
Pipelining Transformation with a Multiset Logic

Francisco Hernández Quiroz

Department of Computer Science
IIMAS, UNAM

Ciudad Universitaria
D.F. 04510, MÉXICO

fhq@leibniz.iimas.unam.mx

Abstract. A common problem in re�ning programs in parallel lan-
guages is the pipelining transformation: the change of two sequentially
composed programs into a version composed in parallel. [9] and [18]
studied in depth this problem in the context of the Gamma program-
ming language. The latter strengthened a series of requirements for a
pipelining transformation to be safe. However, these requirements were
stated in semi formal terms and therefore it is di�cult to check their
enforcement.
This issue can be re-stated in the multiset logic presented in [10, 11] and
then a fully formal, (conditionally) decidable logic can be used to verify
them.

1 Gamma Language

The Gamma language was proposed in [2] as a device for systematic program
derivation in the spirit of a discipline of programming [7]. Interest in the language
grew steadily and its theoretical aspects have been studied extensively. Gamma
has also been used as a real programming language, and some of its applications
are scheduling [3], image processing [6, 14] and distributed systems [15].

As their creators pointed out, one of Gamma's strengths is its ability to
eliminate any arti�cial sequentiallity in a program. Additionally, solutions are
not biased by the choice of a special (and many times arbitrary) data structure,
as the multiset is the only one available in Gamma and, thanks to its lack of
internal structure, it does not impose a particular way of thinking. Also, it is
a very good formalism to express coordination between components of a given
program and then complex relations can easily be stated and tested. In other
words, Gamma use emphasizes correctness rather than e�cency.

Let D be a given type and let M(D) be the set of �nite multisets in D. Special
curly braces denote multisets: {|x1, . . . , xn|}. The syntax of Gamma programs is:

P ::= (x1, . . . , xn) → A(x1, . . . , xn) ⇐ R(x1, . . . , xn) | P ◦ P | P + P,

where the �rst construct is an atomic reaction (also called rewriting rule). In
this case, R is a predicate with n arguments and A : Dn → M(D) is an action.

The e�ect of an atomic reaction in a multiset M is to take out a tuple
satisfying R and replace it with the result of A applied to the same tuple. If
there is not such a tuple in M then the multiset remains unchanged and the
atomic reaction �nishes.

P2 ◦ P1 is the sequential composition of two programs, where P2 is applied
to a multiset M if and only if P1 cannot react with M any longer. P1 + P2 is
the parallel composition, where any of P1 or P2 can react with a multiset at a
given time. To terminate, both P1 and P2 should simultaneously be unable to
react any longer with the multiset. The set of all Gamma programs is G.

To abbreviate programs, a reaction

(x1, . . . , xn) → An(x1, . . . , xn) ⇐ Rn(x1, . . . , xn)

can also be written as x̄ → A(x̄) ⇐ R(x̄) (implying that R, A and x̄ have the
same cardinality) or even as A⇐ R, when the context makes its meaning clear.

The semantics of Gamma programs is de�ned by the following structural
operational semantics rules, where 〈P,M〉 is a pair made of the program P and
the multiset M , to which the program is applied:

{|a1, . . . , an|} ⊆M, R(a1, . . . , an)
〈(A⇐ R),M〉 → 〈(A⇐ R), (M − {|a1, . . . , an|})]A(a1, . . . , an)〉

,

¬∃{|a1, . . . , an|} ⊆M.R(a1, . . . , an)
〈(A⇐ R),M〉 →M

,

〈Q,M〉 →M

〈P ◦Q,M〉 → 〈P,M〉
,

〈Q,M〉 → 〈Q′,M ′〉
〈P ◦Q,M〉 → 〈P ◦Q′,M ′〉

,

〈P,M〉 → 〈P ′,M ′〉
〈P +Q,M〉 → 〈P ′ +Q,M ′〉

,
〈Q,M〉 → 〈Q′,M ′〉

〈P +Q,M〉 → 〈P +Q′,M ′〉
,

〈P,M〉 →M 〈Q,M〉 →M

〈P +Q,M〉 →M
.

As usual, →∗ is the transitive closure of →.

2 The Pipelining Transformation

In many instances the task which a program has to perform can be decomposed
into a sequence of subtasks. Then, a program for each subtask is designed and
the total e�ect is achieved by the sequential composition of all the subprograms.
However, in many cases a subprogram does not depend on the actions performed
by its predecessor and then there is no need to execute the programs in sequence.
Given a suitable implementation and a computer architecture, parallel compo-
sition may be more e�cient. But then the question arises of when the trans-
formation of a sequentially composed program into a parallel composed version

maintains the desired properties of the original program, that is, it is a correct
re�nement. [9] analyzed this problem in the context of Gamma programming
and proposed conditions that would guarantee the correctness of the transfor-
mation. Weichert [18] proved that those conditions needed to be strengthened
for the transformation to preserve some re�nement properties. In the following
we will summarize his proposal.

3 Weichert's Approach

Let us begin with the de�nition of an order for Gamma programs that is based
on state-program pairs:

De�nition 1. A relation R ⊆ (G × M(D)) × (G × M(D)) is called a state-

based simulation if for all P1 and P2 ∈ G and M , N ∈ M(D), we have that

(〈P1,M〉, 〈P2, N〉) ∈ R if and only if:

1. M = N ;

2. if 〈P1,M〉 → 〈P ′
1,M

′〉 then there are P ′
2, N

′ such that 〈P2, N〉 →∗ 〈P ′
2, N

′〉
and (〈P ′

1,M
′〉, 〈P ′

2, N
′〉) ∈ R;

3. if 〈P1,M〉 → M then there are P ′
2, N

′ such that 〈P2, N〉 →∗ 〈P ′
2, N

′〉,
(〈P1,M〉, 〈P ′

2, N
′〉) ∈ R and 〈P ′

2, N
′〉 → N ′.

Now P1 vSB P2 if and only if there is a state-based simulation R such that

(〈P1,M〉, 〈P2,M〉) ∈ R, for all M ∈ M(D). The corresponding congruence rela-

tion is ≡SB.

Additionally, P1 vIO P2 if and only if 〈P1,M〉 →∗ N implies 〈P2,M〉 →∗ N .

Finally, ≡SB and ≡IO are the congruence relations of vSB and vIO.

Consider the following Gamma programs:

P : (x1, . . . , xn) → {|f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)|} ⇐ ♦{|φ1, . . . , φn|}
C : (y1, . . . , yp) → {|g1(y1, . . . , yp), . . . , gk(y1, . . . , yp)|} ⇐ ♦{|ψ1, . . . , ψp|},

both of them applied to multisets in M(D).
Let us call P the producer program and C the consumer. When is it possible

to transform C ◦ P into P + C? It depends partially on the notion of correct
re�nement we take (that is, which the program orders vSB and vIO is selected)
but also and above all it depends on certain conditions both P and C must meet.

When producer and consumer are executed in sequence, we know that the
output of the producer is going to be the input of the consumer. Parallel execu-
tion opens the possibility that:

� the consumer could use up elements �intended� for the producer (which will
later be unable to use them with potentially important consequences); and

� the producer can use up the result of the consumer actions, again interfering
in the original sequence of events with a possibly undesirable outcome.

In order to avoid these undesired e�ects, [18] set the following conditions:

(∗) the possible inputs of the consumer and the producer should be disjoint;

(∗∗) the possible input of the producer and the output of the consumer should
also be disjoint.

When (∗) is met, we know that the consumer cannot disable the producer
unintentionally. When (∗∗), we know that the consumer cannot re-enable the
producer when the latter has used up all of its possible input. The conditions
(∗) and (∗∗) together guarantee the independence of consumer and producer.

Now, if we take vSB as the order against which we will test the correctness
of a re�nement step, [18] proved that (∗∗) implies:

C ◦ P vSB P + C.

On the other hand, if we consider vIO he also proved that (∗) and (∗∗) together
imply:

C ◦ P ≡IO P + C.

The �rst result can be generalized to arbitrary Gamma programs and not only
atomic reactions acting as consumer and producer (as in our example), and the
second one to parallel composed simple programs (further conditions are needed
for sequentially composed programs). The generalizations are straightforward
once we have a means of proving non-interference for atomic reactions. The
problem is: how can we prove (∗) and (∗∗) for atomic reactions? [18] assumed
implicitly there is a way of establishing both conditions, without going any fur-
ther in that direction. Fortunately, the multiset logic of [10, 11] gives us such a
method.

4 Verifying Transformations with a Multiset Logic

We present now the syntax and semantics of the multiset logic L(M(D)) (for
a full presentation see [10, 11]). This a logic is geometric [17], i.e. it has �nite
conjunctions and arbitrary disjunctions of formulae. Afterwards, we will restate
the pipelining veri�cation problem in the new terms.

4.1 Multiset Logic

Assume that D is a basic type in Gamma and that L(D) is a language of asser-
tions about elements in D. We will also have a proof system L(D) with axioms
and inference rules such that it is possible to prove statements of the form

x |= φ,

where x ∈ D and φ ∈ L(D) and |= is a satisfaction relation. t and f represent
true and false in L(D). For every element x ∈ D we have:

x |= t and x 6|= f

De�nition 2. The language of L(M(D)) is made of atomic and complex propo-

sitions. Atomic propositions are built in this way:

φ1, . . . , φn ∈ L(D)
�{|φ1, . . . , φn|} ∈ L(M(D))

,

where the order of the φi's is not relevant. Complex propositions can be built by

�nite conjunctions and arbitrary disjunctions:

Φ, Ψ ∈ L(M(D))
Φ ∧ Ψ ∈ L(M(D))

{Φi}i∈I ⊆ L(M(D)),∨
i∈I Φi ∈ L(M(D))

.

True and false are de�ned as

t =
∧
∅ f =

∨
∅.

We will also use the following shorthands:

if φ ∈ L(D) then {|φ|}n ≡def {|φ, . . . , φ︸ ︷︷ ︸
n times

|}

♦{|φ1, . . . , φn|} ≡def

∨
m∈N

�({|φ1, . . . , φn|}] {|t|}m).

We will apply the convention that propositions in L(D) are denoted by lower
case Greek letters, while upper case Greek letters live in L(M(D)).

On the semantic side, a satisfaction relation between multisets and formulae
of L(M(D)) is explained in the following:

De�nition 3. If we have that {|x1, . . . , xn|} ∈ M(D) and φ1, . . . , φn ∈ L(D),
then {|x1, . . . , xn|} |= �{|φ1, . . . , φn|} if and only if there exists a permutation σ
such that

xσ(1) |= φ1, . . . , xσ(n) |= φn.

On the other hand, {|x1, . . . , xn|} |= Φ ∧ Ψ if and only if

{|x1, . . . , xn|} |= Φ and {|x1, . . . , xn|} |= Ψ.

If {Φ}i∈I ⊆ L(M(D)) then {|x1, . . . , xn|} |=
∨

i∈I{Φi} if and only if

{|x1, . . . , xn|} |= Φj for at least one Φj ∈ {Φ}i∈I .

[10, 11] proved that the multiset logic L(M(D)) (together with its axioms
and rules of inference) is sound and complete, provided the logic L(D) is so.
Additionally, through the equivalence of satisfaction tests in our multiset logic
with the query language for bags discussed in [13], these tests are also decidable
(perhaps even with a polynomial-time algorithm!), provided satisfaction is also
decidable in the logic L(D), again.

4.2 Pipelining and Multiset Logic

Coming back to the example of programs P and C, disjointness of input would
mean that the reaction conditions of the two programs cannot be satis�ed si-
multaneously by any multiset {|x1, . . . , xq|}, where q = max{n, p}. Disjointness of
the output of C and the input of P can be regarded as the inability of the result
of the action in C to meet the reaction condition in P . Consider the following
multiset of propositions:

{|z ∈ g1(Dp), . . . , z ∈ gk(Dp)|},

i.e., each of the propositions in the multiset states that a certain element belongs
to the image of the function gi when applied to the whole of its domain. Then
we have the following translations of (∗) and (∗∗):

(∗′) there exists no M such that M |= (♦{|φ1, . . . , φn|} ∧ �{|ψ1, . . . , ψp|}) ∨
(�{|φ1, . . . , φn|} ∧ ♦{|ψ1, . . . , ψp|});

(∗∗′) there exists no M such that M |= (♦{|φ1, . . . , φn|} ∧ �{|z ∈ g1(Dp), . . . , z ∈
gk(Dp)|}) ∨ (�{|φ1, . . . , φn|} ∧ ♦{|z ∈ g1(Dp), . . . , z ∈ gk(Dp)|}).

Assuming that the logic of the elements in D is complete, the test of (∗′) and
(∗∗′) can become a routine task. But they only apply to atomic rules. Suppose
now that

P = P1 + · · ·Pq and C = C1 + · · ·Cr,

where

Pi = (x1, . . . , xni
) → {|f i

1(x1, . . . , xni
), . . . , f i

mi
(x1, . . . , xni

)|}
⇐ ♦{|φi

1, . . . , φ
i
ni
|}

Ci = (y1, . . . , ypi
) → {|gi

1(y1, . . . , ypi
), . . . , gi

ki
(y1, . . . , ypi

)|}
⇐ ♦{|ψi

1, . . . , ψ
i
pi
|}

Then the conditions (∗′) and (∗∗′) become:

(∗)+ There exists no M such that

M |= ((
∨q

i=1 ♦{|φi
1, . . . , φ

i
ni |}) ∧ (

∨r
j=1 �{|ψj

1, . . . , ψ
j
pj |}))

∨
((

∨q
i=1 �{|φi

1, . . . , φ
i
ni |}) ∧ (

∨r
j=1 ♦{|ψj

1, . . . , ψ
j
pj |}))

(∗∗)+ There exists no M such that

M |= (
∨q

i=1 ♦{|φi
1, . . . , φ

i
ni |} ∧

∨r
j=1 �{|z ∈ gj

1(D
pj

), . . . , z ∈ gj
kj

(Dpj

)|})
∨

(
∨q

i=1 �{|φi
1, . . . , φ

i
ni |} ∧

∨r
j=1 ♦{|z ∈ gj

1(D
pj

), . . . , z ∈ gj
kj

(Dpj

)|})

Now suppose that P = Pq ◦· · ·◦P1 and C = Cr ◦· · ·C1. This time the conditions
are

(∗)◦ The same as in (∗)+.

(∗∗)◦ There exist no M such that

M |= (
q∨

i=1

♦{|φi
1, . . . , φ

i
ni
|} ∧�{|z ∈

kr−1⋃
j=1

(
kr−2⋃
l=1

. . . (
k1⋃

s=1

gr
1 ◦ gr−1

j ◦ · · · ◦ g1
s(Dp1))),

. . . , z ∈
kr−1⋃

ir−1=1

(
kr−2⋃

ir−2=1

. . . (
k1⋃

i1=1

gr
kr
◦ gr−1

ir−1
◦ · · · ◦ g1

i1(D
p1)))|})

∨

(
q∨

i=1

�{|φi
1, . . . , φ

i
ni
|} ∧ ♦{|z ∈

kr−1⋃
j=1

(
kr−2⋃
l=1

. . . (
k1⋃

s=1

gr
1 ◦ gr−1

j ◦ · · · ◦ g1
s(Dp1))),

. . . , z ∈
kr−1⋃

ir−1=1

(
kr−2⋃

ir−2=1

. . . (
k1⋃

i1=1

gr
kr
◦ gr−1

ir−1
◦ · · · ◦ g1

i1(D
p1)))|})

It looks quite complicated, but the intuitions behind these conditions are
fairly simple. In both (∗)+ and (∗)◦ we are checking that no multiset can meet
simultaneously the reaction conditions of the consumers and producers (that is,
that their input is disjoint). The condition (∗∗)+ takes the disjunction of the
reaction conditions of the producer and checks that they cannot be met by a
multiset which contains also elements that can be the output of the consumer.
Finally, (∗∗)◦ guarantees the same, but taking into account the sequential com-
position of the components of the consumer (that is, the image of the functions
in the action of Ci are the input for the functions in the action of Ci+1).

5 A Small Application

It is time for an application now that the notation has been explained. Due to
space limitations, we will present a very simple example just to illustrate the
way the method works. [4] o�ered this example, also analyzed by [18]:

max : x, y → {|y|} ⇐ ♦{|0 ≤ x < y|}
one : x→ {|1|} ⇐ ♦{|0 ≤ x 6= 1|}
add : m,n→ {|m+ n|} ⇐ ♦{|t, t|}
abs : x→ −x⇐ ♦{|x < 0|}.

Weichert proved (in a long semi-formal proof) that

(add ◦ one ◦max) ◦ abs vSB (add ◦ one ◦max) + abs,

is true, but, on the other hand,

(add ◦ one ◦max) + abs vIO (add ◦ one ◦max) ◦ abs

does not hold. To verify his result, we need to prove (∗∗) and disprove (∗). Let
us begin with (∗). There is a M such that

M |= (♦{|x < 0|} ∧�{|t, t|}) ∨ (�{|x < 0|} ∧ ♦{|t, t|}),

namely, M = {| − 1, 2|}, which invalidates (∗). Regarding (∗∗), we need to prove
that no multiset satis�es the following proposition:

(♦{|x < 0|} ∧�{|x ∈ Z+|}) ∨ (�{|x < 0|} ∧ ♦{|x ∈ Z+|}),

as (x, y → max{x, y}) : Z × Z → Z, (x → 1) : Z → {1} and (m,n → m + n) :
{1} × {1} → Z+, for this last action is applied only to multisets in M({1}).
Such a multiset would need to have an element x satisfying simultaneously the
propositions x < 0 and x ∈ Z+, which is impossible.

In conclusion, both Weichert's claims follow also from our alternative rules
based on multiset logic.

6 Conclusions and further work

We claim that our approach to verifying pipelining transformations in Gamma
compares quite favourably with previous ones:

� It introduces a fully formal language, tailor-made to �t Gamma and its
only data structure and (together with Weichert's conditions) can account
for a proof of correctness with respect to the pipelining transformation of
programs.

� It is also more general as it is not constrained to simple (i.e. parallelly com-
posed) Gamma programs.

� Thirdly, and thanks to the equivalence between satisfaction tests in multiset
logic and the query language of [13], it is a (conditionally) decidable and
complete method, potentially automatic in polynomial time. See [10] for a
proof of this claim.

An obvious extension of this work springs to mind: building an automatic
or semiautomatic tool for verifying transformations. This would be a part of a
bigger automatic proof system for Gamma programs.

Additionally, our method is being applied to the veri�cation of a coherence
protocol for bibliographic databases. As this algorithm is expressed in structured
Gamma (see [8]) some adaptations will have to be made.

7 Acknowledgments

I wish to thank to the anonymous referees for their comments on the �rst version
of the paper. Although I tried to follow their advice, there is no need to say that
all mistakes remaining are entirely my responsability.

References

1. Andreoli, J.-M., Hankin, C., Le Métayer, D., Coordination Programming: Mecha-

nisms, Models and Semantics, Imperial College Press, 1996.
2. Banâtre, J.-P., Le Métayer, D., �The gamma Model and its Discipline of Program-

ming�, Science of Computer Programming, 15:55�77, 1990.
3. Bourgois, M., �Advantage of Formal Speci�cations: a Case Study of Replication in

Lotus Notes�, in [16].
4. Ciancarini, P., Gorrieri, R., Zavattaro, G., �An Alternative Semantics for the Parallel

Operator of the Calculus of Gamma Programs�, in [1].
5. Ciancarini, P., Wolf, A.L., Coordination Languages and Models, 3rd International

Conference Coordination '99, Amsterdam, The Netherlands, April 1999, Lecture
Notes in Computer Science 1594, Springer, 1999.

6. Creveuil, C., Moguérou, G., �Développment systématique d'un algorithme de seg-
mentation d'images à l'aide de Gamma�, Techniques et Science Informatiques,
10(2):125-137, 1991.

7. Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, 1976.
8. Fradet, P., Le Métayer, D., Structured Gamma, Technical report PI-989, Irisa,

March, 1996.
9. Hankin, C., Le Métayer, D., Sands, D., �Re�ning Multiset Transformers�, Theoretical

Computer Science, 192:233�258, 1998.
10. Hernández Quiroz, F., Semantics-Based Proof System for Gamma, PhD thesis,

Imperial College of Science, Technology and Medicine, 1999.
11. Hernández Quiroz, F., �A proof system for multisets�, submitted to the Journal of

Logic and Computation, 2001.
12. ieee, Software Engineering for Parallel and Distributed Systems, 2000, ieee, 2000.
13. Libkin, L., Wong, L., �On Representation and Querying Incomplete Information in

Databases with Multisets�, Information Processing Letters, 56:209-214, November,
1995.

14. McEvoy, H., �Gamma, Chromatic Typing and Vegetation�, in [1].
15. Mentré, D., Le Métayer, D., Priol, T., �Formalization and veri�cation of coherence

protocols with the Gamma framework�, in [12].
16. Najm, E., Stefani, J.-B. Formal Methods for Open Object-based Distributed Sys-

tems, International Workshop 1996, Paris, Chapman & Hall, 1997.
17. Vickers, S., Topology via Logic, Cambridge Tracts in Theoretical Computer Science

5, Cambridge University Press, 1989.
18. Weichert, M., �Pipelining the Molecule Soup: a Plumber's Approach to Gamma�,

in [5].

