logic for making and proving assertions about multisets) and

then a whole program logic. This plan will comply with Gamma’s motto of

separating coordination from computation. Our logic will be of the endoge-

nous kind.

In designing a proof system we face a further problem: how do we know

the logic itself is correct. Basically, we have two goals in mind:� Soundness: if P j= � according to the logic, then the execution of the

program must meet the ‘real-life’ properties described by �.� Completeness: If a program P has a property p and the property is express-

ible in the language by the formula �, can we always prove P j= �?

Soundness is paramount: we do not want spurious proofs of correct-

ness. Completeness is beyond our reach as a consequence of Gödel’s (1930,

1931) theorem of incompleteness, of course. Nevertheless, given a re-

stricted (but still interesting) language of assertions, a form of complete-

ness can be found. It is here that domain theory enters the picture.

2.4 Domain theory in logical form

Abramsky (1991) stated the research program of DTLF as follows:

1. A programming language can be seen as a set of types and type combi-

nators. Programs are terms belonging to these types.

2. Types are assigned to domains and typed terms (programs) to elements

in the domains through a metalanguage.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 19

3. On the other hand, a logical interpretation of the metalanguage trans-

lates types into propositional theories and programs are interpreted via

the satisfaction relation j=.

4. Correctness of this interpretation is guaranteed by the Stone duality the-

orems: the denotational (domain-theoretical) semantics of a language

and the logical interpretation of the previous paragraph are Stone duals

(ie, each determines the other up to isomorphism). Soundness and

completeness of the program logic are direct consequences of Stone

duality.

To fully present this programme we will start with some definitions

regarding domains (mainly for notational clarity). Next, the metalanguage

as well as its logical interpretation will be introduced. Lastly, (one of) the

Stone duality theorem(s) will be given along with some soundness and

completeness results.

2.4.1 Domains

It is not intended to give here an introduction to domain theory, but only to

present the notation, so the concepts in this section appear in a rather con-

cise fashion. Readers not familiar with the subject will find good introduc-

tions to posets and other ordered structures in Davey & Priestley (1990),

Abramsky & Jung (1990) and Plotkin (1981).

Definition 2.4.1 A partially ordered set hP,vi (or poset, for short) consists

of a set P and a reflexive, transitive and antisymmetric relation v� P � P. If

X � P, then:

i) u is an upper bound of X iff x v u for every x 2 X. m 2 X is a minimal

element of X if there is no y 2 X such that y 6= m and y v m.

ii)
F

X is the least upper bound of X (also known as supremum, lub or

join) iff
F

X v u for every upper bound u of X. If X = fa, bg then
F

X can be

written as a t b.

iii) l is a lower bound of X iff l v x for every x 2 X. m 2 X is a maximal

element of X if there is no y 2 X such that y 6= m and m v y.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 20

iv) X, defined in a similar way to
F

X, is the greatest lower bound (infi-

mum, glb or meet) of X. If X = fa, bg then X can be written as a u b.

v) Let " X = fy 2 P j 9x 2 X : x v yg and # X = fy 2 P j 9x 2 X : y v
xg. " x is an abbreviation for " fxg. # x is similar.

vi) X is upper closed iff X =" X and lower closed iff X =# X.

vii) The symbol ? (called bottom) will represent an element in P such that? v p for every p 2 P. The symbol > (top) will refer to an element with the

property that p v > for every p 2 P. Note that ? and > do not always exists.

viii) A relation v � P � P which is only transitive and reflexive (but not

necessarily antisymmetric) is a pre-order.

In studying posets the question of when a certain set has a supremum

or an infimum is very important and the following definition allows us to

talk about such elements in a general context.

Definition 2.4.2 Suppose that X is a property of subsets of P. We will say

that:� hP,vi is X-complete if S � P and X(S) imply that S exists.� hP,vi is X-cocomplete if S � P and X(S) imply that
F

S exists.

Being a chain and being directed are some of the properties of subsets

we will be interested in:� Let X � P, X 6= ;. If for every a, b 2 X either a v b or b v a then X is

a chain. If for every a and b 2 X, a t b exists and a t b 2 X, then X is

directed.� If for every directed set X � P, X (or
F

X) exists then the poset P is

directed-complete (or directed-cocomplete).

Lattices are finite-complete and finite-cocomplete posets. A lattice that is

not only finite but arbitrarily complete and cocomplete is a complete lattice.

A lattice in which

x u (y t z) = (x u y) t (x u z)

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 21

holds is a distributive lattice. A frame is a finite-complete and arbitrary-

cocomplete poset which is also distributive.

Ideals and filters are special subsets of a lattice:

Definition 2.4.3 Let L be a lattice and X a non-empty subset of L. X is called

i) an ideal iff it is lower closed and x, y 2 X implies x t y 2 X;

ii) a filter iff it is upper closed and x, y 2 X implies x u y 2 X;

iii) ideals and filters that do not coincide with L are proper. If x 2 L, ideals

of the form # x and filters of the form " x are principal;

iv) if X is a proper ideal and x u y 2 X implies x 2 X or y 2 X, then X is

a prime ideal.

v) Prime filters are defined in a similar way. The set of prime filters of L

ordered by inclusion is denoted by Spec L.

vi) When X � L is a proper ideal and the only ideal properly containing

X is L itself, X is called a maximal ideal. A maximal filter (also known as an

ultrafilter) is defined in an analogous way.

vii) Given a pre-order P, the set of ideals of P ordered by �, known as the

ideal completion of P, is a lattice and it is represented by Idl P. Lattices of this

kind play an important role in the construction of powerdomains as we will

see later.

Elements in posets are frequently thought of as approximative values in

the computation of a certain object (like a function). Some of these values

are seen as finite steps in the computation process, while others can be

regarded as limits of the computation. Hence it is useful to distinguish the

first class of elements:

Definition 2.4.4 Let c 2 P. Then c is called compact or finite iff whenever

X � P is directed and c v F X, there exists x 2 X such that c v x. The set of

compact elements of the poset P is denoted by K(P).
A poset P is algebraic iff for every x 2 P, we have that fc 2 K(P) j c v xg

is directed and x =
Ffc 2 K(P) j c v xg.

We will be interested in some particular kinds of posets known generi-

cally as domains. However, while there is no confusion about the meaning

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 22

of monotonic and continuous functions in the literature, the term domain is

used in different ways from one text to another. We shall use the following

definition:

Definition 2.4.5 A domain is an algebraic directed-cocomplete poset with a

least element. A Scott domain is a domain which is also bounded cocomplete.

As usual, a monotonic function between domains is an order-preserving

function and a continuous function is a monotonic function which pre-

serves joins. A strict function maps bottom to bottom in addition.

Given the set D, a topology of D is a set T � P(D) such that ; 2 D

and D 2 T. Additionally, T should be closed under finite intersections and

arbitrary unions. The elements of T are known as the open sets of D. The

set B � T is a base iff every open set in T is the union of elements of B. A

set S � D is compact if whenever S � SC (with C � T), there exists a finite

subset C0 � C such that S � SC0. Consider now the following topology:

Definition 2.4.6 Suppose D is a domain. A subset S � D is Scott open iff

a) S is upper closed and b) if X is directed and
F

X 2 S then S \ X 6= ;.

The topology formed by the Scott open sets of D is the Scott topology and is

denoted by
(D).
We have talked about directed-cocomplete and Scott domains. Some

times it is preferable to work with a different kind of domain: the so-called

sequences of finite posets or SFP domains. One strong argument in their

favour is that the category of SFP domains is cartesian-closed (see Smyth

1983), which guarantees that it is also closed under the type operations we

will introduce later.

Definition 2.4.7 Suppose D is a domain. If X � D then

UB(X) = fu j x v u for all x 2 Xg
MUB(X) = fm 2 UB(X) j m is minimal in UB(X)g.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 23

Let U : Pfin(D) ! Pfin(D) be a function as follows:

U0(X) = X

Un+1(X) =
[fMUB(Y) j Y � Un(X)g

U(X) =
[
n2N Un(X).

A domain D is a SFP domain if and only if:

1. If X � K(D) is finite then: a) MUB(X) is finite and b) for every u 2
UB(X) there is a m 2 MUB(X) such that m v u.

2. If X � K(D) is finite then U(X) is also finite.

When considering elements X, Y 2 P(P) (P a poset) there are three

commonly used orders:

X vl Y iff 8x 2 X 9y 2 Y such that x v y

X vu Y iff 8y 2 Y 9x 2 X such that x v y

X vc Y iff X vl Y and X vu Y

These three pre-orders (they are not partial orders as antisymmetry does

not necessarily hold) are known as the lower (or Hoare), the upper (or

Smyth) and the Egli-Milner pre-orders, respectively.

If P�fin(D) represents the set of non-empty finite subsets of D, then we

have three pre-orders over P�fin(D) using the previously defined orderings.

The powerdomain construction is based on these pre-orders:

Definition 2.4.8 Let D be a domain. Suppose now a pre-ordering of P�fin(D)
is given. Then the ideal completion of P�fin(D) is called:

i) the lower or Hoare powerdomain—denoted by Pl(D)—if the chosen

pre-order for P�fin(D) is vl;

ii) the upper or Smyth powerdomain—represented by Pu(D)—if the cho-

sen pre-order for P�fin(D) is vu;

iii) the convex or Plotkin powerdomain—in symbols Pc(D)—if the chosen

pre-order for P�fin(D) is vc.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 24

2.4.2 A metalanguage for denotational semantics

Most programming languages have operations for constructing complex

types from simpler ones. We can regard types as domains and type expres-

sions as operations on domains. Let D, S range over type expressions and T

over type variables (that is, basic types). Now we will consider these type

expressions:

D ::= 1 j D� S j D ! S j D� S j D? j P(D) j T j rec T.D,� 1 is the one point lattice.� D�S is the cartesian product of domains with coordinatewise ordering:(a, b) v (c, d) if and only if a v c and b v d.� D ! S is the space of continuous functions from D to S. If f and

g 2 D ! S, then f v g if and only if f(x) v g(x) for every x 2 D.� D� S stands for the coalesced sum, ie the set((D� f?Dg)� f0g) [((S� f?Sg)� f1g) [f?D�Sg
with the ordering: (a) (x, m) v (y, n) if and only if m = n and x v y;

and (b) ?D�S v x for all x 2 D� S.� D? is the lifting of D, which is defined as the set D[f?0g, where?0 62 D.

We have that x v y if and only if either x = ?0 or x and y 2 D and

x vD y.� P(D) can be any of the powerdomain constructions already introduced.� The domain rec t.D is the solution to the domain equation t = D(t).
If we require the basic types to be SFP domains (and not necessarily

Scott domains) the type expressions are closed under the above operations.

The function �i : D1 � � � � � Dn ! Di is the ith-projection function and�i : Di ! D1 � � � � � Dn is the ith-injection function as they are usually

defined.

Although the type expressions are the first stage in giving a domain-

theoretical semantics of a programming language, we still have the prob-

lem that a language is defined syntactically and we need to translate this

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 25

syntax-oriented presentation into a domain-theoretical one. This second

step is implemented through a series of function definitions which map

syntactical constructions in the language onto elements in a given domain.

Some of the required functions are recursive and, hence, the question of

a least fixed point —the standard solution to a recursive equation— arises.

But if we restrict the definitions to continuous functions the existence of

least fixed points can be taken for granted.

To build the denotational functions, Plotkin (1983) proposed a metalan-

guage which preserves continuity. The metalanguage is a series of abbre-

viations of lambda-style definitions. We will use just a few of his metalan-

guage expressions, introduced in the next paragraphs. This presentation is

based on Winskel (1993)’s account:� Let C : (D1 � � � � � Dn) and E1, . . . , En : D be continuous. Then

case C of �1(c1) (E1;: : :�n(cn) (En

end

is defined as [�c1 . E1, : : : , �cn . En℄(C)
and it is continuous, having type D.� The following construction is a special but very important instance of

the former. Let C : B and E1, E2 : D be continuous (where B is the

domain of booleans, to be defined in the next page). Then

if C then E1 else E2fi �de f (�x1 . E1, �x2 . E2)(C)
is continuous and has type D.� If M : P(D1) and N : P(D2) then

over M extend x . N �de f

[f(�x . N)(m) j m 2 Mg
it is also continuous and has type P(D2).

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 26

The Sierpinski space� If D is a type and e : D is continuous then�x . e �de f

G
n2N(�x.e)n(?)

is continuous (again) with type D. We shall call it the least fixed point.

The following examples illustrate how to build new domains and their

operations from old ones:

1. Let 1 be the one point domain. Then the Sierpinsky space is O = 1?.

2. The domain of booleans is B = O � O. The following constructions

are associated with this domain (where D is an arbitrary domain):

true : B false : B C : B E1, E2 : D

if C then E1 else E2 fi : D

3. Now we have the powerdomain constructions. Let D be a domain.

Then:

M : DfMg : P(D) M, N : P(D)
M [N : P(D) M : P(D1) N : P(D2)

over M extend m . N end : P(D2)
where P(D) can be replaced consistently in each of the rules by Pl(D),Pu(D) or Pc(D).

In section 3.5 we will use this metalanguage extensively.

2.4.3 The logical/semantic sides of a language

The originality of DTLF comes not from the concepts introduced in the

last two sections, but from the construction of propositional theories out of

domain expressions.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 27

Definition 2.4.9 Suppose D is a domain (corresponding to a certain type).

Then L(D) = hL(D),�D, =D, fD, tD,_D,^Di
is the propositional theory associated with D. L(D) is a set of formulae; �D

and =D are the relations of logical implication and logical equivalence between

formulae, respectively; _D and ^D are logical disjunction and conjunction (in

that order); and tD and fD are the constants true and false.

The subscript D is attached to the former symbols to make clear their

type. In most contexts, however, it is clear what type an operation belongs

to and then the subscript will be omitted.

The exact meaning of the abstract definition of L(D) will become more

concrete when we introduce its formation rules and axioms. Let us start

with the former:

2.4.10 Formation rules for L(D):
F1 t, f 2 L(D) F2

�, 2 L(D)� ^ 2 L(D)
F3

�, 2 L(D)� _ 2 L(D) F4
� 2 L(D1), 2 L(D2)(��) 2 L(D1 � D2)

F5
� 2 L(D1), 2 L(D2)(�!) 2 L(D1 ! D2) F6

� 2 L(D1), 2 L(D2)(�� f), (f �) 2 L(D1 � D2)
F7

� 2 L(D)�? 2 L(D?) F8
� 2 L(D)�, ♦� 2 L(P(D))

F9
� 2 L(D[rec t.D=t℄)� 2 L(rec t.D) .

Observe that in rule F6 the constant f does not belong to the same

domain as the formulae � and . The meaning of the modalities and ♦
will become clear when we explain the satisfaction relation j=. For the time

being let us proceed with the axioms of L(D). They are divided between

purely logical and type-specific axioms.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 28

2.4.11 Logical axioms and inference rules of L(D):(A1) � � � (A2) � � , � �� � �(A3) � � , � �� = (A4) � = � � , � �(A5) � � t (A6) � � , � �
� � ^
(A7) � ^ � � (A8) � ^ � (A9) f � � (A10) � � ,
 � � _
 � (A11) � � � _ (A12) � � _ (A13) � ^ (_
) � (� ^) _ (� ^
).
These axioms give L(D) the structure of a distributive lattice.

Regarding the type-specific axioms, we need to introduce first the index-

ed conjunction and disjunction symbols. If I is a set then

î2I

�i and
_
i2I

�i

are the conjunction and disjunction, respectively, of a set of propositions

labelled with the elements in I. We have now the second batch of axioms:

2.4.12 Type-specific axioms and inference rules of L(D):
AT1

î2I

(�i � i) = (
î2I

�i �
î2I

 i) AT2

_
i2I

(�i � i) = (_
i2I

�i �_
i2I

 i)
AT3 (��_

i2I

 i) =
_
i2I

(�� i) AT4 (�!
î2I

 i) =
î2I

(�! i)
AT5 (_

i2I

�i !) =
_
i2I

(�i !) AT6 (
î2I

�i � f) =
î2I

(�i � f)
AT7 (f �

î2I

 i) =
î2I

(f � i) AT8 (_
i2I

�i � f) =
_
i2I

(�i � f)

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 29

AT9 (f �_
i2I

 i) =
_
i2I

(f � i) AT10 (� ^)? = �? ^ ?
AT11 (_

i2I

�i)? =
_
i2I

(�i)? AT12

î2I

�i =
î2I

�i

AT13 ♦
_
i2I

�i =
_
i2I

♦�i AT14 (� _) = � _
AT15 ♦� ^ ♦ � ♦(� ^) AT16 f = f

AT17
� � �0, � 0(��) � (�0 � 0) AT18

� � �0, � 0(�!) � (�0 ! 0)
AT19

� � (�� f) � (� f), (f � �) � (f �)
AT20

� � �? � ? AT21
� � � �

AT22
� �

♦� � ♦
Axioms AT1–AT15 show how the type constructions distribute over (or

interact with) conjunctions, disjunctions and modal operators. Axioms

AT17–AT22 assert the preservation of the implication order through the type

and modal constructions. The motivation behind axiom AT16 is that we

need only one false value and not many (one simple, the others prefixed

with either or ♦).

The road between domains and logics is two-way: we can also give a

denotational interpretation of logical formulas. The denotational counter-

part of a formula in L(D) will be a compact open set of the Scott topology

of D according to the next function:

Definition 2.4.13 The interpretation function [[℄℄D : L(D)! K
(D):[[� ^ ℄℄D = [[�℄℄D \ [[℄℄D[[t℄℄D = D = 1K
(D)[[� _ ℄℄D = [[�℄℄D [[[℄℄D[[f ℄℄D = ; = 0K
(D(D))

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 30[[�� ℄℄D1�D2 = f(u, v) j u 2 [[�℄℄D1, v 2 [[℄℄D2g[[�! ℄℄D1!D2 = f f 2 (D1 ! D2) j f([[�℄℄D1) � [[℄℄D2g[[�� f ℄℄D1�D2 = f(0, u) j u 2 [[�℄℄D1 � f?D1gg [fd 2 (D1 � D2) j ?D1 2 [[�℄℄D1g[[f � �℄℄D1�D2 = f(1, u) j u 2 [[�℄℄D2 � f?D2gg [fd 2 (D1 � D2) j ?D2 2 [[�℄℄D2g[[�?℄℄D? = f(0, u) j u 2 [[�℄℄Dg[[�℄℄P(D) = fS 2 P(D) j S � [[�℄℄Dg[[♦�℄℄P(D) = fS 2 P(D) j S \ [[�℄℄D 6= ;g[[�℄℄rec t.D = f�D(u) j u 2 [[�℄℄[rec t.D℄=tg
With this last function we are ready to present a satisfaction relation:

Definition 2.4.14 1. Let � 2 L(D). If � follows from axioms A1–A13, AT1–

AT22, we say that � is a theorem of L(D). In symbols:L(D) ` �.

2. Let �, 2 L(D). The satisfaction relation j= is defined as

D j= � � if and only if [[�℄℄D � [[℄℄D.

Let us come back to the modal operators. Suppose that � 2 L(D) and

S � D. Then S j= � if and only if for every s 2 S we have that s j= � and

S j= ♦� if and only if there is a s 2 S such that s j= �.

We can now address the issues of soundness and completeness of L(D).
2.4.4 Stone duality

The Stone duality theorems are a family of isomorphisms between an ample

variety of mathematical structures. To explain their exact meaning and

importance is beyond the scope of the present thesis. Johnstone (1982)

contains a thorough presentation of the subject for the interested reader.

CHAPTER 2. GAMMA, PROGRAM LOGICS AND DOMAIN THEORY 31

We will use one of the duality theorems in the version offered by Abram-

sky (1991). This theorem takes the Lindenbaum algebra of the logic L(D),
viz the partition of the formulas in L(D) induced by the equivalence rela-

tion = as defined in axioms A1–A13. The Lindenbaum algebra of L(D) is

denoted by LA(D).
Theorem 2.4.15 Stone duality. Let D be a domain. Then we have the fol-

lowing isomorphisms:

1. D ' SpecLA(D);
2. K(
(D)) ' L(D).

Finally we arrive to the next theorem (proved by Abramsky (1991)):

Theorem 2.4.16 If �, 2 L(D) thenL(D) ` � � if and only if D j= � � ,

i.e., the logic of D is sound and complete.

A brief summary of the whole section is opportune: a) by means of

a metalanguage, the constructions of a programming language are pre-

sented in a domain-theoretical basis; b) a propositional theory (formulae

and axioms) arises from the domain version; c) thanks to Stone duality

the logic is sound and complete with respect to the semantics (that is, the

domain-theoretical presentation of the language).

This same programme will now be applied to Gamma. In Chapter 3

we will give a denotational semantics of the language. In Chapter 4, a full

proof system will be derived from the semantics.

Chapter 3

Gamma semantics

Denotational semantics of programming languages has been a very impor-

tant field for the past three decades. Not only does it give a mathematical

model of programming languages, but it also provides a possible founda-

tion for constructing a proof system for a language, as domain theory in

logical form shows (see previous chapter).

However, denotational semantics of programming languages including

parallel operators seems to be a more complex issue than semantics of

sequential languages, at least at first sight. In the particular case of Gamma

it has proved to be very hard to solve. Gay & Hankin (1996b) proposed

a semantical model useful enough to serve as the basis of a proof sys-

tem. Nonetheless, their proof system was full of intricate details making

its use very complicated and, more importantly, the semantics was not fully

abstract.

Sands (1993a) and Gay & Hankin (1996a) took a different approach

based on ideas originally proposed by Brookes (1985) in a series of papers:

the transition trace semantics. In spite of also failing to be fully abstract,

its more natural and cleaner appearance made it a good starting point for

an application of domain theory. The present proposal arose from the tran-

sition trace model.

Denotational models are not the only view, however. Reynolds (1996)

proposed a semantics for Gamma based on temporal logic which also pro-

duced a proof system, briefly commented on at the beginning of chapter 4.

32

CHAPTER 3. GAMMA SEMANTICS 33

This chapter will deal first with the operational semantics of Gamma,

including a derived program ordering. Secondly, it will introduce the deno-

tational model from two points of view: abstract (that is, without con-

sidering the internal structure of programs) and compositional (ie, one in

which structure is taken into account). A series of transformation rules

(presented in Hankin et al. (1993) and Sands (1993b)) for Gamma pro-

grams is confirmed as valid in the new semantic setting. Then soundness

and full abstraction are proved. Finally, as a preparation for the next chap-

ter, some domain construction rules for the semantics are given.

The main result of this chapter, namely full abstraction of the deno-

tational semantics, is important because it allows us to easily translate

reasoning about the denotational behaviour of a program into statements

about its operational behaviour. The utility of this will become clearer when

the resulting proof system is discussed (chapter 4).

3.1 Operational semantics

The operational semantics for Gamma has been presented elsewhere (Han-

kin et al. (1993), for example). The following rules in structural opera-

tional semantics style are taken from that source, where hP, Mi is a configu-

ration, i.e., a pair made of a program (P) and a multiset (M), to which the

program is applied: fja1, : : : , anjg � M, R(a1, : : : , an)h(A (R), Mi ! h(A (R), (M � fja1, : : : , anjg) ℄ A(a1, : : : , an)i ,:9fja1, : : : , anjg � M.R(a1, : : : , an)h(A (R), Mi ! M
,hQ, Mi ! MhP Æ Q, Mi ! hP, Mi, hQ, Mi ! hQ0, M0ihP Æ Q, Mi ! hP Æ Q0, M0i ,hP, Mi ! hP0, M0ihP + Q, Mi ! hP0 + Q, M0i , hQ, Mi ! hQ0, M0ihP + Q, Mi ! hP + Q0, M0i ,hP, Mi ! M hQ, Mi ! MhP + Q, Mi ! M

.

CHAPTER 3. GAMMA SEMANTICS 34

These rules can be seen in the light of the function S defined in section 2.2.

The first two correspond to the possible outcomes of S(A (R, M). The

following four rules referring to the sequential and parallel composition

also correspond to S applied to the same kind of programs. The last one

expresses the requirement of simultaneous termination of the two parallel

components of a program if the latter is to terminate.

As can be noticed, ! indicates a single step transition, thus defining a

relation on (G � M (D)) � ((G � M (D)) [M (D)) (remember that G denotes

the set of Gamma programs and M (D) is the set of finite multisets with

elements in D). As usual,!� refers to its reflexive and transitive closure.

This definition of Gamma operational semantics induces an interleaved

approach to parallelism, that is, the effects of different atomic reactions

parallelly composed take place only one at a time (non-determinism arises

from a free choice of the actions). Chaudron (1998) called this interpre-

tation single-step semantics as opposed to multiple-step semantics in which

different reactions can act on mutually independent subsets of a given mul-

tiset at the same time. The single-step version was chosen for the present

thesis because it makes reasoning about programs much easier. Chaudron

(1998) pointed out that, when using simulation as a refinement notion, the

single-step semantics does not model the parallelism of Gamma programs,

justifying in this way his choice in favour of multiple-step semantics. Nev-

ertheless, he also showed the equivalence of the two operational semantics

in terms of input-output behaviour. The refinement notions referred to in

this chapter are based on input-output issues and then we do not need to

take into account Chaudron’s argument.

On the other hand Ciancarini, Gorrieri & Zavattaro (1996) give another

operational semantics which greatly differs from the one just presented

in the way parallel composition is treated. Their idea is to synchronize

the reduction of programs composed in parallel, so that some undesired

computations can be avoided. This would alter deeply the definition of

the denotation of sequential composition (see section 3.3). Although their

proposal should be considered further, for the time being we will keep the

more traditional option.

According to the rules just presented, a program is not static during its

CHAPTER 3. GAMMA SEMANTICS 35

execution. In particular, when the first component of a program made by

sequential composition finishes its execution (i.e., there are no more pos-

sible reactions), the second component does not need to take into account

the first component any longer. We can regard the second component as

the residual part of the whole program. More formally:

Definition 3.1.1 The residual part of a program P, denoted by P is defined

inductively:

A (R �de f A (R,

P2 Æ P1 �de f P2,

P1 + P2 �de f P1 + P2.

Because some Gamma programs will appear repeatedly in the following,

it will be useful to have some abbreviations to denote them:

Skip �de f A (false,

Big-Bang �de f ; ! A (true,

Await �de f x ! x (true.

The first one corresponds roughly to the ubiquitous program skip used in

many correctness proof methods. The second is a never-ending program

which will always add A to a multiset, regardless of the values it already

contains. The last one is very similar in the sense that it can never end, but

it will not act when the multiset is empty.

The traditional concept of program contexts will later help us to define

a program order. A Gamma context C is:

C ::= [℄ j P + C j C + P j P Æ C j C Æ P,

where P 2 G .

A special kind of contexts, active contexts, play a role in analysing the

behaviour of programs:

A ::= [℄ j P + A j A + P j P Æ A.

When dealing with transformations of programs a notion of order can

be very useful. Let us suppose v is a reflexive and transitive relation on G .

If P, Q 2 G , the equivalence relation P � Q holds when P v Q and Q v P.

Consider now the following would-be laws:

CHAPTER 3. GAMMA SEMANTICS 36

3.1.2 Program order laws for Gamma.

The sequential laws

1. P Æ (Q Æ R) � (P Æ Q) Æ R

2 P Æ Skip � P

3. P � Skip Æ P

4. (A (R) � (A (R) Æ (A (R).
The parallel laws

5. P + (Q + R) � (P + Q) + R

6. P + Q � Q + P

7. P � Skip + P

8. P v P + P

9. (A (R) � (A (R) + (A (R).
The parallel-sequential laws

10. (P + Q) Æ R v P + (Q Æ R)
11. (P1 + P2) Æ (Q1 + Q2) v (P1 ÆQ1) + (P2 Æ Q2)
12. P Æ (Q + R) v (P Æ Q) + (P Æ R)
Residual program laws

13. P � P Æ P

14. (P + R) Æ (Q + R) v (P Æ Q) + R

15. (P � P)) (P � P + P)
Which of these laws are valid? That depends on the program order cho-

sen. Considering just the Gamma operational semantics we have different

options. Hankin et al. (1993) proposed the following:

Definition 3.1.3 P1 vIO P2 if and only if hP1, Mi !� N implies hP2, Mi !�
N. As usual, P1 �IO P2 if and only if P1 vIO P2 and P2 vIO P1.

As can be seen from the definition, vIO addresses only partial correct-

ness. Nevertheless, Hankin et al. (1993) proved the 15 laws for this order.

CHAPTER 3. GAMMA SEMANTICS 37

Program orders are a common tool for refinement of programs. One

property that facilitates this process is substitutivity: if program P is a refine-

ment of program Q we want to be able to replace any instance of P by an

instance of Q in any program which includes the latter. Alas, vIO is too

weak to allow general substitutivity. In particular, P vIO Q does not imply

that P + R vIO Q + R. Sands (1993a) provided this counterexample:

Q : x ! 0 (x = 1

P : Skip Æ Q

R : x ! 1 (x = 0.

By 3.1.2 law 3, P vIO Q. Now hQ + R, fj1jgi never terminates, but hP +

R, fj1jgi !� fj1jg and then P + R 6vIO Q + R.

The problem here is that when P and Q act in the context [℄ + R, their

behaviour differs. A solution is to enforce the order taking into account

contexts:

Definition 3.1.4 P1 vC P2 if and only if for all contexts C, C[P1℄ vIO C[P2℄.
P1 �C P2 if and only if P1 vC P2 and P2 vC P1.

By definition P 6vC Q and then the counterexample does not work any

longer. Because of its stronger requirements we will use vC as the opera-

tional order for Gamma.

Although he used the following weaker version of law 3, Sands (1993b)

proved the 3.1.2 laws for a different ordervt, based in denotational seman-

tics (a predecessor of our own order):

30. P vt Skip Æ P.

He also showed that for any P1, P2 2 G , P1 vt P2 implies P1 vC P2,

which in its turn means that the laws are also valid for vC.

Useful as they are, the laws are not a proof system, as they only estab-

lish some refining rules. The extra power will come from the denotational

semantics of Gamma.

CHAPTER 3. GAMMA SEMANTICS 38

3.2 Denotational semantics

To move from operational to denotational semantics we require first a way

of describing the behaviour of a program not as a series of steps but as a

mathematical “object” which can be handled through suitable operations.

Definition 3.2.1 Let D be an arbitrary set. Consider now the following set:T(D) = f(M1, M2)(M3, M4) : : : jMi 2 Dg
whose elements will be called traces. Tfin(D) will denote the set of finite traces,

while � will be the empty trace.

Let us state now some operations and relations on traces that will be

used extensively in the future:

Concatenation. Tfin(D)� T(D) ! T(D). If �, � 2 T(D) their concatenation

is denoted simply by ��.

Linking. � : Tfin(D)� T(D) ! T(D). Linking differs from concatenation as

shown in the following definition:(M1, M2) : : : (Mn�1, Mn)� (N1, N2) : : : =� (M1, M2) : : : (Mn�1, Mn)(N1, N2) : : : if Mn = N1

undefined otherwise

Absorption. A � T(D) � T(D). Let � 2 Tfin(D) and � 2 T(D). Then

A(�(M, N)(N, P)�,�(M, P)�)
holds. If T � T(D) then Ā(T) will be its closure under absorption.

Total absorption. : T(D) ! T(D). The result of total absorption is the

last element in a chain t1, . . . , tn, . . . t� such that A(ti, ti+1) and ti 6= ti+1.

Needless to say, the chain can be infinite with a top element (the chain

being equivalent to the ordinal number ! + k, k 2 N). is calculated

recursively by the following rule:� = �(M1, M2)(M3, M4)� =
� (M1, M4)� if M2 = M3(M1, M2)(M3, M4)� otherwise.

CHAPTER 3. GAMMA SEMANTICS 39

Sets of traces can be regarded as denotations of programs in parallel lan-

guages with states. Each pair (Mi, Mi+1) in a trace denotes a transition from

the state Mi to the state Mi+1 performed by a certain program. Environment

interference (ie, another program running in the background) plays a rel-

evant role in parallel languages and this fact is reflected in traces where

adjacent pairs such as (Mn, Mn+1) and (Mn+2, Mn+3) do not share contigu-

ous elements, that is, Mn+1 6= Mn+2. In this example, the change from Mn+1

to Mn+2 is not performed by the program but by the environment in which

it is executed. We will call a denotational model like this a transition trace

semantics.

Applying this idea, Sands (1993a) and Gay & Hankin (1996a) produced

the first transition trace semantics for Gamma. Consider a Gamma program

P and a trace (M1, M2)(M3, M4) : : : such that hP, M1i ! hP0, M2i, hP0, M3i !hP00, M4i, etc. The (possible) change from M2 to M3 can be explained by the

interference from another Gamma program acting as the environment. No

restriction on the behaviour of the environment was originally set.

Nevertheless, the fact that the environment interference was not reg-

ulated at all exposed the semantics to arbitrary environmental behaviour.

This provided a basis for the proof that the semantics was not fully abstract,

made by Sands (1993a) himself.

Sands first proved that PÆAwait vC Await, for every P 2 G . In particular,

Skip Æ Await vC Await. On the other hand, according to his semantics, the

denotation of Await is the set of traces f(;, ;)g, while the denotation of

Skip Æ Await is the set f(;, ;)(M, M) j M 2 M (D)g. It is clear thatf(;, ;)(M, M) j M 2 M (D)g 6� f(;, ;)g
and then SkipÆAwait 6vt Await, where vt is Sands’ denotational order. This

fact ruled out full abstraction.

Sands suggested the elimination of Big-Bang and similar programs from

Gamma as a potential solution, because only a program like Big-Bang act-

ing as environment could make possible the change from ; to a non-empty

M, as it happens in the traces of Skip Æ Await. This has the disadvantage of

CHAPTER 3. GAMMA SEMANTICS 40

ruling out a program that seems perfectly natural. In any case, his sugges-

tion has been neither proven nor disproven.

An alternative approach is to restrict not the set of Gamma programs but

the arbitrariness of the environment. Observe that the so-called environ-

ment is nothing but another Gamma program executed in parallel. There-

fore, it is reasonable not to expect any behaviour which is impossible for a

Gamma program.

Sands’s (1993a) counterexample arose from considering the interfer-

ence from a program acting as Big-Bang which, at the same time, would

do something Big-Bang cannot: terminate and vanish into thin air. Hence,

arbitrary environments are at the root of the problem.

Our own approach to the task of building the denotation of a program

shall proceed in three steps:

1. We will begin with the transitions made by an isolated Gamma pro-

gram.

2. The interference of all possible environments (ie, all Gamma programs

and nothing but Gamma programs) will be considered afterwards.

3. The absorption closure of the resulting set of traces will be taken as

the denotation of the program.

Let us start with a preliminary definition, which performs step 2 using

step 1 as the basis:

Definition 3.2.2 Given a program P and an environment program PE, the

function T : G �G ! P(T(M (D))) produces the set of transition traces result-

ing from the interaction of the two programs:

T(P, PE) = f(M1, M2) : : : (Mn�1, Mn)(N1, N2)�g j
P = P1, hPi, Mii ! hPi+1, Mi+1i, hPE, Mni !� hPE0, N1i
and (N1, N2)� 2 T(Pn, PE0).

If PE = Skip, we obtain the strict traces of Sands (1993a), that is, traces

which correspond to the execution of an isolated program (as Skip does not

perform any change in the multiset).

CHAPTER 3. GAMMA SEMANTICS 41

The definition has some of the ingredients we need, but also has a big

shortcoming, namely, it does not show how to build the denotation of a

program from the denotation of its components. For instance, if P = (P1 +

P2) Æ P3, there is no way of using the syntactic structure of P to calculate its

traces from those of P1, P2 and P3 (assuming we have already performed

the easier task of calculating their traces). This fact makes it extremely

difficult to reason about programs in refinement and correctness proofs (a

problem we have already faced with the order vIO).

The ideal situation is to be able to completely derive the traces of a pro-

gram from those of its components. This goal is achieved in Sands (1993a)

but, as has been said, the resulting model is not fully abstract. A more

modest aim is to use the traces of simpler program as pieces which, prop-

erly “processed”, will be added to get the traces of less simple programs.

And that is the purpose of the next section.

3.3 Compositionality of the semantics

With the previous target in mind, a new definition of the function T is

offered:

Definition 3.3.1 The function T : G �G ! P(T(M (D))) calculates the traces

resulting from the interaction of a program P and an environment PE. T is

defined by induction on the syntax of P. Also, two cases are taken into account

in each instance of P: when PE = Skip and when PE 6= Skip.

T(A (R, Skip) =f(M, N)(N, N0)� j R(M) and N 2 S(A (R, M)
and (N, N0)� 2 T(A (R, Skip)g[f(M, M) j R(M) does not holdg

T(A (R, PE) =f(M1, M2) : : : (Mn�1, Mn)(N1, N2)� j there are
, � with(M1, M2) : : : (Mn�1, Mn)
 2 T(A (R, Skip)
and (Mn, N1)� 2 T(PE, Skip), � 2 T(PE0, Skip)
and (N1, N2)� 2 T(A (R, PE0)g[f(M, M) j hA (R, Mi ! M and hPE, Mi ! Mg

T(Q Æ P, Skip) =f�� � j � 2 T(P, Skip) and � 2 T(Q, Skip)g

CHAPTER 3. GAMMA SEMANTICS 42

T(Q Æ P, PE) =f�� � j there are
, P0 and PE0 such that�
 2 T(P, PE) and
 2 T(P0, PE0) and � 2 T(Q, PE0)
and � = (M1, M2) : : : (Mn�1, Mn) and hP0, Mni ! Mng

T(P + Q, Skip) =f�� � j there are
, P0 such that �
 2 T(P, Skip)
and
 2 T(P0, Skip) and � 2 T(P0 + Q, Skip)g[f�� � j there are
, Q0 such that �
 2 T(Q, Skip)
and
 2 T(Q0, Skip) and � 2 T(P + Q0, Skip)g

T(P + Q, PE) =f�� � j there are
, P0, PE0 such that �
 2 T(P, PE)
and
 2 T(P0, PE0) and � 2 T(P0 + Q, PE0)g[f�� � j there are
, Q0, PE0 such that �
 2 T(Q, PE)
and
 2 T(Q0, PE0) and � 2 T(P + Q0, PE0)g.

In the above definition (case T(A (R, Skip)), “R(M) holds” means that

there exist a subset fjx1, : : : , xnjg � M such that R(x1, : : : , xn) is true. In the

case T(A (R, PE), the combined facts that (Mn, N1)� 2 T(PE, Skip) and� 2 T(PE0, Skip) imply that hPE, Mni ! hPE0, N1i.
The function T will serve as the basis for another program order (the

denotational order):

Definition 3.3.2 Let Tfin(P, PE) = f� 2 T(P, PE) j � is finiteg and let P1,

P2 2 G . Then:

P1 vT P2 iff Tfin(P1, PE) � Tfin(P2, PE) for every PE 2 G .

The above definition needs three remarks. First of all, it is environment-

dependent: the sets of traces compared for inclusion are built using the

same environment. Secondly, only finite traces are taken into account,

meaning that all non-terminating behaviour is made equivalent. While

there are situations where this is not a proper strategy, all of our operational

orders have the same limitation. In order to prove full abstraction later on,

it is unreasonable to expect stronger properties from the denotational order

than those required at operational level and then we are just equalizing

the demands on both sides (operational and denotational). Thirdly, Sands’

CHAPTER 3. GAMMA SEMANTICS 43

counterexample to full abstraction no longer holds: Skip Æ Await vT Await

because there are no PE 2 G and M 2 M (D) such that(;, ;)(M, M) 2 Tfin(Skip Æ Await, PE).
To conclude this section, the full denotation of a program is presented:

Definition 3.3.3 If P 2 G , its denotation is defined by the function [[℄℄ : G !P(T(M (D))): [[P℄℄ = Ā([
PE2G T(P, PE)).

The absorption closure is included because it allows us to take the

reflexive and transitive closure of ! instead of just ! when a program

(either the main one or the environment) is acting without temporary inter-

ference from the other.

3.4 Full abstraction

It is almost time to present the crucial theorem in this chapter: full abstrac-

tion of our transition trace semantics. Before proceeding we will need

another definition and a short lemma.

When two programs P and PE are executed in parallel, but with Skip as

the environment, a strict trace is obtained. However, if we are interested

only in the transitions made by the first program, the others should be

eliminated from the trace. The next function performs this task:

E(PE, �) = �
E(PE, (M1, M2)�) =

8><>: E(PE0,�) if hPE, M1i !� hPE0, M2i
and � 2 T(P, PE0)(M1, M2)E(PE,�) otherwise.

If � = (M1, M2) : : : (Mn�1, Mn) : : : then E(PE,�) looks like(Mk1, Mk1+1)(Mk1+k2, Mk1+k2+1) : : : (MPm
i=1 ki

, M1+
Pm

i=1 ki
) : : :

where 1 � k1. Moreover, there are PE
1, PE

2, . . . , such that if

M1+
P j

i=1 ki
6= MP j+1

i=1 ki

CHAPTER 3. GAMMA SEMANTICS 44

then hPE
j , M1+

P j
i=1 ki

i !� hPE
j+1, MP j+1

i=1 ki
i.

Now, if k1 = 1 then PE
1 = PE. On the other hand, if � is of finite length

n=2 and 1 +
Pm

i=1 ki < n then hPE
p, M1+

Pm
i=1 ki

i !� Mn.

Additionally, there are P = P1, P2, . . . such thathP j, MP j
i=1 ki

i ! hP j+1, M1+
P j

i=1 ki
i.

Basically E converts a trace produced by P + PE into a (prefix of a) trace

produced by P with PE as the environment. The next lemma states and

proves this fact formally:

Lemma 3.4.1 Let � = (M1, M2) : : : (Mn�1, Mn) and E(PE,�) = (Mk1, Mk1+1)
. . . (MPm

i=1 ki
, M1+

Pm
i=1 ki

). Let PE
1 be as defined by the function E in the previous

paragraphs. Now

1. If 1 +
Pm

i=1 ki = n then� 2 T(P + PE) if and only if E(PE,�) 2 T(P, PE
1).

2. If 1 +
Pm

i=1 ki < n then� 2 T(P + PE) if and only if E(PE,�)(Mn, Mn) 2 T(P, PE
1).

Proof. Case 1 +
Pm

i=1 ki = n. Assume � 2 T(P + PE, Skip). The function E

just eliminates all transitions made by PE and its successors. That is, we are

considering PE as the environment. Nevertheless, as it is not necessarily the

case that k1 = 1, then our initial environment is PE
1 and not PE itself. Then

E(PE,�) 2 T(P, PE
1).

Now suppose E(PE,�) 2 T(P, PE
1). If k1 = 1 then it is trivial that � 2

T(P + PE) as PE = PE
1 and � does contain the transitions made by PE. If

now k1 > 1 then hPE, M1i !� hPE
1, Mk1i and (M1, M2) : : : (Mk1�2, Mk1�1)
 2

T(PE, Skip) for a certain
 2 T(PE
1, Skip). Again, all transitions made by PE

1

and its successors afterwards are also “restored” in �. Then, by definition

of T (case T(P + Q, Skip)) we conclude that � 2 T(P + PE, Skip).

CHAPTER 3. GAMMA SEMANTICS 45

Case 1 +
Pm

i=1 ki < n. Let � 2 T(P + PE, Skip). Again, PE has become

the environment of P. But in this case, as the environment does not ter-

minate with M1+
Pm

i=1 ki
(by hypothesis) we need to add (Mn, Mn) at the end

of E(PE,�) to get a terminating state. For the rest, the arguments of case 1

apply again and then E(PE,�)(Mn, Mn) 2 T(P, PE
1).

Let E(PE,�)(Mn, Mn) 2 T(P, PE
1). The same arguments as in case 1 holds

here and so � 2 T(P + PE, Skip).
At long last we have the expected theorem:

Theorem 3.4.2 Soundness and full abstraction. Let P, Q 2 G . Then

P vT Q if and only if P vC Q.

Proof. Suppose first that P vT Q. We need to prove that C[P℄ vIO C[Q℄ holds

for every context C. The proof will use induction on contexts.

C = [℄. If hP, M1i !� Mn then there exists a trace (M1, M2) : : : (Mn�1, Mn) 2
T(P, Skip). Then (M1, M2) : : : (Mn�1, Mn) 2 T(Q, Skip), which implies thathQ, M1i !� Mn and P vIO Q.

C = [℄ + R. Now assume hP + R, M1i !� Mn. Again, there is a trace � =(M1, M2) : : : (Mn�1, Mn) 2 T(P+R, Skip). By lemma 3.4.1, E(R,�)(Mn, Mn) 2
T(P, R1) or E(R,�) 2 T(P, R1). Therefore we have that E(R,�)(Mn, Mn) 2
T(Q, R1) or E(R,�)(Mn, Mn) 2 T(Q, R1) (by hypothesis). In either case, it

follows from lemma 3.4.1 that � 2 T(Q + R, Skip) and then hQ + R, M1i !�
Mn. In brief, P + R vIO Q + R.

C = R + [℄ is the same as + is commutative.

C = R Æ [℄. If hR Æ P, M1i !� Mn there is a trace (M1, M2) : : : (Mn�1, Mn) 2
T(R Æ P, Skip). But by definition of T, there exists an i < n such that(M1, M2) : : : (Mi�1, Mi) 2 T(P, Skip) and(Mi, Mi+1) : : : (Mn�1, Mn) 2 T(R, Skip).
As P vT Q, then(M1, M2) : : : (Mi�1, Mi) 2 T(Q, Skip) and therefore(M1, M2) : : : (Mn�1, Mn) 2 T(R Æ Q, Skip),

CHAPTER 3. GAMMA SEMANTICS 46

which implies hR Æ Q, M1i !� Mn and then R Æ P vIO R Æ Q.

C = [℄ÆR. If hPÆR, M1i !� Mn then (M1, M2) : : : (Mn�1, Mn) 2 T(PÆR, Skip).
As in the previous case, there is an i < n such that(M1, M2) : : : (Mi�1, Mi) 2 T(R, Skip) and(Mi, Mi+1) : : : (Mn�1, Mn) 2 T(P, Skip).
The rest of the proof is analogous to the previous case and then P Æ R vIO

Q Æ R.

In conclusion, P vC Q.

Now let P vC Q and � = (M1, M2) : : : (Mn�1, Mn) 2 T(P, R) for a certain

R. By definition of E, there is a� = (M1, M2)(M0
1, M3)(M3, M4) : : : (M0

m, Mn�1)(Mn�1, Mn)
such that E(R, �) = �. One more time, according to lemma 3.4.1 � 2 T(P+

R, Skip). In other words hP + R, M1i !� Mn and by hypothesis hQ + Ri !�
Mn. Hence � 2 T(Q + R, Skip). One last application of 3.4.1 produces� = E(R, �) 2 T(Q, R) and therefore P vT Q.

Corollary 3.4.3 The laws 3.1.2 1, 2, 30 and 4–15 are valid for vT.

Proof. The laws are valid for vt (see Sands (1993b)) and for all P Q 2 G ,

P vt Q implies P vC Q, which in its turn entails P vT Q.

3.5 Domain constructions for the semantics

The only remaining stage before introducing the proof system for Gamma is

to give a domain-theoretical account of the denotational semantics (using

the metalanguage of section 2.4.2). Let us start with some notation:M(D) domain of finite multisets: It is M (D) with a domain

order, although in chapter 4 we will be less demanding

and will accept a poset of multisets

CHAPTER 3. GAMMA SEMANTICS 47A domain of actions based on AR domain of reaction conditions built upon RG domain of Gamma programs (though its internal struc-

ture is not important we can think of it as a flat domain

built on G)T(M(D)) domain of traces: again it is basically T(M (D)) with a

domain orderP(T(M (D))) will also play a role, for the denotations of programs are

sets of traces. Nevertheless, the power set lacks a particular order (other

than inclusion) or, rather, it can have many. We will use the lower power-

domain of T(M(D)) (see definition 2.4.8). The reason to choose the lower

powerdomain is that it comes with the proper modal operator we need for

the logic (more about this in chapter 4).

We shall start the translation with the basic operations on traces (whose

definition is taken for granted):

link : T(M(D))� T(M(D))! T(M(D)) the same as �
append : T(M(D))� T(M(D))! T(M(D)) as concatenation

absorb � T(M(D))� T(M(D)) as absorption

absorbset : Pl(T(M(D)))! Pl(T(M(D))) absorption closure of a set

length : T(M(D))! N length of traces.

The next ones are less trivial. Given a trace, prefixn calculates its prefix of

length n (or produces the zero-length trace � in case the original trace is

shorter than n):

prefixn : T(M(D))! T(M(D))
prefixn((M1, M2) : : :) =

if less(length((M1, M2) : : :), n)
then �
else (M1, M2) : : : (M2n�1, M2n)

fi
end

CHAPTER 3. GAMMA SEMANTICS 48

allprefixn calculates the prefixes of length n for all the traces in a given set.

allprefixn : Pl(T(M(D)))! Pl(T(M(D)))
allprefixn(T) =

over T extend �.

prefixn(�)
end

The next one does the same as allprefixn, for all n.

allprefix : Pl(T(M(D)))! Pl(T(M(D)))
allprefix(T) =

over N extend n . allprefixn(T)
end

tabsorb is just total absorption in metalanguage presentation:

tabsorb : T(M(D))! T(M(D))
tabsorb((M1, M2)(M3, M4)�) =� tabsorb.

if M2 = M3

then
tabsorb((M1, M4)�)

else
append((M1, M2), tabsorb((M3, M4)�))

fi
end

The third set of functions corresponds to the isolated execution of pro-

grams. We begin with some auxiliary functions. strictn (defined recur-

sively) calculates the prefixes of length n of the strict traces of a program

P, together with the residual part of P after the n-th transition. strict does

the same for all n:

strict1 : G! Pl(T(M(D))� G)
strict1(P1) =

over M(D)�M(D)� G extend M1, M2, P2.

if hP1, M1i ! hP2, M2i then ((M1, M2), P2) fi
end

CHAPTER 3. GAMMA SEMANTICS 49

strictn+1 : G! Pl(T(M(D))� G)
strictn+1(P1) =

over strictn(P1) extend ((M1, M2) : : : (Mn, Mn+1), Pn+1).
if hPn+1, Mn+1i ! hPn+2, Mn+2i

then ((M1, M2) : : : (Mn+1, Mn+2), Pn+2)
fi

end

strict : G! Pl(T(M(D))� G)
strict(P) =

over N extend n.strictn(P) end

Given a program P and a trace of length greater or equal to n, psuccn

checks if the n-th transition in the trace has been executed by P and, if so,

produces the successor(s) of the program P after the n-th transition.

psucc1 : T(M(D))� G! Pl(G)
psucc1((M1, M2) : : : , P1) =

over G extend P2.

if hP1, M1i ! hP2, M2i then P2 fi
end

psuccn+1 : T(M(D))� G! Pl(G)
psuccn+1((M1, M2) : : : , P1) =

if less(length((M1, M2) : : :), n)
then ; else

over G� psuccn((M1, M2) : : : , P1) extend Pn+1, Pn.

if hPn, M2n�1i ! hPn+1, M2ni
then Pn+1

fi
fi

end

CHAPTER 3. GAMMA SEMANTICS 50

The next function accounts for the evolution of the environment in the

interaction with a given program. envn calculates the value of the environ-

ment after the latter has performed its n-th transition:

env1 : T(M(D))� G! P(G)
env1((M1, M2) : : : , PE

1) =

if less(length((M1, M2) : : :), 2)
then ;
else

if equal(M2, M3)
then fPE

1g
else

over G extend PE
2.

if hPE
1, M2i !� hPE

2, M3i then PE
2 fi

fi
fi

end

envn+1 : T(M(D))� G! P(G)
envn+1((M1, M2) : : : , PE

1) =

if less(length((M1, M2) : : :), n + 2)
then ;
else

if equal(M2n�2, M2n�1)
then envn((M1, M2) : : : , PE

1)
else

over G� envn((M1, M2) : : : , PE
1) extend PE

n+1, PE
n+2.

if hPE
n+1, M2n�2i !� hPE

n+2, M2n�1i
then PE

n+2

fi
fi

fi
end

CHAPTER 3. GAMMA SEMANTICS 51

Now a functional version of the original S : A � R � M (D) ! P(M (D)):
successor : An � Rn �M(D)! P(M(D))
successor(A, R, M) =

over Pn(M) extend x̄.

if R(x̄) then (M � x̄) ℄ A(x̄) else ; fi
end

The next function produces all the traces of an atomic reaction starting

with a given multiset:

chain : A� R�M(D)!Pl(T(M(D)))
chain(A, R, M) =� chain.

if R(M)
then

over successor(A (R, M) extend N.

append((M, N), chain(A, R, N))
else (M, M)

fi
end

The fourth set of functions relates programs and environments (including

Skip).

Firstly, we have an atomic reaction with an empty environment using chain

as the basic component:

ARSkip : A� R! Pl(T(M(D)))
ARSkip(A, R) =

over M(D) extend M . chain(A, R, M)
end

All of the following functions use the new function combine, whose defini-

tion will be given almost at the end of this section.

CHAPTER 3. GAMMA SEMANTICS 52

We consider now an atomic reaction with a non-trivial environment. Note

how the strict traces are used to build non-strict traces:

AROther(A, R, PE) =

over strict(A (R)� strict(PE) extend ((M1, M2) : : : (Mn�1, Mn), Pn),((N1, N2) : : : (Nm�1, Nm), PE
m).

if Mn = N1

then
over combine(A (R, PE

m) extend (P1, P2)�.

if Nm = P1

then append((M1, M2) : : : (Mn�1, Mn), (P1, P2)�)
fi

end

Next we consider the sequential composition in an empty environment:

SCSkip : G� G! Pl(T(M(D)))
SCSkip(P, Q) =

over combine(P, skip)� combine(Q, skip) extend �, �.

link(�, �)
end

Then sequential composition with an environment different from Skip. This

is the point where the auxiliary functions allprefixn, psuccn and envn justify

their existence:

SCOther : G� G� G! Pl(T(M(D)))
SCOther(P, Q, PE) =

over N extend n.

over allprefixn(combine(P, PE)) extend (M1, M2) : : : (M2n�1, M2n).
over psuccn+1((M1, M2) : : : (M2n�1, M2n), P1)�

envn�1((M1, M2) : : : (M2n�1, M2n), PE) extend P0, PE0.
over combine(Q, PE0) extend �.

if hP0, M2ni ! M2n

then link((M1, M2) : : : (M2n�1, M2n), �)
fi

end

CHAPTER 3. GAMMA SEMANTICS 53

Next we consider parallel composition with Skip:

PCSkip : G� G! Pl(T(M(D)))
PCSkip(P, Q) =

over allprefix(combine(P, Skip)) extend �.

over psucclength(�)(�, P) extend P0 .

over combine(P0 + Q, Skip) extend �.

link(�, �)S
over allprefix(combine(Q, Skip)) extend �.

over psucclength(�)(�, Q) extend Q0 .
over combine(P + Q0, Skip) extend �.

link(�, �)
end

We now present parallel composition in a more complex environment:

PCOther : G� G! Pl(T(M(D)))
PCOther(P, Q, PE) =

over allprefix(combine(P, PE)) extend �.

over psucclength(�)(�, P)� envlength(�)(�, PE) extend P0, PE0 .

over combine(P0 + Q, PE0) extend �.

link(�, �)S
over allprefix(combine(Q, PE)) extend �.

over psucclength(�)(�, Q)� envlength(�)(�, PE) extend Q0, PE0 .

over combine(P + Q0, PE0) extend �.

link(�, �)
end

CHAPTER 3. GAMMA SEMANTICS 54

Finally, the most important function: combine.

combine : G� G! Pl(T(M(D)))
combine(P, PE) =� combine.

case P of (A(R))
if equal(PE, Skip)

then ARSkip(A, R)
else AROther(A, R, PE)

fi ;

Q Æ P)
if equal(PE, Skip)

then SCSkip(P, Q)
else SCOther(P, Q, PE)

fi ;

P + Q)
if equal(PE, Skip)

then PCSkip(P, Q)
else PCOther(P, Q, PE)

fi ;

end
end

Our presentation concludes with the following:

Definition 3.5.1 The denotation of a program P is:[[P℄℄ = absorbset([
PE2G combine(P, PE)).

We conclude this chapter with a short summary of results: starting with

the operational semantics of Gamma, some program orders were intro-

duced. Then, a Gamma denotational semantics based in the transition

CHAPTER 3. GAMMA SEMANTICS 55

trace model was defined and proved fully abstract. The laws 3.1.2, orig-

inally proved for an operational order, were extended to the denotational

order thanks to full abstraction. Finally, using the metalanguage of section

2.4.2, we presented a domain theoretical version of the semantics. We are

now prepared for the Gamma logic.

Chapter 4

Gamma logic

All the concepts needed to present the Gamma proof system have been

introduced in the the last two chapters: the (general) framework of DTLF

and a denotational semantics of Gamma.

As we said in chapter 2, the Gamma logic will be built in a hierarchical

fashion:� At the bottom there will be a series of proof systems corresponding

to basic types: numbers, tuples, booleans, etc. The existence of these

systems will be taken for granted.� A multiset logic with formation rules, axioms and inference rules will

be the second level.� The next layer will consist of a logic about the execution of Gamma

programs. Given that the denotation of a Gamma program is a set of

traces, these are also the basic objects in the language of assertions

and, therefore, the whole system will be called the transition trace

logic.� At the top there will be a couple of theorems connecting the logic with

more traditional approaches in the field of program logics (namely, the

use of invariants and termination conditions).

The content of this chapter reflects these goals. The multiset logic is

introduced in the first section. Soundness and (conditional) completeness

56

CHAPTER 4. GAMMA LOGIC 57

of the logic are proved afterwards. Reaction conditions in atomic rules are

reformulated in the new language (giving a unified framework to a hitherto

heterogeneous way of expressing reactions). At the end of the section, the

examples of Gamma programs of chapter 2 will be restated in terms of the

multiset logic.

The next section will deal with the transition trace logic. Soundness

and completeness are also proved, this time extending the results up to the

operational semantics.

The third section will discuss a basic approach to prove termination of

the execution of Gamma programs. It is basically a generalization of the

technique advocated by Banâtre & Le Métayer (1990).

The chapter concludes with some examples of correctness proofs for

Gamma programs.

There have not been many examples of multiset logics. Libkin & Wong

(1995) proposed a language to express properties of multisets in the con-

text of database representations, although it was not a proof system. Hernán-

dez Quiroz (1998) offered a first version of the multiset logic developed in

this thesis.

As has been mentioned, Banâtre & Le Métayer (1990) brought the use of

invariants, termination conditions and postconditions to Gamma program-

ming. At the core of their method was the multiset order of Dershowitz &

Manna (1979). Nevertheless, their proposal was restricted to atomic rules

and there was no systematic way to generalize it to sequentially composed

programs.

Errington et al. (1993) presented a logic based on an axiomatic seman-

tics in the style of Hoare. Using a denotational semantics of resumptions

and DTLF, Gay & Hankin (1996b) restated the former logic, this time with a

proof of soundness. Unfortunately, the resulting language of assertions and

proof rules were full of intricate details and they were too closely coupled

to execution of the programs, making the use of the logic very difficult.

Gay & Hankin (1996a) made a further attempt, now using a transition

trace semantics as the basis. Their new proof system was more manageable,

but due to the lack of a proper multiset logic, two of the most important

inference rules remained unproven. It also needed an extension to deal

CHAPTER 4. GAMMA LOGIC 58

with more abstract properties of the execution of programs. Our transition

trace logic arose as a complement to their system: the remaining rules have

been proven, other more abstract rules have been added and a method for

proving termination is also included (see section 4.2 and 4.3).

Chaudron (1998) followed a very different route. He took the Unity

logic of Chandy & Misra (1988) as the basis for his system. It included a

basic logical language for multisets (although not in an axiomatic presen-

tation) and a termination condition (again, not very easy to generalize to

sequentially composed programs).

On the other hand, the temporal semantics for Gamma of Reynolds

(1996) was intended also as a way of reasoning about program proper-

ties (including total correctness). It did not have an axiomatic presentation

either, making it difficult to know where a particular proof rule, axiom or

theorem came from. It also lacked a formal proof system for multisets.

4.1 Multiset logic

Consider the reaction condition of the atomic rules in the examples 2.2.1,

2.2.2 and 2.2.3:

z < k, x � z ^ y � z, true, x > 1, x = 0.

They are typical of Gamma programs. Reaction conditions refer to proper-

ties of elements in a multiset, not to properties of the multiset itself, except

when a minimal cardinality is required (as in the second example). A mul-

tiset meets a reaction condition when one of its subsets makes the reaction

true, namely, when its elements satisfy the corresponding predicate. This

suggests a strategy for designing a multiset logic.

Assume that D is a basic type in Gamma and that L(D) is language

of assertions about elements in D. As in DTLF, we will also have a proof

system L(D) with axioms and inference rules such that it is possible to

prove statements of the form

x j= �,

CHAPTER 4. GAMMA LOGIC 59

where x 2 D and � 2 L(D). t and f represent true and false in L(D). For

every element x 2 D we have:

x j= t and x 6j= f

With these ingredients we can present the logic of M (D).
Definition 4.1.1 The language of assertions L(M(D)) is made of atomic and

complex propositions. Atomic propositions are built in this way:�1, : : : ,�n 2 L(D)2fj�1, : : : ,�njg 2 L(M(D)),
where the order of the �i’s is not relevant. Complex propositions can be built

by finite conjunctions and arbitrary disjunctions:�,	 2 L(M(D))� ^ 	 2 L(M(D)) f�igi2I � L(M(D)),W
i2I �i 2 L(M(D)) .

True and false are defined as

t =
^ ; f =

_ ;.

We will also use the following shorthands:

if � 2 L(D) then fj�jgn �de f fj�, : : : ,�| {z }
n times

jg3fj�1, : : : ,�njg �de f

_
m2N2(fj�1, : : : ,�njg ℄ fjtjgm).

We will apply the convention that propositions in L(D) are denoted by

lower case Greek letters, while upper case Greek letters live in L(M(D)).
Observe an important difference with respect to domain-theoretical log-

ics: arbitrary (and not just finite) disjunctions are allowed.

The next step would be to introduce logical implication and equivalence

relations, together with axioms and inference rules for proving them. But

the motivations for the axioms of the logic will be clearer if the satisfaction

relation for multisets is introduced before.

CHAPTER 4. GAMMA LOGIC 60

Definition 4.1.2 (Satisfaction). If fjx1, : : : , xnjg 2 M (D) and �1, : : : ,�n 2
L(D) then fjx1, : : : , xnjg j= 2fj�1, : : : ,�njg if and only if there exists a permuta-

tion � such that

x�(1) j= �1, : : : , x�(n) j= �n.

On the other hand, fjx1, : : : , xnjg j= � ^	 if and only iffjx1, : : : , xnjg j= � and fjx1, : : : , xnjg j= 	.

If f�gi2I � L(M(D)) then fjx1, : : : , xnjg j= Wi2If�ig if and only iffjx1, : : : , xnjg j= � j for at least one � j 2 f�gi2I.

Just with this definition, we can prove some easy properties of the sat-

isfaction of propositions by multisets.

Theorem 4.1.3 For every M 2 M (D):
a) If fjx1, : : : , xnjg j= 2fj�1, : : : ,�njg then fjx1, : : : , xnjg℄M j= 3fj�1, : : : ,�njg.
b) fjx1, : : : , xnjg j= 3fj�1, : : : ,�mjg if and only if there is a fjy1, : : : , ymjg �fjx1, : : : , xnjg such that fjy1, : : : , ymjg j= 2fj�1, : : : ,�mjg.
c) M j= 2fjtjgm if and only if jMj = m.

d) M j= 3fjtjgm if and only if jMj � m.

Proof. It is enough to observe that fjx1, : : : , xnjg℄M j= 2fj�1, : : : ,�njg℄fjtjgk,

where jMj = k. Then M j= W
m2(fj�1, : : : ,�njg ℄ fjtjgm = 3fj�1, : : : ,�njg. The

other properties follow trivially from this and the definition of j=.

We now can carry on with the presentation of the proof system.

Definition 4.1.4 Given a type D, the multiset logic L(M(D)) consists of the

well-formed formulas of L(M(D)) and the relations of logical implication and

equivalence � and =, respectively. The following axioms define the way impli-

cation and equivalence behave:(A1) � � �, (A2) � � 	,	 � X� � X ,

CHAPTER 4. GAMMA LOGIC 61(A3) � � 	,	 � �� = 	 , (A4) � = 	� � 	,	 � � ,(A5) � � 	1,� � 	2� � 	1 ^ 	2
, (A6) � ^	 � �,(A7) � ^ 	 � 	, (A8) 8� 2 f�igi2I. � � 	W

i2I �i � 	 ,(A9) � 2 f�igi2I� � Wi2I �i

, (A10) � ^_
i2I

	i �_
i2I

(� ^ 	i)(A11) 2S ^ 2T � f if jSj 6= jTj,(A12) 2fj�1, : : : ,�njg ^2fj 1, : : : , njg �_�2�(n)2fj�1 ^ �(1), : : : ,�n ^ �(n)jg,(A13) 2(S ℄ fj�jg) � 2(S ℄ fj jg) if � � ,(A14) 2(S ℄ fj_
i2I

�ijg) �_
i2I

2(S ℄ fj�ijg).
In spite of some similarity, the axioms A1–A11 are not the same as those

found in domain theoretical logics. A very important difference is the inclu-

sion of arbitrary disjunctions, which give L(M (D)) the structure of a frame

and not just that of a lattice.

As an illustrative example of how the axioms work, we have the next

theorem and its proof:

Theorem 4.1.5 The following statements are true:

a) 2fjtjgm ^3fj�1, : : : ,�njg � f if m < n.

b) 2(S ℄ fjWi2I �ijg) =
W

i2I 2(S ℄ fj�ijg).
c) 3(S ℄ fjWi2I �ijg) =

W
i2I3(S ℄ fj�ijg).

Proof. For a) we have:2fjtjgm ^3fj�1, : : : ,�njg= 2fjtjgm ^_
k

2(fj�1, : : : ,�njg ℄ fjtjgk) definition�_
k

2fjtjgm ^ 2(fj�1, : : : ,�njg ℄ fjtjgk) A10� f by A11 and hypothesis.

CHAPTER 4. GAMMA LOGIC 62

From A13 and the fact that for every i, �i � Wi2I �i, we have2(S℄fj�ijg) �2(S℄fjWi2I �ijg), also for every i. Then
W

i2I2(S℄fj�ijg) � 2(S℄fjWi2I �ijg).
The other direction of the inequality is A14 and we get b). c) follows from

b) and the definition of 3.

The reader must have noticed by now that the multiset logic is very

similar to the domain-theoretical logics. To go beyond formal similarity,

we would need to give a domain presentation of multisets. Alas, this has

proved to be a very difficult question and it is still open. In chapter 5 we

will deal with the subject in more detail. In the meantime, one consequence

of not having a domain of multisets is that soundness and completeness of

the logic do not come “for free”. Fortunately, it is possible to prove them

even without resorting to DTLF methods.

Theorem 4.1.6 (Soundness and completeness). For every � and 	, � � 	 if

and only if for every M 2 M (T), M j= � implies M j= 	.

Proof. Assume � � 	 by virtue of one of the axioms A1–A14.

If it is because of A1–A5, then it is trivial that M j= � implies M j= 	.

In the case of A6, we have that � = A ^ B (for certain A and B) and	 = A. But M j= A ^ B implies M j= A = 	. The case A7 is analogous.

In A8, � =
W

i2I �i and M j= W
i2I �i implies that there is a � j such that

M j= � j. Now, by hypothesis, � j � 	 and then the case is reduced to one

of the other axioms.

A9 is clear, as M j= � j implies that M j= W
i2I �i by definition.

In A10, � = A ^ Wi2I 	i. Then M j= A and M j= W
i2I 	i implying that

there is a 	 j such that M j= 	 j. Then M j= A ^ 	 j and, by definition,

M j= W
i2I(A ^ 	i).

For axiom A11 we have � = 2S ^ 2T and 	 = f . But no M 2 M (D)
can satisfy simultaneously 2S and 2T if jSj 6= jTj, and the theorem holds

by vacuity.

With A12, now� = 2fj�1, : : : ,�njg^2fj 1, : : : , njg and	 =
W�2�(n)2fj�1^ �(1), : : : ,�n ^ �(n)jg. Let us suppose that fjx1, : : : , xnjg j= �, ie, x1 j= ��1(1),

. . . xn j= ��1(1) and x1 j= �2(1), . . . xn j= �2(n). Then x1 j= ��1(1) ^ �2(1),

. . . , xn j= ��1(n) ^ �2(n). In other words fjx1, : : : , xnjg j= .

CHAPTER 4. GAMMA LOGIC 63

Regarding A13, if M j= 2(S ℄ fj�jg) then M = fjx1, : : : , xnjg such thatfjx1, : : : , xn�1jg j= 2S and xn j= �. Hence xn j= . Consequently M j=2(S ℄ fj jg).
Finally if M j= 2(S ℄ fjWi �ijg) then again M = fjx1, : : : , xnjg, withfjx1, : : : , xn�1jg j= 2S and xn j= W

i �i. Therefore xn j= �i for some i and

then M j= 2(S ℄ fj�ijg) for the same i, which leads directly to the desired

conclusion.

Now assume that M j= � implies M j= 	 for every M 2 M (D). Can we

have � = 3fj�1, : : : ,�njg and 	 = 2fj 1, : : : , mjg? Consider the multisetfjm1, : : : , mpjg and p = max(n, m) + 1. then M 6j= 	 (definition of j=), so

this case is not possible.

Now � = 2fj�1, : : : ,�njg and 	 = 3fj 1, : : : , mjg. Clearly m � n. Let	0 = 2(fj 1, : : : , mjg ℄ fjtjgn�m). If M j= � by hypothesis M j= 	 and, by

definition of j=, M j= 	0. That is m1 j= ���(1), . . . , mn j= ���(m) implies

m1 j= � (1), . . . , mn j= � (m). As L(D) is complete ���(1) � � (1), . . . ,���(m) � � (m). For the cases when i � m just remember that
 � t for

every
. Then, applying axiom A13 � � 	0 � 	.

Let � = 2fj�1, : : : ,�njg and 	 = 2fj 1, : : : , mjg. Because of axiom A11

m = n. As for every M, M j= � implies M j= 	, if M j= �, that is

m1 j= ���(1) . . . , mn j= ���(n) then m1 j= � (1), . . . , mn j= � (n). As L(D)
is complete, this implies ���(1) � � (1), . . . , ���(n) � � (n). By A13 � � 	.

In the case of � = 3fj�1, : : : ,�njg and 	 = 3fj 1, : : : , mjg just take any

M satisfying M j= �, build M0 � M of cardinality n with M0 j= � still valid

and the argument for the previous case can be repeated.

A logic like L(D) refers only to the satisfaction of a proposition by a

single element in D. But predicates in reaction conditions also refer to

tuples. How can we extend our multiset logic in this direction?

Let us start assuming the existence of logics for tuples of elements in D.

The logic of pairs will be L(D � D) and the logic of tuples of length n will

be L(Dn). Now atomic formulae in the multiset logic are built according to

this rule: �m1
1 2 L(Dm1), : : : ,�mn

n 2 L(Dmn)2fj�m1
1 , : : : ,�mn

n jg 2 L(M(D)) .

CHAPTER 4. GAMMA LOGIC 64

Note that the index on top of the �’s does not mean repetition of the same

formula as before, but the cardinality of the domain product. Satisfaction

of formulas in L(M(D)) by multisets needs to be redefined:

Definition 4.1.7 Let � = 2fj�m1
1 , : : : ,�mn

n jg, M = fjm1, : : : , mpjg and p =Pn
i=1 mi. M j= � if and only if there exist a permutation � such that(m�(1), : : : , m�(m1)) j= �m1

1 , : : : , (m�(p�mn+1), : : : , m�(p)) j= �mn
n .

The proof of soundness and completeness of the multiset logic relies

on our ability to prove the satisfaction of a proposition in L(D) (and now

in L(Dn)). This comes from completeness and soundness of L(D), which

holds for DTLF theories. But many interesting reaction conditions cannot

be proved to hold with DTLF methods. If L(D) goes beyond DTLF then

completeness is lost (of course, we knew this must be the case) and the loss

will be carried to the whole Gamma proof system. Nevertheless, soundness

is not affected by this restriction.

Now it is time for some examples of the multiset logic at work. To begin

with, all reaction conditions can be formulated in the language L(M(D))
and therefore the examples of chapter 2 will be restated. To save space, a

predicate like ‘x = a’ will be written just as ‘a’.

4.1.8 Modified version of example 2.2.1:

Sier = ((x, y, z))!fj(x=2� 2=5, y=2� 2=5, z + 1), (x=2� 2=5, y=2 + 2=5, z + 1),(x=2 + 2=5, y=2 + 2=5, z + 1)jg(3fjz < kjg
4.1.9 New version of example 2.2.2:

Max = (x, y, z)! fjmaxfx, y, zg,maxffx, y, zg �maxfx, y, zggjg(3fjt, t, tjg
Prod = (x, y)! fjxyjg (3fjt, tjg

P = Prod Æ Max.

CHAPTER 4. GAMMA LOGIC 65

4.1.10 Restatement of example 2.2.3:

Pred = x ! fjx � 1, x � 2jg (3fjx > 1jg
One = x ! fj1jg (3fj0jg
Sum = (x, y) ! fjx + yjg (3fjt, tjg

Fib = Sum Æ (Pred + One).
Some previous ambiguities in the reaction conditions have disappeared.

For example, in the example 4.1.9, the program Prod used to have true as

the reaction condition, implying that the program could be executed with

any multiset. But this is obviously not true, for the action of Prod requires

two elements and a multiset with a smaller cardinality would be unsuitable.

The new condition 3fjt, tjg clearly establishes this additional requirement.

In the case of Max, additionally, the reaction condition was mixed with the

action. As long as there are three elements in the multiset (whatever their

value) Max can be applied so it is better to move the calculation of the two

maximal elements to the action.

As an illustration of the expressive power of the multiset logic, consider

the following propositions:� Suppose that m, n 2 N . We can have the formula 2fjm � z ^ n � zjg,
which is satisfied by any multiset with a single element p greater than

both m and n. This definition can be generalized: let fjm1, : : : , mnjg 2M (N). The formula 2fj n̂

i=1

mi � zjg
is satisfied by any multiset fjpjg such that p is greater than each mi 2fjm1, : : : , mnjg.� The formula 2fjWn

i=1 mi � zjg is satisfied by a multiset fjpjg such that

there is at least one mi 2 fjm1, : : : , mnjg with mi � p.� If m, n 2 N , then the formula 2fjm+n = zjg is satisfied by any multisetfjpjg such that p = m + n. Again, if fjm1, : : : , mnjg 2 M (N), then2fj nX
i=1

mi = zjg

CHAPTER 4. GAMMA LOGIC 66

is satisfied by any multiset fjpjg with p =
Pn

i=1 mi. Obviously, we can

also have the formula 2fj nY
i=1

mi = zjg.

Further concrete examples of propositions and proofs in the multiset

logic shall be offered when the correctness of these programs is proved in

the last section.

4.2 Transition trace logic

The relation j=� D � L(D), where D is a domain, was defined in chap-

ter 2 in terms of the denotation of elements in D (which are open sets).

Then x j= � means that � is a point belonging to the open set denoted by

x. According to the semantics of chapter 3, the denotation of a Gamma

program is a set of traces, that is, an element of P(T(M (D))). While pre-

senting the metalanguage version of the semantics, we said that the lower

powerdomain was the chosen order for sets of traces. The modal operator

♦ arises with the lower powerdomain (see section 2.4.3). In more formal

terms:

1 Let D be a domain corresponding to a basic type in Gamma. As we saw

in section 3.5, the domain of traces of multisets in D is T(M(D)). The

language of assertions associated with this domain is L(T(M(D))). Its

elements will be denoted by overlined lower case Greek letters: �̄, �̄,

etc.

2 The operations on traces of section 3.2 have their logical counterparts:�̄, �̄ 2 L(T(M(D)))�̄�̄ 2 L(T(M(D))) �̄, �̄ 2 L(T(M(D)))�̄� �̄ 2 L(T(M(D))) �̄ 2 L(T(M(D)))�̄ 2 L(T(M(D))),
in addition to the formation rules in 2.4.10.

3 Let t 2 T(M(D)) and �̄ 2 L(T(M(D))). As usual, t j= �̄ means that the

trace t satisfies the property expressed by �̄.

CHAPTER 4. GAMMA LOGIC 67

4 The denotation of a Gamma program was defined by the function [[℄℄ :G ! Pl(T(M(D))) in section 3.5. According to the rules of section

2.4.3, if �̄ 2 L(T(M(D)))
then

♦�̄ 2 L(Pl(T(M(D)))).
5 Let P 2 G and let �̄ 2 L(T(M(D))). Then

P j= ♦�̄
means that there is a t 2 [[P℄℄ (that is, there is an execution of P) such

that t j= �̄.

6 Let P, PE 2 G . P � PE means that the program P is executed in the

environment PE. Needless to say, � is not commutative. Now

P� PE j= ♦�̄
means that there is a t 2 T(P, PE) such that t j= �̄.

7 The transition trace logic L(Pl(T(M(D)))) arises from the language

L(Pl(T(M(D)))) together with the implication and equivalence rela-

tions � and =, and the axioms A1–A13 in 2.4.11.

The intuitive meaning of the satisfaction relation j= for Gamma pro-

grams is now clear. But how can we formally prove a statement of the

form P j= ♦�̄? Some inference rules suitable for this task are derived from

the denotational definitions. For example, the denotational function T says

that if � 2 T(P, Skip) and � 2 T(Q, Skip), then � � � 2 T(Q Æ P, Skip). On

the logical side, we would like to have Q Æ P j= ♦�̄ � �̄ from the fact that

P j= ♦�̄ and Q j= ♦�̄. In the same way, given that

T(P + Q, PE) = f�� � j there are
, P0, PE0
such that �
 2 T(P, PE)

and
 2 T(P0, PE0) and � 2 T(P0 + Q, PE0)g
we want to prove that (P+Q)�PE j= ♦�̄� �̄ from P�PE j= ♦�̄
̄, P0�PE0 j=
♦
̄ and (P0 + Q) � PE0 j= �̄. All these deductions are summarized in the

following theorem:

CHAPTER 4. GAMMA LOGIC 68

Theorem 4.2.1 The following are valid inference rules in the transition trace

logic:

Environment-free rules

Mediator

M j= �, M0 2 S(A (�, M), (A (�) j= ♦�̄(A (�) j= ♦(M, M0)� �̄ Terminal

M 6j= �(A (�) j= ♦(M, M)
Sequential composition

P j= ♦�̄, Q j= ♦�̄
Q Æ P j= ♦�̄� �̄ Parallel composition I

P j= ♦�̄�̄, P0 j= ♦�̄, P0 + Q j= ♦
̄
P + Q j= ♦�̄�
̄

Parallel composition II

Q j= ♦�̄�̄, Q0 j= ♦�̄, P + Q0 j= ♦
̄
P + Q j= ♦�̄�
̄

Environment-sensitive rules

E-mediator

A (� j= ♦�̄(M, N)�̄, PE j= ♦(N, O)
̄,
PE0 j= ♦
̄, (A (�)� PE0 j= ♦(O, P)�̄(A (�)� PE j= ♦�̄(M, N)(O, P)�̄

E-terminal

A (� j= ♦(M, M), PE j= ♦(M, M)(A (�)� PE j= ♦(M, M)
E-sequential composition

P� PE j= ♦�̄(M, N)�̄, P0 � PE0 j= ♦�̄, P0 j= ♦(N, N), Q� PE0 j= ♦
̄(Q Æ P)� PE j= ♦�̄(M, N)�
̄
E-parallel composition I

P� PE j= ♦�̄�̄, P0 � PE0 j= ♦�̄, (P0 + Q)� PE0 j= ♦
̄(P + Q)� PE j= ♦�̄�
̄
E-parallel composition II

Q� PE j= ♦�̄�̄, Q0 � PE0 j= ♦�̄, (P + Q0)� PE0 j= ♦
̄(P + Q)� PE j= ♦�̄�
̄

CHAPTER 4. GAMMA LOGIC 69

Absorption

P j= ♦�̄(M, N)(N, O)�̄
P j= ♦�̄(M, O)�̄

Proof. Terminal. The denotation of A (� includes all the pairs (M, M)
such that M 6j= �. But then there is a p 2 [[A (�℄℄ such that p j= (M, M),
namely (M, M) itself. By definition of j= in L(Pl(T(M(D)))) then A (� j=
♦(M, M).

Mediator. If p 2 [[A (�℄℄ j= �̄, M j= � and M0 2 S(A (�, M), then(M, M0)� p 2 [[A (�℄℄ and (M, M0)� p j= (M, M0)� �̄. The rule follows as

a consequence.

Sequential composition. If P j= ♦�̄ and Q j= ♦�̄ then p j= �̄ and q j= �̄
for certain p 2 [[P℄℄ and q 2 [[Q℄℄. Hence, p� q j= �̄� �̄ and the rule follows.

Parallel composition. By hypothesis, p j= �̄�̄, p0 j= �̄ and r j=
̄ for some

p 2 [[P℄℄, p0 2 [[P0℄℄ and r 2 [[P0 + Q℄℄. Now, p� r j= �̄�
̄. Again, by definition

of [[℄℄ we have that p� r 2 [[P + Q℄℄ and then P + Q j= ♦�̄�
̄.

Absorption. Suppose that P j= �̄(M, N)(N, O)�̄. This means that p j=�̄(M, N)(N, O)�̄ for a p 2 [[P℄℄. As [[P℄℄ is closed under absorption, there must

be a p0 2 [[P℄℄ such that p0 j= �̄(M, O)�̄ and then P j= ♦�̄(M, O)�̄.

The environment sensitive rules are proved in an analogous manner.

A very important advantage of a DTLF setting for the transition trace

logic is that, in contrast to the multiset logic, soundness and completeness

are direct consequences of (one of the) Stone dualities:

Theorem 4.2.2 Soundness and completeness of the transition trace logic. For

every ♦�̄, ♦�̄ 2 L(Pl(T(M(D)))),
♦�̄ � ♦�̄

if and only if for every P 2 G ,

P j= ♦�̄ implies P j= ♦�̄.

CHAPTER 4. GAMMA LOGIC 70

Proof. By theorem 2.4.16 and definition 2.4.14 we have that[[♦�̄℄℄Pl(T(M (D))) � [[♦�̄℄℄Pl(T(M (D))) .
But P j= ♦�̄ means that [[P℄℄ 2 [[♦�̄℄℄Pl(T(M (D))) and then [[P℄℄ 2 [[♦�̄℄℄Pl(T(M (D)))
and finally P j= ♦�̄.

Soundness and completeness can be considered from the point of view

of the denotational order vT too:

Theorem 4.2.3 For every P, Q 2 G
P vT Q

if and only if for every ♦�̄ 2 L(Pl(T(M(D))))
P� PE j= ♦�̄ implies Q� PE j= ♦�̄.

This is also valid if we replace vC for vT.

Proof. Assume P vT Q. Now P� PE j= ♦�̄ implies that p j= �̄ for a certain

p 2 [[P℄℄. But by definition of vT , p 2 T(Q, PE) and then p 2 [[Q℄℄. Hence

Q� PE j= ♦�̄.

Suppose now that P � PE j= ♦�̄ implies Q � PE j= ♦�̄. Take the trace

t 2 T(P, PE). There is a �̄ 2 L(T(M(D))) such that x j= �̄ if and only if x = t

(that is, �̄ expresses the property of being identical to t). It follows that

P� PE j= ♦�̄ and by hypothesis

Q� PE j= ♦�̄ ,

i.e. there is a q 2 T(Q, PE) such that q j= �̄ and by construction, q = t.

Therefore P vT Q.

As for the last statement in the present theorem, full abstraction (3.4.2)

allows us to replace vC for vT.

Corollary 4.2.4 If P v Q according to one of the laws 3.1.2 then P j= 3�̄
implies Q j= 3�̄.

CHAPTER 4. GAMMA LOGIC 71

Proof. Make PE = Skip and then P� PE = P. The corollary is an immediate

consequence of the previous theorem.

How powerful is the transition trace logic? As an example, consider the

program:

Pred = x ! fjx � 1, x � 2jg (3fjx > 1jg,
one of the components in example 4.1.10. Assuming that n � 2 and Pred j=
♦(fjn� 1, n� 2jg, N1)(N1, N2) : : : then

Pred j= ♦(fjnjg, fjn� 1, n� 2jg)(fjn� 1, n� 2jg, N1)(N1, N2) : : :
by mediator, as fjnjg j= 3fjx > 1jg. The next step is finding out the value of

N1.

If n = 3 then N1 = fj2, 1, 0jg and we can perform Pred again to get N2.

If n = 2 then the terminal rule can be applied. But what if n > 3? We have

different possibilities for applying the action x ! fjx�1, x�2jg. In short, it

is very difficult to know what final multiset, if any, we will get. Some form

of induction on multisets seems necessary here. We will start by reviewing

a former proposal for dealing with the problem.

4.3 Termination

We just need to remember the halting problem to realize that determining

termination of programs is in general an undecidable problem. Neverthe-

less, in practice there are ways of having an acceptable method of handling

termination. The most common one is through the so-called well-founded

induction: if we can prove that a certain well-founded order is kept during

the execution of a program, then the program will terminate.1

As Gamma programs can be seen as rewriting rules for multisets (in the

sense of term rewriting systems), termination of a program is guaranteed if

the rules respect a well-founded order for multisets. Dershowitz & Manna

(1979) proposed what is the best-known multiset order:
1Just for the sake of clarity, let us state that a well-founded order on a set P is a transi-

tive and non-reflexive relation �� P� P which contains no infinite descending chain.

CHAPTER 4. GAMMA LOGIC 72

Definition 4.3.1 If M, N 2 M (D) and � is a transitive relation on D, then

M �DM N

if and only if there are X, Y 2 M (D) such that

X 6= ;
X � M

N = (M � X) ℄ Y

X vu Y

ie, for all y 2 Y there is a x 2 X such that x � y.

They also proved that �DM is well-founded if � is so. With these ideas

in mind, Banâtre & Le Métayer (1990) proposed a method for developing

Gamma programs from a specification, following the approach of Dijkstra

(1976). Their original proposal was restricted to atomic reactions. The

steps of the method are:

(1) To express the specification of a program in first order predicate cal-

culus.

(2) To split the specification in two parts: invariant and terminating con-

dition.

(3) To state the reaction condition of the rewriting rule as the negation

of the terminating condition.

(4) To design the action in the rewriting rule as a function that validates

the terminating condition locally, that is, in the subset satisfying the

reaction condition.

(5) To prove that the execution of the program respects the well-founded

order �DM.

Although we are interested in proving correctness of programs rather

than developing them, their method can be adapted for correctness proofs.

For instance, we could take for granted the existence of a specification (step

1), albeit it could be written in informal language. In the case of step 3,

CHAPTER 4. GAMMA LOGIC 73

we would have to verify (rather than state) that the reaction condition

is the negation of the terminating condition. Step 4 would also involve

verification rather than design.

But we would also need to include more general Gamma programs and

not just atomic reactions. On the other hand, �DM is not the only possible

order for multisets, and the next theorem is valid for any well-founded

order.

Theorem 4.3.2 Let P 2 G and consider the traces (M1, M2) : : : 2 T(P, Skip).
If � is a well-founded relation on M (D) and for every i, Mi � Mi+1, then:

(a) all the considered traces are finite, that is, they have the form(M1, M2) : : : (Mn�1, Mn);
(b) P j= ♦(M1, Mn).

Proof. If a trace (M1, M2) : : : were infinite, by hypothesis we would have

an infinite descending chain M1 � M2 � � � which is not possible as � is well

founded. Hence, all the traces are finite.

The proof of (b) is made by induction on Gamma syntax:

1. Base case. P = A (�, where A = fj f1(x1, : : : , xi), : : : , fk(x1, : : : , xi)jg and� = 3fj�1, : : : ,�ijg. If Mn j= � then there is a � such that m�(1) j= �1, . . . ,

m�(i) j= �i. Then consider

M0 = (Mn � fjm�(1), : : : , m�(i)jg) ℄ A(m�(1), : : : , m�(i)).
Clearly M0 2 S(A (�, Mn) so (Mn�1, Mn) was not the last pair. Therefore

Mn 6j= �.

Using the terminal rule we have A (� j= ♦(Mn, Mn). By the mediator

rule then

A (� j= ♦(Mn�1, Mn)(Mn, Mn).
A finite number of applications of the mediator rule give us

A (� j= ♦(M1, M2) : : : (Mn�1, Mn)(Mn, Mn),

CHAPTER 4. GAMMA LOGIC 74

and performing the absorption rule n times renders

A (� j= ♦(M1, Mn).
2. P = Q Æ P. Then by hypothesis there is a i � n such that(M1, M2) : : : (Mi�1, Mi) 2 T(P, Skip)(Mi+1, Mi+2) : : : (Mn�1, Mn) 2 T(Q, Skip),
with Mi = Mi+1. We apply now the inductive hypothesis and then

P j= ♦(M1, Mi) and Q j= ♦(Mi+1, Mn),
and by the sequential rule

Q Æ P j= ♦(M1, Mi)� (Mi+1, Mn),
from which it follows that Q Æ P j= ♦(M1, Mn) by definition of � and the

absorption rule.

3. P = P + Q. We will use here mathematical induction on the length of

the trace too (namely, n=2):

Base case n = 2. By definition of T, M1 = M2 and hP, M1i ! M1 andhQ, M1i ! M1. Then (M1, M1) 2 T(P, Skip) and (M1, M1) 2 T(Q, Skip). By

inductive hypothesis (on the syntax of Gamma):

P + Q j= (M1, M2).
Inductive case. Suppose that for every k < n=2 it is true that for all P,

Q 2 G (M1, M2) : : : (M2k�1, M2k) 2 T(P + Q, Skip)
implies

P + Q j= ♦(M1, M2k).
Now suppose (M1, M2) : : : (Mn�1, Mn) 2 T(P + Q, Skip). Without loss of

generality, we can assume that there are
 and P0 such that(M1, M2) : : : , (Mi�1, Mi)
 2 T(P, Skip)
 2 T(P0, Skip) and(Mi+1, Mi+2) : : : (Mn�1, Mn) 2 T(P0 + Q, Skip).

CHAPTER 4. GAMMA LOGIC 75

with Mi = Mi+1. By inductive hypothesis on n:

P0 + Q j= ♦(Mi+1, Mn)
and by inductive hypothesis on Gamma syntax:

P j= ♦(M1, Mi) and P0 j= ♦
.

Applying the parallel rule we obtain:

P + Q j= ♦(M1, Mi)� (Mi+1, Mn),
and the absorption rule gives P + Q j= ♦(M1, Mn).

The termination part of Banâtre & Le Métayer’s (1990) method has now

been extended from atomic reactions to general Gamma programs. Now it

is the turn of the invariant side.

Theorem 4.3.3 Consider a Gamma program P whose strict traces meet the

hypothesis in theorem 4.3.2, i.e. they have the form (M1, M2) : : : (Mn�1, Mn),
and let IP, TP and �P 2 L(M(D)). If

(a) For every i � n we have Mi j= IP;

(b) IP � TP _ �P, and

(c) Mn 6j= TP;

then Mn j= �P. The formulas IP, TP and �P are called invariant, non-

terminating condition and postcondition, respectively.

Proof. If IP � TP_�P, the theorem 4.1.6 says that for all M 2 M (D), M j= IP
implies M j= TP _�P. By definition of satisfaction, this happens if and only

if either M j= TP or M j= �P. We have by hypothesis that Mn j= IP and then

M j= TP _ �P but Mn 6j= TP, so Mn j= �P must be the case.

At last, we are able to return to the basic problem of proving total cor-

rectness of a program P. We will follow these steps:

1. We will state a precondition � and a postcondition 	, where �, 	 2
L(M(D)).

CHAPTER 4. GAMMA LOGIC 76

2. Using theorem 4.3.2, we will prove that P j= ♦(M1, Mn) for certain M1,

Mn 2 M (D).
3. Applying theorem 4.3.3 and the inference rules of L(M(D)), we will

show that if M1 j= � then Mn j= 	.

4. As P can be a complex program, steps 1–3 can be applied to each of

its components and then the rules 4.2.1 will be used to reassemble the

components.

4.4 Examples

Now it is time to put to work all the system developed in this chapter. Our

first example will be a proof of correctness of program 4.1.8.

1. Let the precondition be 2fj(0, 0, 0)jg
and the postcondition 2fj(x1, y1, k), : : : , (x3k, y3k, k)jg
where (xi, yi) is one of the points in the k-th iteration of the Sierpinsky

function (henceforth called a k-Sierpinsky point). Clearly there is only one

multiset meeting the precondition and the same holds for the postcondi-

tion. In other words, we want to show

P j= ♦(fj(0, 0, 0)jg, fj(x1, y1, k), : : : , (x3k, y3k , k)jg).
For convenience, let us abbreviate fj(x=2 � 2=5, y=2 � 2=5, z + 1), (x=2 �
2=5, y=2 + 2=5, z + 1), (x=2 + 2=5, y=2 + 2=5, z + 1)jg by A(x, y, z).
2. Let (M1, M2) : : : 2 T(Sier, Skip) and let the relation �� (R � R � N)2 be

defined by(a, b, c) � (a0, b0, c0) if and only if c < c0 and c0 � k.

Clearly � is a well-founded order. Therefore �DM is also well-founded.

CHAPTER 4. GAMMA LOGIC 77

Now, if z < k and N = (M�fj(x, y, z)jg)℄ A(x, y, z) then M �DM N. Then

the traces in T(Sier, Skip) have the shape (M1, M2) : : : (Mn�1, Mn) and

Sier j= ♦(M1, Mn).
3. Define ISier =

n_
i=1

(2(Mi�1 � fj(x, y, z)jg)℄ A(x, y, z))TSier = 3fjz < kjg�Sier = 2fj(x1, y1, k), : : : , (x3k, y3k , k)jg.
If M j= ISier then M j= TSier _ �Sier and, by 4.1.6, we get ISier � TSier _ �Sier.

Clearly, for every i, Mi j= ISier, but Mn 6j= TSier (otherwise Mn would not be

the final multiset). Then

Mn j= 2fj(x1, y1, k), : : : , (x3k, y3k , k)jg.
Step 4 is omitted as Sier is an atomic rule.

The second case is example 4.1.9. We will split the program and apply

steps 1–3 to each part. Let us begin with Max.

Suppose our initial multiset is fjm1, : : : , mnjg. The precondition is now3fjt, t, tjg and the postcondition is2fj n̂

i=1

mi � z,
n�1̂

i=1

mi � wjg.
The multiset order � is the simplest:

M � N if and only if jMj > jNj.
Assume (M1, M2) : : : 2 T(Max, Skip). It is clear that Mi � Mi+1 and that� is well-founded. Then all traces in T(Max, Skip) are finite of length n=2

(with n 2 N) and then

Max j= ♦(M1, Mn).

CHAPTER 4. GAMMA LOGIC 78

Now, make IMax = 3fj n̂

i=1

mi � z,
n�1̂

i=1

mi � wjgTMax = 3fjt, t, tjg�Max = 2fj n̂

i=1

mi � z,
n�1̂

i=1

mi � wjg.

Again, IMax � TMax _ �Max and for every i, Mi j= IMax. Additionally, Mn 6j=TMax (by axiom A11 in 4.1.4) and therefore

Mn j= 2fj n̂

i=1

mi � z,
n�1̂

i=1

mi � wjg.

Regarding Prod, our multiset order is the same as before and then

Prod j= ♦(N1, Nm).
If N1 = fjn1, : : : , npjg andIProd =

_
i2N2fj iY

j=1

x j =
pY

k=1

nkjgTProd = 3fjt, tjg�Prod = 2fj pY
k=1

nkjg,

is clear that Ni j= IProd as Ni j= 2fjQr
j=1 =

Qp
k=1 nkjg with r = jNij.

On the other hand, Nm 6j= TProd and then NM j= 2fjQp
k=1 nkjg. If we take

N1 = fjz, wjg then

Prod j= ♦(fjz, wjg, fjzwjg).
Applying now the sequential composition and absorption rules:

Prod Æ Max j= ♦(fjm1, : : : , mnjg, fjzwjg),
where fjz, wjg j= 2fjVn

i=1 mi � z,
Vn�1

i=1 mi � wjg.

Finally we shall prove that Fib j= ♦(fjnjg, fj Fib njg), where Fib n stands

for the n-Fibonacci number. That is, the precondition is 2fjnjg and the

postcondition is 2fj Fib njg.

CHAPTER 4. GAMMA LOGIC 79

Consider the traces (M1, M2) : : : 2 T(Sum, Skip). Again, the multiset

order

M �Sum N if and only if jMj > jNj
is well-founded and Mi �Sum Mi+1 and then the traces are finite and

Sum j= ♦(M1, Mm).
Now let ISum =

_
i2N2fj iX

j=1

x j = Fib njgTSum = 3fjt, tjg�Sum = 2fj Fib njg.
It is clear that �Sum =

_
i2N2fj iX

i=1

x j = Fib njg ^ 2fjtjg
and then ISum � TSum _ �Sum.

Consider now the traces in T(Sum, Skip) such that M1 = fj1jgFib n. We

have that for all i � n, Mi j= ISum. On the other hand, Mm 6j= TSum (oth-

erwise Mm would not be the final element) and then Mm j= 2fj Fib njg.
Therefore

Sum j= ♦(fj1jgFib n, fj Fib njg).
It is time to examine Pred + One. Let (N1, N2) : : : 2 T(Pred + One, Skip)

and let

M �Pred+One N iff
�

N = (M � fj0jg) ℄ fj1jg or

N = (M � fjxjg) ℄ fjx � 1, x � 2jg if x > 1.

Again, �Pred+One is well-founded and then the traces in T(Pred + One, Skip)
have the form (N1, N2) : : : (Nk�1, Nk). Therefore

Pred + One j= ♦(N1, Nk).
Let us restrict our attention to the traces starting with the multiset fjnjg.

Define now IPred+One =
_
i2N2fj iX

j=1

Fib x j = Fib njgTPred+One = 3fjx > 1jg _3fj0jg�Pred+One = 2fj1jgFib n.

CHAPTER 4. GAMMA LOGIC 80

As M j= �Pred+One if and only if M j= IPred+One but M 6j= TPred+One, we con-

clude that IPred+One � TPred+One _ �Pred+One. Obviously, fjnjg j= 2fj Fib n =

Fib njg and then fjnjg j= IPred+One. If we shift our attention to the successors

of fjnjg we can notice that if Mi j= IPred+One then

Mi+1 =
�

N = (M � fj0jg) ℄ fj1jg or

N = (M � fjxjg) ℄ fjx � 1, x � 2jg if x > 1

satisfies IPred+One, as Fib 0 = Fib 1 and Fib x = Fib(x�1)+Fib(x�2). Lastly,

Mm 6j= 3fjx > 1jg _3fj0jg
(again, it would not be the last multiset in the trace if it did) and then

Mm j= 2fj1jgFib n. Hence

Pred + One j= ♦(fjnjg, fj1jgFibn)
and we conclude with an application of the sequential and absorption rules:

Sum Æ (Pred + One) j= ♦(fjnjg, fj Fib njg).
And with this last example the presentation of the Gamma proof system

concludes and we can recapitulate our results:

A sound and (conditionally) complete multiset logic was presented.

This multiset logic complemented a transition trace logic, which was also

proved sound and (conditionally) complete. The transition trace logic is the

basis for a correctness proof method for general Gamma programs (includ-

ing proofs of termination of programs). Some examples of the application

of the method were also offered.

Chapter 5

Locales, bags and pipelining

In this chapter we shall discuss three different issues which can be useful to

extend the results of chapter 3 and 4 both in a practical and in a theoretical

direction: a localic presentation of the multiset logic, the relation between

the multiset logic and some other views about multisets and the application

of multiset logic to the analysis of program transformations.

There are other ways of presenting the multiset logic of chapter 4. In the

chosen presentation, the emphasis is on the satisfaction relation between

propositions and multisets. Alternatively, we could have begun with the

logic itself and then tried to “recover” the multisets as the entities satisfy-

ing the logic. Geometric logics were proposed by Vickers (1989) as proof

systems in which the satisfaction of a property can be proven with a finite

number of observations. A geometric logic is a frame where least upper

bounds and greatest lower bounds are regarded as disjunctions and con-

junctions, respectively. Then the objects satisfying the propositions in the

logic —called points— are explained in terms of a locale. The satisfaction

relation imposes an order on the points, together with some other nice

properties. The theoretical foundations for this view lay, again, on the

work of Stone (1936) and Johnstone (1982). However, we will leave some

open questions about the equivalence of this view and the multiset logic of

chapter 4.

Multisets are also an important topic in database theory. Databases

are collections of data, and these collections can be seen either as sets or

81

CHAPTER 5. LOCALES, BAGS AND PIPELINING 82

multisets. The latter are particularly useful when dealing with partial or

incomplete information in databases (which is normally the rule). Libkin

(1994) worked on the semantics of incomplete information in databases

and, among other results, produced a multiset language with a rich set of

operations, most of them of polynomial complexity.

In a previous work, Libkin & Wong (1993) also defined two orders for

multisets. One of them is equivalent to the multiset order arising from our

logic. This implies that the verification of the satisfaction of a formula by a

multiset can be done in polynomial time (provided the satisfaction relation

for elements is also of polynomial complexity).

But some negative results arise from the equivalence between the two

orders too. Heckmann (1995) proposed the lower bag-domain and proved

that its order is equivalent to the one in Libkin & Wong (1993). He also

showed that Scott domains are not preserved by the bag-domain construc-

tion, and this limitation can be extended to the order generated by our

multiset logic.

A common problem in refining programs in parallel languages is the

pipelining transformation: the change of two sequentially composed pro-

grams into a version composed in parallel. Hankin, Le Métayer & Sands

(1998) and Weichert (1999) studied in depth this problem in the context

of Gamma programs. The latter strengthened a series of requirements for a

pipelining transformation to be safe. Those requirements can be re-stated

in terms of the multiset logic and then the whole formal apparatus of chap-

ter 4 can be used to verify them.

A section is devoted to the discussion of each topic. We shall start with

the localic version of the multiset logic. The bag language and orders of

Libkin & Wong (1995) will follow afterwards. The final subject will be the

pipeline transformation, accompanied by an example.

Other people have also explored the relationship between multisets and

databases. Gunter’s (1992) mixed powerdomain and Vickers’s (1992) pred-

icate geometric logic address the representation of partial information in a

set of data. A research program to connect their views to our own multiset

logic will be presented in the concluding chapter.

CHAPTER 5. LOCALES, BAGS AND PIPELINING 83

5.1 A locale for the multiset logic

A few concepts are necessary before introducing locales. To begin with, we

have the two point lattice 2 = f false, trueg with false � true (again, the

Sierpinski space regarded as a lattice).

Let us remember that a frame is a distributive lattice which is also

cocomplete, although it is not necessarily complete (see 2.4.2). But a frame

is also a special kind of logic, where the operator u is the conjunction ^
and t is the disjunction _. The fact that only finite conjunctions but arbi-

trary disjunctions need to exist reflects the property that propositions can

be proven with a finite number of observations: to verify a conjunction

we need to verify each of its components (then the conjunction cannot be

infinite); to verify a disjunction we just need to find a component which is

true and there is no need to verify the others. This type of logic is called

geometric.

To make the relationship between frames and geometric logics even

stronger we introduce some mappings from frames to lattices:

Definition 5.1.1 Let F be a frame and L a lattice. A frame homomorphism

is a function f : F ! L such that

f(x ^ y) = f(x) ^ f(y) and f(x _ y) = f(x) _ f(y).
If F is a frame, the set

pt F = f f : F ! 2 j f is a frame homomorphismg
is called the points of F. The set f�1(true) is the true kernel of f .

Because f is a frame homomorphism, we have that x v y implies f(x) v
f(y) and, as a consequence:

a) f�1(true) is upper closed;

b) x, y 2 f�1(true) implies x ^ y 2 f�1(true);
c) if

W
i2I xi 2 f�1(true) then there is a i 2 I such that xi 2 f�1(true).

In other words, f�1(true) is a complete prime filter (see definition 2.4.3).

Now we have all the notation required for locales:

CHAPTER 5. LOCALES, BAGS AND PIPELINING 84

Definition 5.1.2 Let F be a frame. The pair (F, pt F) is the locale of F. A

locale is associated with a satisfaction relation j=� pt F � F:

f j= � if and only if � 2 f�1(true).
For all � 2 F define the set

U� = f f 2 pt F j f j= �g.
These open sets form a topology of pt F:; = U? pt F = U> U� \ U� = U�^ [

i2I

U�i
= UW

i2I �i

as F has a ? and a >, and finite meets and arbitrary joins.

The structure of the set pt F looks a little mysterious. But the relation j=
introduces some order in the picture:

Definition 5.1.3 Given a F, the specialization order vS on pt F is the relation

defined by

x vS y if and only if x j= � implies y j= �, for all � 2 F.

If F and G are frames, a function h : F ! G is a homeomorphism if x v y

implies h(x) v h(y) and there is another function h0 : G ! F such that

h Æ h0 = IdF and h0 Æ h = IdG. If there is a homeomorphism between F and

G, they are called homeomorphic. In symbols: F ' G.

The set of compact elements in a topological space was defined shortly

after definition 2.4.5. As there is a parallelism between intersection and

conjunction, on the one hand, and union and disjunction, on the other,

compactness can easily be extended to frames. As was the case with topo-

logical spaces, the set of compact elements in a frame F is denoted by K(F).
Because of this parallel, any element definable only through infinite dis-

junctions is excluded from K(F): disjunctions are the equivalent to unions,

and if c is a compact element, C is a set of opens and c v WC, then there is

a finite C0 � C such that c v WC0.

CHAPTER 5. LOCALES, BAGS AND PIPELINING 85

Definition 5.1.4 The frame F is coherent if and only if

1. It is algebraic (see definition 2.4.4).

2. The set K(F) is a sublattice (ie, it is closed under finite meets).

The previous definitions are put to some use in the following series of

results:

Theorem 5.1.5 Let F be a coherent frame. The next statements are true:� pt F is directed cocomplete: if D � pt F is directed, then
F

D exist.� F is complete: for all �, 2 F, if f j= � implies f j= then � � .� F is sound: the inverse implication of completeness holds as part of the

definition of frame homomorphisms.

This theorem summarizes propositions 7.2.3, 5.3.5 and 9.2.4 by Vickers

(1989), where the reader can find a proof.

Now it is time to come back to the multiset logic. To begin with,L(M (D)) is a frame and then all of the previous definitions apply. Con-

sider the locale (L(M (D)), pt L(M (D))). In an ideal world, the points in

the locale should be finite multisets and the satisfaction relation j= should

coincide with the same relation as defined in chapter 4. The desirability

of this coincidence does not arise from moral issues, but from the fact thatL(M (D)) is complete with respect to ptL(M (D)) and, moreover, ptL(M (D))
is a domain whenever D is so. This is the subject of the following theorems.

To begin with, we need to prove coherence of L(M (D)) and the next two

lemmas will lead us there.

Lemma 5.1.6 A 2 K(L(M (D))) if and only if A =
Vm

i=12fjai
1, : : : , ai

njg and

each of the ai
j’s is compact in L(D).

Proof. If A 2 K(L(M (D))) then A must be a finite conjunction of com-

pacts (by definition of compactness). Take first the simplest case: A =2fja1, : : : , anjg. Now suppose there is a non-compact ai, that is there exists a

directed set B � L(D) such that ai � W B and ai � b for no b 2 B. Consider

CHAPTER 5. LOCALES, BAGS AND PIPELINING 86

now the set B0 = f2fja1, : : : , ai�1, b, ai+1, : : : , anjg j b 2 Bg. By A13 in 4.1.4,

B0 is directed like B. According to A142fja1, : : : , anjg � 2fja1, : : : , ai�1,
_

B, ai+1, : : : , anjg� _
b2B

2fja1, : : : , ai�1, b, ai+1, : : : , anjg
=
_

B0.
However, there is no b0 2 B0 such that 2fja1, : : : , anjg � b0, which contradicts

our assumptions that 2fja1, : : : , anjg was compact. Therefore all ai’s are

compact.

If A =
Vm

i=12fjai
1, : : : , ai

njg with m � 2, then the argument previously

explained can be repeated for each 2fjai
1, : : : , ai

njg and we will reach the

same conclusion.

The other direction of the lemma is trivial.

Lemma 5.1.7 If L(D) is an algebraic frame, then L(M (D)) is algebraic too.

Proof. For every � 2 L(D) and A 2 L(M (D)), let

K� = f 2 K(L(D)) j � �g and KA = f	 2 K(L(M (D))) j 	 � Ag.

We need to prove that KA is directed and A = KA.

Case A = 2fj�1, : : : ,�njg. Take the formula 2fjW K�1 , : : : ,W K�n jg. These

statements hold:

(a) 2fjW K�1, : : : ,W K�njg = 2fj�1, : : : ,�njg.

(b) 2fjW K�1, : : : ,W K�njg =
W

KA.

For (a), we just need to consider that L(D) is algebraic and then �i =
W

K�i
.

For (b), take a formula 	 2 KA, with	 =
m̂

i=1

2fj i
1, : : : , i

njg.

As 	 � A, there are permutations �	1 , . . . , �	m such that i�	
i
(j) � � j. Now,

remember that for all i and j, i
j is compact (lemma 5.1.6). On the other

CHAPTER 5. LOCALES, BAGS AND PIPELINING 87

hand, if c 2 K�i
, there is a � 2 KA such that � = 2fj
i, : : : , c, : : : ,
njg

(otherwise, we could easily build a compact � which would not belong to

KA). Then f i�	
i
(j)g	2KA = K� j

and then (b) follows.

Finally, KA is directed. If � and 	 2 KA and � =
Vm

i=1fj�i
1, : : : ,�i

njg and	 =
Vp

i=1fj i
1, : : : , i

njg, there are again permutations ��1 , . . . , ��m and �	1 ,

. . . , �	p such that �i��
i
(j) � � j and i�	

i
(j) � � j,

and given the facts that (i) L(D) is algebraic; (ii) �i��
i
(j) ^ i�	

i
(j) is compact,

and (iii) it belongs to K� j
, we have that �^	 can be built using those meets

as elements. Therefore KA is directed.

Case A =
Vm

i=12fj�i
1, : : : ,�i

njg. The argument of the previous case can be

repeated for each 2fj�i
1, : : : ,�i

njg (as they are finite).

Case A = 3fj�1, : : : ,�njg. As 3fj�1, : : : ,�njg =
W

m2N 2(fj�1, : : : ,�njg ℄ fjtjgm)
and � � t for every � 2 L(D), this case is reduced to the first one.

Theorem 5.1.8 The multiset logic L(M (D)) is coherent, provided L(D) is so.

Proof. We already know that L(M (D)) is algebraic. We only have to prove

that K(L(M (d))) is closed under finite meets. Assume that � and 	 2
K(L(M (D))), where� =

m̂

i=1

fj�i
1, : : : ,�i

njg and 	 =
p

î=1

fj i
1, : : : , i

njg.

By A12 in 4.1.4 we obtain:

m̂

i=1

fj�i
1, : : : ,�i

njg =
_�12�(n):::�m2�n

2fj�1�1(1) ^ : : : ^ �m�m(1), : : : ,�1�1(n) ^ : : : ^ �m�m(n)jg
p

î=1

fj i
1, : : : , i

njg =
_�12�(n):::�p2�n

2fj 1�1(1) ^ : : : ^ p�p(1), : : : , 1�1(n) ^ : : : ^ p�p(n)jg .

CHAPTER 5. LOCALES, BAGS AND PIPELINING 88

By distributivity of conjunction over disjunction:� ^	 =
_�12�(n):::�m2�n�12�(n):::�p2�n

2fj(�1�1(1) ^ : : : ^ �m�m(1)) ^ (1�1(1) ^ : : : ^ p�p(1)), : : : ,(�1�1(n) ^ : : : ^ �m�m(n)) ^ (1�1(n) ^ : : : ^ p�p(n))jg
which is compact, as all disjunctions and conjunctions appearing inside are

finite and K(L(D)) is closed under them.

Corollary 5.1.9 Completeness of L(M (D)). If for all M 2 ptL(M (D)), M j=� implies M j= then � � .

Proof. As L(M (D)) is coherent, theorem 5.1.5 applies.

As a nice additional result we have that hptM (D),vSi is directed cocom-

plete, again thanks to 5.1.5.

We come back now to the comparison between M (D) and ptL(M (D)).
First of all we can also have a specialization order for M (D):

M vS N if and only if M j= � implies N j= �.

Now we would like to have a function h : M (D) ! ptL(M (D)) such that if

M 2 M (D) and h(M) = M

M j= � if and only if M j= �.

The function h would definitely be one-to-one and would also preserve

the specialization order vS. The point is: is h properly defined, namely,

does h(M) always exist? Additionally, is h a homeomorphism, and thenM (D) and ptL(M (D)) are essentially the same? The answer to the first

question is still open. About the second question, the final result of the next

section entails that the answer is no. It also entails that hM (D),vSi is not

a domain. While this may sound discouraging, a proper characterization

of the relation between M (D) and ptL(M (D)) might illuminate where the

problem with ptL(M (D)) lies and what can be done about it.

CHAPTER 5. LOCALES, BAGS AND PIPELINING 89

5.2 Multisets logic and bag languages

Libkin & Wong (1993) defined a language for expressing operations on

multisets (or bags): the nested bag language. The language includes opera-

tors for adding new elements to a bag, for constructing a bag singleton, for

the bag union and for applying functions to elements in a bag. They also

define the following operations for bags:

1 count : M (D) ! N . We have that count(d, M) is M(d).
2 monus : M (D) � M (D) ! M (D). monus(M, N) = M � N.

3 max : M (D) � M (D) ! M (D). max(M, N) = P, where

P(d) = maxfM(d), N(d)g.
4 min : M (D) � M (D) ! M (D). min(M, N) = P, where

P(d) = minfM(d), N(d)g.
5 eq : D� D ! B . Equality test.

6 member : D� M (D). Membership test.

7 subbag : M (D) � M (D) ! B . It is the predicate M � N.

8 unique : M (D) ! M (D). If unique(M) = N, then N � M and M(d) � 1

if and only if N(d) = 1.

As they proved in their paper, operation 2 can express the operations 3–7.

The operation unique is independent of the others and should be included

as a primitive. They also introduced two different orders for multisets:

Definition 5.2.1 Let hD,�i be a poset. Define the following orders on M (D).
M �cwa N if and only if N = monus(M, fjajg) ℄ fjbjg, where a � b

M �owa N if and only if M �cwa N or N = M ℄ fjbjg.
The orders �cwa and �owa are called closed world assumption order and open

world assumption order, respectively. The symbols �cwa and �owa denote

their corresponding transitive closures.

CHAPTER 5. LOCALES, BAGS AND PIPELINING 90

The open world and closed world assumption orders have two very

interesting properties, viz:

Theorem 5.2.2 Let D be a poset and let M and N 2 M (D). Then the state-

ments 1 and 2 hold:

1. The orders �cwa and �cwb on M (D) are partial orders.

2. There is an algorithm of O(n5=2) time complexity which can verify whether

M �cwa N or M �owa N (where n stands for the cardinality of the smallest

of M and N).

They appear as propositions 4.7 and 4.8 of Libkin (1994). Suppose that

M = fjm1, : : : , mkjg and N = fjn1, : : : , npjg. The proof requires finding a

permutation � such that mi � n�(i) for every i � k. This is almost the

definition of j= in L(M (D)). Let us not allow the opportunity to escape:

Theorem 5.2.3 Let D be a domain and let �S be the specialization order on

D (see definition 5.1.3). If M and N 2 M (D), define �cwa as

M �cwa N if and only if N = (M � fjmjg) ℄ fjnjg, with m �S n.

As before, �cwa is the transitive closure of �cwa. We introduce now another

poset: hD [L(D),�j=i where

x �j= � if and only if x 2 D, � 2 L(D) and x j= �,

and define �owa on M (D) [L(M (D)) using �j= as the basis. Then these state-

ments are valid:

1. If vS is the specialization order on M (D), then M vS N if and only if

M �cwa N.

2. M j= � if and only if M �owa �.

3. The statements M vS N and M j= � can be verified in polynomial time

(with respect to the size of M).

Proof. 1. Suppose M = fjm1, : : : , mkjg, N = fjn1, : : : , nkjg and M vS N. We

want to prove that there is a permutation � such that mi �S n�(i). Take the

formula � = 2fjx = m1, : : : , x = mkjg.

CHAPTER 5. LOCALES, BAGS AND PIPELINING 91

Obviously, M j= � and by hypothesis N j= �, that is, there is a � such that

n�(1) j= x = m1, : : : , n�(k) j= x = mk.

But then mi �S n�(i) for all i � k. Therefore M �cwa N.

For the inverse implication, we assume M �cwa N, ie there is a � such

that mi �S n�(i). Now suppose that M j= 2fj�1, : : : ,�kjg. Then there is a

permutation � with the virtue that

m1 j= ��(1), : : : , mk j= ��(k).
Hence, by definition of �S, we obtain:

n�(1) j= ��(1), : : : , n�(k) j= ��(k),
and we conclude that N j= �.

2. Suppose M j= �. If � = 2fj�1, : : : ,�kjg then there is a permutation �
which gives

m1 j= ��(1), : : : , mk j= ��(k),
ie, mi �j= ��(i) for all i � k and then M �cwa �.

This time let � = 3fj�1, : : : ,�pjg (with p � k by definition of j= inL(M (D))). Remember that 3fj�1, : : : ,�pjg =
W

m2N 2(fj�1, : : : ,�pjg ℄ fjtjgm).
Then there is a permutation � such that

m�(1) j= �1, : : : , m�(p) j= �p.

Regarding the other m�(j)’s, it is clear that

m�(p+1), : : : , m�(k) j= t,

and then M �owa �.

Now, if M �owa �, M j= � comes from the definition of j= in L(M (D)).
3 follows trivially from theorem 5.2.2.

This result has a series of very important consequences:

CHAPTER 5. LOCALES, BAGS AND PIPELINING 92� hM (D),vSi is not a domain. The specialization order coincides with�cwa and this order, in turn, is equivalent to Heckmann’s lower bag-

domain, which does not preserve Scott domains.� It is not the case that hM (D),vSi ' hptL(M (D)),vSi. This follows

from the fact that hptL(M (D)),vSi is a domain (theorems 5.1.5 and

5.1.8).� If the relation j= in L(D) can be verified in polynomial time, then j=
in L(M (D)) can be checked in polynomial time, too. This suggests

that, in principle, it is possible to implement the multiset logic in an

efficient way. In the same way, reaction conditions can be tested in

polynomial time. In chapter 6 we will propose some possible ways of

taking advantage of this result.

And now it is time to move on to the final topic of the chapter.

5.3 Program transformations

Hankin et al. (1998) analyzed the problem of the pipelining transforma-

tion in the context of Gamma programming. In many instances, the task

which a program has to perform can be decomposed into a sequence of sub-

tasks. Then, a program for each subtask is designed and the total effect is

achieved by the sequential composition of all the subprograms. However, in

many cases a subprogram does not depend on the actions performed by its

predecessor and then there is no need to execute the programs in sequence.

Given a suitable implementation and computer architecture, parallel com-

position may be more efficient. But then the question arises of when the

transformation of a sequentially composed program into a parallel com-

posed version maintains the desired properties of the original program, that

is, it is a correct refinement. Again, Hankin et al. (1998) proposed condi-

tions that would guarantee the correctness of the transformation. Weichert

(1999) proved that those conditions needed to be strengthened for the

transformation to preserve some refinement properties. The aim of this

section is to set this work in the language of the multiset logic and show

CHAPTER 5. LOCALES, BAGS AND PIPELINING 93

how the latter can help understand and prove the conditions. Let us start

with Weichert’s (1999) presentation of the problem.

In addition to the program orders vIO and vC an order based in state-

program pairs can be considered:

Definition 5.3.1 A relation R � (G � M (D)) � (G � M (D)) is called a state-

based simulation if for all P1 and P2 2 G and M, N 2 M (D), we have that(hP1, Mi, hP2, Ni) 2 R if and only if:

1 M = N;

2 if hP1, Mi ! hP0
1, M0i then there are P0

2, N0 such that hP2, Ni !� hP0
2, N0i

and (hP0
1, M0i, hP0

2, N0i) 2 R;

3 if hP1, Mi ! M then there are P0
2, N0 such that hP2, Ni !� hP0

2, N0i,(hP1, Mi, hP0
2, N0i) 2 R and hP0

2, N0i ! N0.
Finally P1 vSB P2 if and only if there is a state-based simulation R such

that (hP1, Mi, hP2, Mi) 2 R, for all M 2 M (D). The corresponding congruence

relation is �SB.

Consider the following Gamma programs:

P : (x1, : : : , xn) ! fj f1(x1, : : : , xn), : : : , fm(x1, : : : , xn)jg (3fj�1, : : : ,�njg
C : (y1, : : : , yp) ! fjg1(y1, : : : , yp), : : : , gk(y1, : : : , yp)jg (3fj 1, : : : , pjg,

both of them applied to multisets in M (D).
Let us call P the producer program and C the consumer. When is it

possible to transform C Æ P into P + C? It depends partially on the notion

of correct refinement we take (that is, which program order is selected)

but also and above all it depends on certain conditions both P and C must

meet.

When producer and consumer are executed in sequence, we know that

the output of the producer is going to be the input of the consumer. Parallel

execution opens the possibility that:� the consumer could use up elements “intended” for the producer

(which will later be unable to use them with potentially important

consequences); and

CHAPTER 5. LOCALES, BAGS AND PIPELINING 94� the producer can use up the result of the consumer actions, again inter-

fering in the original sequence of events with a possibly undesirable

outcome.

In order to avoid these undesired effects, Weichert (1999) set the following

conditions:

(�) the possible inputs of the consumer and the producer should be dis-

joint;

(��) the possible input of the producer and the output of the consumer

should also be disjoint.

When (�) is met, we know that the consumer cannot disable the pro-

ducer unintentionally. When (��), we know that the consumer cannot re-

enable the producer when the latter has used up all of its possible input.

The conditions (�) and (��) together guarantee the independence of con-

sumer and producer.

Now, if we take vSB as the order against which we will test the correct-

ness of a refinement step, Weichert (1999) proved that (��) implies:

C Æ P vSB P + C.

On the other hand, when vIO is considered he also proved that (�) and (��)

together imply:

C Æ P �IO P + C.

The first result can be generalized to arbitrary Gamma programs and not

only atomic reactions acting as consumer and producer (as in our exam-

ple), and the second one to parallel composed simple programs (further

conditions are needed for sequentially composed programs). The gen-

eralizations are straightforward once we have a means of proving non-

interference for atomic reactions. The problem is: how can we prove

(�) and (��) for atomic reactions? Weichert (1999) assumed implicitly

there is a way of establishing both conditions, without going any further in

that direction. Fortunately, the multiset logic of chapter 4 gives us such a

method.

Coming back to the example of programs P and C, disjointness of input

would mean that the reaction conditions of the two programs cannot be

CHAPTER 5. LOCALES, BAGS AND PIPELINING 95

satisfied simultaneously by any multiset fjx1, : : : , xqjg, where q = maxfn, pg.

Disjointness of the output of C and the input of P can be regarded as the

inability of the result of the action in C to meet the reaction condition in P.

Consider the following multiset of propositions:fjz 2 g1(Dp), : : : , z 2 gk(Dp)jg,

i.e., each of the propositions in the multiset states that a certain element

belongs to the image of the function gi when applied to the whole of its

domain. Then we have the following translations of (�) and (��):

(�0) there exists no M such that M j= (3fj�1, : : : ,�njg ^ 2fj 1, : : : , pjg) _(2fj�1, : : : ,�njg ^3fj 1, : : : , pjg);
(��0) there exists no M such that M j= (3fj�1, : : : ,�njg^2fjz 2 g1(Dp), : : : ,

z 2 gk(Dp)jg) _ (2fj�1, : : : ,�njg ^3fjz 2 g1(Dp), : : : , z 2 gk(Dp)jg).
Both conditions can be proved (or disproved) using the rules of chap-

ter 4. As a matter of fact, and assuming that the logic of the elements in D

is complete, the test of (�0) and (��0) becomes a routine task. But they only

apply to atomic rules. Suppose now that

P = P1 + � � � Pq and C = C1 + � � �Cr,

where

Pi = (x1, : : : , xni
)! fj f i

1(x1, : : : , xni
), : : : , f i

mi
(x1, : : : , xni

)jg(3fj�i
1, : : : ,�i

ni
jg

Ci = (y1, : : : , ypi
)! fjgi

1(y1, : : : , ypi
), : : : , gi

ki
(y1, : : : , ypi

)jg(3fj i
1, : : : , i

pi
jg

Then the conditions (�0) and (��0) become:

(�)+ There exists no M such that

M j= ((q_
i=1

3fj�i
1, : : : ,�i

nijg) ^ (r_
j=1

2fj j
1, : : : , j

p j jg))_((q_
i=1

2fj�i
1, : : : ,�i

nijg) ^ (r_
j=1

3fj j
1, : : : , j

p j jg))

CHAPTER 5. LOCALES, BAGS AND PIPELINING 96

(��)+ There exists no M such that

M j= (q_
i=1

3fj�i
1, : : : ,�i

nijg ^ r_
j=1

2fjz 2 g
j
1(Dp j), : : : , z 2 g

j
k j
(Dp j)jg)_(q_

i=1

2fj�i
1, : : : ,�i

nijg ^ r_
j=1

3fjz 2 g
j
1(Dp j), : : : , z 2 g

j
k j
(Dp j)jg)

Now suppose that P = Pq Æ � � � Æ P1 and C = Cr Æ � � �C1. This time the

conditions are

(�)Æ The same as in (�)+.

(��)Æ There exist no M such that

M j=(q_
i=1

3fj�i
1, : : : ,�i

ni
jg ^2fjz 2 kr�1[

j=1

(kr�2[
l=1

: : : (k1[
s=1

gr
1 Æ gr�1

j Æ � � � Æ g1
s (Dp1))),: : : , z 2 kr�1[

ir�1=1

(kr�2[
ir�2=1

: : : (k1[
i1=1

gr
kr
Æ gr�1

ir�1
Æ � � � Æ g1

i1
(Dp1)))jg)_(q_

i=1

2fj�i
1, : : : ,�i

ni
jg ^3fjz 2 kr�1[

j=1

(kr�2[
l=1

: : : (k1[
s=1

gr
1 Æ gr�1

j Æ � � � Æ g1
s (Dp1))),: : : , z 2 kr�1[

ir�1=1

(kr�2[
ir�2=1

: : : (k1[
i1=1

gr
kr
Æ gr�1

ir�1
Æ � � � Æ g1

i1
(Dp1)))jg)

It looks quite complicated, but the intuitions behind these conditions

are fairly simple. In both (�)+ and (�)Æ we are checking that no multi-

set can meet simultaneously the reaction conditions of the consumers and

producers (that is, that their input is disjoint). The condition (��)+ takes

the disjunction of the reaction conditions of the producer and checks that

they cannot be met by a multiset which contains also elements that can be

the output of the consumer. Finally, (��)Æ guarantees the same, but taking

into account the sequential composition of the components of the consumer

(that is, the image of the functions in the action of Ci are the input for the

functions in the action of Ci+1).

CHAPTER 5. LOCALES, BAGS AND PIPELINING 97

It is time for applications now that the notation has been explained.

Ciancarini et al. (1996) offered this example, also analyzed by Weichert

(1999):
max : x, y ! fjyjg (3fj0 � x < yjg
one : x ! fj1jg (3fj0 � x 6= 1jg
add : m, n ! fjm + njg (3fjt, tjg
abs : x ! �x (3fjx < 0jg.

Weichert proved that(add Æ one Æmax) Æ abs vSB (add Æ one Æmax) + abs,

is true, but, on the other hand,(add Æ one Æmax) + abs vIO (add Æ one Æmax) Æ abs

does not hold. To verify his result, we need to prove (��) and disprove (�).

Let us begin with (�). There is a M such that

M j= (3fjx < 0jg ^ 2fjt, tjg) _ (2fjx < 0jg ^3fjt, tjg),
namely, M = fj � 1, 2jg, which invalidates (�). Regarding (��), we need to

prove that no multiset satisfies the following proposition:(3fjx < 0jg ^2fjx 2 Z+jg) _ (2fjx < 0jg ^3fjx 2 Z+jg),
as (x, y ! maxfx, yg) : Z�Z! Z, (x ! 1) : Z! f1g and (m, n ! m+n) :f1g � f1g ! Z+, for this last action is applied only to multisets in M (f1g).
Such a multiset would need to have an element x satisfying simultaneously

the propositions x < 0 and x 2 Z+, which is impossible.

In conclusion, both Weichert’s claims follow also from our alternative

rules based on multiset logic.

Let us summarize the results of the chapter: we presented a more theoreti-

cal setting for the multiset logic, introducing the set ptL(M (D)), with some

positive results (for instance, coherence of L(M (D))). But also some nega-

tive results were found. We explored the relationship between the multiset

logic and Libkin and Wong’s multiset orders. We had positive and nega-

tive results too. Among the former, the possibility of implementation of the

CHAPTER 5. LOCALES, BAGS AND PIPELINING 98

multiset logic in polynomial time. Among the latter, the non-preservation

of Scott domains when the specialization order for multisets is considered.

And finally, we developed an application of the multiset logic in the analysis

of the pipelining transformation.

Chapter 6

Conclusions and further work

It is time to summarize the results achieved in this thesis. This will allow us

to present an account of possible extensions of the work and to delineate a

brief research programme.

6.1 What has been done

Let us recapitulate the aims of this thesis before starting with the conclu-

sions. The two most important ones were to find a fully abstract seman-

tics for Gamma and to develop a proof system for the language. Some

other issues appeared on the way: the connections between the multiset

logic (a key component of the proof system) and previous work on multi-

set languages (specially that of Libkin & Wong (1993)), as well as another

theoretical question: what is the relationship between multisets and their

localic counterpart.

A proof system has no point if it is not applied to prove properties of

programs. Apart from the correctness proofs in chapter 4, another example

of application seemed necessary. The chosen subject was the pipelining

transformation. We will review now the results in each of this areas:

Gamma semantics. Although there are alternative operational semantics for

Gamma (Hankin et al. (1993), Chaudron (1998), Ciancarini et al. (1996)),

all of them have been well studied and a clear picture has emerged. This

99

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 100

was definitely not the case for the denotational semantics. The resumption

semantics of Gay & Hankin (1996b) proposed an interesting model for the

language, but it failed to be fully abstract. Sands (1993a) put forward the

transition trace semantics, based on Brookes’s (1993) methods. But again,

full abstraction was missing.

Our proposal used the transition trace semantics as a starting point,

restricting the unbounded behaviour of the so-called environment. In so

doing, the new denotational model became fully abstract. Additionally, this

allowed us to lay the foundations for a new attempt at applying DTLF to

Gamma (with the precedents of Gay & Hankin (1996b) and Gay & Hankin

(1996a)).

Gamma logic. The work on proof systems for Gamma is extensive, as

has already been pointed out at the start of chapter 4. Beginning with

the method advanced by Banâtre & Le Métayer (1990) and then going

to the transition trace logic of Gay & Hankin (1996a), passing through

Errington et al. (1993), we have various logical systems or techniques

for Gamma. We can add to the stock the work by Chaudron (1998) and

Reynolds (1996). Nevertheless, none of these examples constitutes a full

proof system addressing at the same time all the following issues: a) a mul-

tiset logic; b) proofs of correctness of programs; c) termination.

The situation is now different: not only has our Gamma logic dealt with

these three points, but it has also done so with a fully integrated proof

system, equipped with suitable axioms and inference rules. A proof of its

soundness and conditional completeness was also given. Moreover, this

Gamma logic has its theoretical foundations on the denotational semantics

previously introduced and it thus creates a rounded view of the language.

Multisets in databases. Databases have been a very well studied field in

computer science. Some of the techniques and results developed in that

area are of potential utility to Gamma logic and programming, as multisets

play a central role in both.

We have established some connections with Libkin & Wong’s (1993)

bag orders. This has some nice practical implications regarding efficiency

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 101

of both Gamma implementations and proof system. For example, it would

be possible to test reaction conditions in polynomial time.

Some negative results have also emerged—namely, the non-preserva-

tion of Scott domains when we go from basic types to multisets of these

types. This is a consequence of Heckmann’s (1995) theorem.

The localic version of the multiset logic. DTLF opened up a rich series of

theoretical perspectives. Our multiset logic arose from practical considera-

tions, but its potential theoretical scope is an equally interesting subject. In

this work we have started to explore the relationship between the “ground”

view and the localic view of the multiset logic. Coherence of the multiset

logic was proved. But the assessment of the exact relationship betweenM (D) and ptL(M (D)) is not complete yet, although we know they are not

the same: if D is a Scott domain, ptL(M (D)) is so too, but M (D) does not

preserve Scott domains, as we said above.

Program transformation. Hankin et al. (1998) and Weichert (1999) have

analyzed the requirements for a successful application of pipelining trans-

formation, one of the most common instances of program transformation.

Particularly, the latter stated and proved a series of propositions which

cover a full range of possibilities: atomic rules and non-simple programs,

on the one hand, refinements based on input-output preserving order or

on state-based simulation, on the other. But in his paper, he assumed we

already have a way of proving some essential properties of reaction condi-

tions and their combination in parallel or sequential programs. We believe

that the final section of chapter 5 fills this implicit gap with a set of explicit

rules.

After this summary of results, it is the turn of describing what has been

left for the future.

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 102

6.2 What is to be done

The most straightforward way of continuing the work of this thesis is to

round off some of the results—let us call this task completion. The second

(and more challenging) way is to extend and apply the ideas to different

subjects.� On the semantics side, some completions could be done. The interaction

between Gamma semantics (based on sets of multiset-pair traces) and mul-

tisets semantics (Heckmann’s (1995), Gunter’s (1992) mixed domain and

Vickers’s (1992) bag domain) can be explored.

The new transition trace model solved the full abstraction problem at a

cost: incurring what Winskel (1993) called encoding the operational seman-

tics into the denotational description. Although there is nothing wrong with

this approach in itself, a more mathematically abstract description could

facilitate the extension of our method to other languages. It would also

provide a deeper insight into the denotational semantics of parallel lan-

guages in general.� Anyway, as it stands, our semantical model can be extended to cover

some developments of the Gamma language. First of all, some alterna-

tive operators have been suggested by Sands (1993a): the vanilla parallel

composition and the nondeterministic choice

P k Q and P _ Q, respectively.

In contrast to the operator +, the vanilla parallel composition does not

require synchronous termination of its operands, as shown by the following

SOS rules: hQ, Mi ! MhP k Q, Mi ! hP, Mi hP, Mi ! MhP k Q, Mi ! hQ, Mi.
The nondeterministic choice takes one of its operands and executes it, dis-

carding the other. The decision of which of them to take is made before

any evaluation has happened:hP _ Q, Mi ! hP, Mi hP _ Q, Mi ! hQ, Mi.

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 103

The semantic function T : G ! Pl(T(M (D))) can accommodate these new

operators straightforwardly—and so they can be integrated into the transi-

tion trace model as a whole, without altering full abstraction in all likeli-

hood.� Gamma is a first order programming language: programs cannot be com-

posed into higher order programs. Le Métayer (1994) addressed this limi-

tation, producing higher-order Gamma. Let us make a brief introduction of

the higher-order language.

The distinction between programs and multisets disappears in the ex-

tended language. The basic component of higher-order Gamma is the con-

figuration: [P, V1 = M1, : : : , Vn = Mn℄
where P is a program (including the “empty” program ;) and each of the

Mi’s is a multiset expression. The latter have the following syntax

M := ; j M ℄ M j M � M j fjAjg.

In this last definition A is a variable which stands for an action, whose

syntax is

A := C j C.Vi j xi j M j hotheri
where C is a configuration, xi is a single variable, M is a multiset expression

and hotheri can be any function as defined in first order Gamma actions.

The operation C.Vi extracts the stable multiset expression Mi from the con-

figuration C. A configuration is called passive if P = ;, and active otherwise.

In non-formal terms, the program part of a configuration reacts with the

multisets Mi (which can themselves contain configurations) until no further

reaction is possible. Then the configuration becomes passive. We have two

new SOS rules for the operational semantics:

M ! M0fjMjg ℄ N ! fjM0jg ℄ N

Mi ! M0
i[P, V1 = M1, : : : , Vi = Mi, : : :℄ ! [P, V1 = M1, : : : , Vi = M0

i, : : :℄ ,

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 104

that is, the computation of an active configuration can happen inside a mul-

tiset and a multiset containing an active configuration can change inside a

higher-order configuration.

As far as I am aware, there is no work on the denotational semantics of

higher-order Gamma, making it an obvious topic to apply the ideas of this

thesis.� I already mentioned the possibility of using the same methods to produce

fully abstract semantics for other languages with parallelism. This is also a

clear way of extending our present work.� On the logical side, we can consider some extensions too:� Apart from the application of the multiset logic to the pipelining trans-

formation, some other refinement and program development tech-

niques are susceptible of a similar treatment.� Given the functional setting of the denotational semantics and the exis-

tence of a bag language of polynomial complexity, automation or semi-

automation of proofs in Gamma logic may be not so difficult to imple-

ment.� The multiset logic is general enough to be applicable to other contexts

apart from the Gamma proof system. Again, database theory springs

to mind.� At last, we have the completion of some of the work in chapter 5:� To find what is the exact relationship between M (D) and ptL(M (D))
in the locale.� To relate our multiset logic with the domain-like logic which can be

built using Heckmann’s (1995) bag-domain.

Bibliography

Abramsky, S. (1987), Domain Theory and the Logic of Observable Proper-

ties, PhD thesis, University of London.

Abramsky, S. (1991), ‘Domain theory in logical form’, Annals of Pure and

Applied Logic 51, 1–77.

Abramsky, S. & Jung, A. (1990), Domain theory, in Abramsky, Gabbay &

Maibaum (1990).

Abramsky, S., Gabbay, D. & Maibaum, T., eds (1990), Handbook of Logic in

Computer Science, Oxford University Press.

AMS (1994), Proceedings of the DIMACS workshop on specifications of par-

allel algorithms, Dimacs series in Discrete Mathematics, American

Mathematical Society.

Andreoli, J.-M., Hankin, C. & Le Métayer, D., eds (1996), Coordination

Programming: Mechanisms, Models and Semantics, Imperial College

Press.

Banerjee, U., Gelernter, D., Nicolau, A. & Padua, D., eds (1993), Proc. 5th

Workshop on Languages and Compilers for Parallel Computing, Berlin

1992, Lecture notes in Computer Science 757, Springer.

Banâtre, J. & Le Métayer, D. (1990), ‘The GAMMA model and its discipline

of programming’, Science of Computer Programming 15, 55–77.

Banâtre, J.-P. & Le Métayer, D. (1993), ‘Programming by multiset transfor-

mation’, Communications of the ACM 36 (1), 98–111.

105

BIBLIOGRAPHY 106

Barnsley, M. (1993), Fractals Everywhere, Academic Press.

Berry, G. & Boudol, G. (1992), ‘The chemical abstract machine’, Theoretical

Computer Science 96, 217–248.

Bjørner, D., Broy, M. & Pottosin, I. V., eds (1993), Formal Methods in Pro-

gramming and their Applications, International Conference, June/July

1993, Lecture Notes in Computer Science 735, Springer.

Bourgois, M. (1997), Advantage of formal specifications: a case study of

replication in Lotus notes, in Najm & Stefani (1997).

Brookes, S. (1985), An axiomatic treatment of a parallel programming lan-

guage, in Parikh (1985).

Brookes, S. (1992), An axiomatic treatment of partial correctness and dead-

lock in a shared variable parallel language, Technical Report CMU-CS-

92-154, School of Computer Science, Carnegie Mellon University.

Brookes, S. (1993), Full abstraction for a shared variable parallel language,

in IEE (1993), pp. 98–109.

Broy, M. & Schmidt, G., eds (1982), International Colloquium on Auto-

mata, Languages and Programs, Lecture notes in Computer Science

140, Springer.

Burn, G., Gay, S. & Ryan, M., eds (1993), Theory and Formal Methods 1993,

Workshops in Computing, Springer.

Chandy, K. M. & Misra, J. (1988), Parallel Program Design: a Foundation,

Addison-Wesley.

Chaudron, M. R. (1998), Separating Computation and Coordination in the

Design of Parallel and Distributed Programs, PhD thesis, Riijksuniver-

siteit Leiden.

Ciancarini, P. & Wolf, A. L., eds (1999), Coordination Languages and Models,

3rd International Conference Coordination ’99, Amsterdam, The Nether-

lands, April 1999, Lecture Notes in Computer Science 1594, Springer.

BIBLIOGRAPHY 107

Ciancarini, P., Gorrieri, R. & Zavattaro, G. (1996), An alternative seman-

tics for the parallel operator of the calculus of Gamma programs, in

Andreoli, Hankin & Le Métayer (1996).

Creveuil, C. & Moguérou, G. (1991), ‘Développment systématique d’un

algorithme de segmentation d’images à l’aide de Gamma’, Techniques

et Science Informatiques 10(2), 125–137.

Davey, B. & Priestley, H. (1990), Introduction to Lattices and Order, Cam-

bridge Mathematical Textbooks, Cambridge University Press.

Dershowitz, N. & Manna, Z. (1979), ‘Proving termination with multiset

ordering’, Communications of the ACM 22, 465–476.

Dijkstra, E. (1976), A Discipline of Programming, Prentice-Hall.

Edalat, A., Jourdan, S. & McCusker, G., eds (1996), Advances in Theory and

Formal Methods, Theory and Formal Methods Workshop 1996, Imperial

College.

Errington, L., Hankin, C. & Jensen, T. (1993), Reasoning about Gamma

programs, in Burn, Gay & Ryan (1993).

Fourman, M., Johnstone, P. & Pitts, A., eds (1992), Applications of Categories

in Computer Science, Proceedings of the LMS Symposium Durham,

1991, London Mathematical Society Lecture Note Series 177, Cam-

bridge University Press.

Fradet, P. & Le Métayer, D. (1996), Structured gamma, Technical Report

PI-989, Irisa.

Gay, S. & Hankin, C. (1996a), Gamma and the logic of transition traces, in

Edalat, Jourdan & McCusker (1996).

Gay, S. & Hankin, C. (1996b), A program logic for Gamma, in Andreoli et

al. (1996).

Gödel, K. (1930), ‘Vollständigkeit der axiome des logischen funktio-

nenkalküls’, Monatshefte für Mathematik und Physik 37, 349–360.

BIBLIOGRAPHY 108

Gödel, K. (1931), ‘Über formal unentscheidbare sätze der principia math-

ematica und verwandter systeme i’, Monatshefte für Mathematik und

Physik 38, 173–198.

Gunter, C. (1992), ‘The mixed powerdomain’, Theoretical Computer Science

103, 311–334.

Hankin, C., Le Métayer, D. & Sands, D. (1993), A calculus of Gamma pro-

grams, in Banerjee, Gelernter, Nicolau & Padua (1993).

Hankin, C., Le Métayer, D. & Sands, D. (1998), ‘Refining multiset trans-

formers’, Theoretical Computer Science 192, 233–258.

Heckmann, R. (1995), ‘Lower bag domains’, Fundamenta Informaticae

24(3), 259–281.

Hennessy, M. & Milner, R. (1985), ‘Algebraic laws for non-determinism and

concurrency’, Journal of the ACM 85(32), 137–161.

Hernández Quiroz, F. (1998), A multiset logic for gamma, Theory and For-

mal Methods Workshop 1998, Bath.

Hernández Quiroz, F. (1999), An extension of a gamma proof system, Coor-

dina Workshop. Amsterdam.

Hoare, C. (1969), ‘An axiomatic basis for computer programming’, Commu-

nications of the ACM 12, 576–580.

IEE (1993), Eighth Annual IEEE Symposium on Logic in Computer Science,

IEEE Computer Society Press.

Jensen, T. (1992), Abstract Interpretation in Logical Form, PhD thesis,

Department of Computing, Imperial College of Science, Technology

and Medicine.

Johnstone, P. (1982), Stone Spaces, Cambridge Studies in Advanced Math-

ematics 3, Cambridge University Press.

Lamport, L. (1994), ‘The temporal logic of actions’, ACM Transactions on

Programming Languages and Systems 16(3), 872–923.

BIBLIOGRAPHY 109

Le Métayer, D. (1994), Higher-order multiset programming, in AMS

(1994).

Libkin, L. (1994), Aspects of Partial Information in Databases, PhD thesis,

Department of Computing Science, University of Pennsylvania.

Libkin, L. & Wong, L. (1993), Query languages for bags, Technical Report

MS-CIS-93-36, Department of Computer Science, University of Penn-

sylvania.

Libkin, L. & Wong, L. (1995), ‘On representation and querying incomplete

information in databases with multisets’, Information Processing Let-

ters 56, 209–214.

McEvoy, H. (1996), Gamma, chromatic typing and vegetation, in Andreoli

et al. (1996).

Najm, E. & Stefani, J.-B., eds (1997), Formal Methods for Open Object-based

Distributed Systems. International Workshop 1996, Paris, Chapman &

Hall.

Parikh, R., ed. (1985), Logics of Programs, Lecture Notes in Computer Sci-

ence 193, Springer.

Plotkin, G. (1981), Domains (aka Post-graduate Lectures in Advanced

Domain Theory), Dept. of Computer Science, University of Edinburgh.

Plotkin, G. (1983), A metalanguage for predomains, in Programming

Methodology Group (1983).

Programming Methodology Group, ed. (1983), Workshop on the Semantics

of Programming Languages, Chalmers University of Technology.

Reynolds (1996), Temporal semantics for Gamma, in Andreoli et al.

(1996).

Sands, D. (1993a), A compositional semantics of combining forms for

Gamma programs, in Bjørner, Broy & Pottosin (1993).

BIBLIOGRAPHY 110

Sands, D. (1993b), Laws of parallel synchronised termination, in Burn et

al. (1993).

Sands, D. (1996), Composed reduction systems, in Andreoli et al. (1996).

Scott, D. (1982), Domains for denotational semantics, in Broy & Schmidt

(1982).

Smyth, M. (1983), ‘The largest cartesian closed category of domains’, The-

oretical Computer Science 27, 109–119.

Stone, M. (1936), ‘The theory of representations for boolean algebras’,

Transactions of the American Mathematical Society pp. 37–111.

Vickers, S. (1989), Topology via Logic, Cambridge Tracts in Theoretical

Computer Science 5, Cambridge University Press.

Vickers, S. (1992), Geometric theories and databases, in Fourman, John-

stone & Pitts (1992).

Weichert, M. (1999), Pipelining the molecule soup: a plumber’s approach

to Gamma, in Ciancarini & Wolf (1999).

Winskel, G. (1993), The Formal Semantics of Programming Languages, The

MIT Press.

Zhang, G. (1991), Logic of Domains, Progress in Theoretical Computer Sci-

ence, Birkhäuser, Boston.

