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Abstract

Gamma is a simple parallel programming language whose only data

structure is the multiset or bag. In this paper a partial proof system

for Gamma programs is presented. Domain theory in logical form

is used as the general framework and to this end a multiset logic is

introduced. A small example of its application is also found.

1 The Gamma language

The Gamma language is a very simple notation for parallel algorithms. Its

basic data structure is the multiset. The idea is simple: a rewriting rule takes

a multiset, checks if the reaction condition (a predicate about elements in

the multiset) holds, and if so it performs an action: replaces some elements

in the multiset by others. Rewriting rules can be composed either in parallel

or sequentially. In more formal terms:

Definition 1.1 Let D be a domain and D the finite multisets of elements in

this domain. A reaction condition is a predicate R : Dn → {true, false} about

(finite-length) tuples of elements in D. An action is a function A : Dn → D. A

Gamma program is defined as:

P ::= (x1, . . . , xn) → A(x1, . . . , xn) ⇐ R(x1, . . . , xn) | P ◦ P | P + P.
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The following example of a Gamma program is taken from [EHJ 93]:

P1 = x → {x-1, x-2} ⇐ (x > 1)

P2 = x → {1} ⇐ (x = 0)

P3 = (x, y) → {x+y} ⇐ true

P = P3 ◦ (P1 + P2).

If P is applied to {n}, it produces the nth Fibonacci number. In section 5 a

proof of its correctness will be presented.

2 Transition trace logic

[GH 96] proposed a logic system for verifying Gamma programs. That logic

was built using domain theory in logical form (dtlf from now onwards) [Ab

91]. In dtlf every type τ in a programming language is associated with

a domain Dτ . Formation rules and axioms are given in order to produce

the set of assertions L(Dτ) and the logical theory L(Dτ), which as a whole

has the structure of a frame, though its compact open elements form just a

lattice. The set of formulas can be regarded as a topological space and its

points are the models of the theory.

The first step in the building of the logical system is to find a suit-

able (domain-theoretic) denotational semantics. [GH 96] used a semantics

based in transition traces (an idea proposed by [Br 92] for parallel lan-

guages). Though easier to use than previous approaches ([GH 95], [EHJ

93]), some of its rules were provisional while others were not powerful

enough for proving general instances of programs.

The denotation of a Gamma program is a set of (finite or infinite) se-

quences of multiset pairs (M1, N1)(M2, N2) . . . meaning that the program

transforms the multiset M1 into N1, then the multiset M2 into N2 and so on.

Definition 2.1 Let D be a simple type in Gamma. D is the set of finite se-

quences of state transitions, also called transition traces. An element of D is of

the form (M1, N1)(M2, N2) . . . (Mn, Nn) with Mi, Ni ∈ D. D is the set of finite

and infinite transition traces. ǫ refers to the empty sequence.
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Let α ∈ D, β ∈ D and T ⊆ D. We say that

i) T is closed under absorption iff α(M, N)(N, M′)β ∈ T implies that α(M,

M′)β ∈ T;

ii) T is closed under left-stuttering iff αβ ∈ T and β 6= ǫ implies that

α(M, M)β ∈ T.

If T is an arbitrary set of sequences, ‡T denotes its closure under absorption

and left-stuttering.

A function m : (D − {ǫ}) → P(D) is called an end-synchronised merger

(ESM) iff

a) (M, N) ∈ m(α, β) implies that α = β = (M, N); and

b) α ∈ m(β, γ) implies that (M.N)α ∈ m((M, N)β, γ) and (M, N)α ∈

m(γ, (M.N)β).

Let αβ represent the set
⋃
{m(α, β) | m is an ESM}.

A domain of transition traces (denoted by T) is built and a domain logic

L(T) is derived from it. Elements in L(T) are assertions about transition

traces. If γ ∈ L(T) and T ⊆ T then T |= 3γ iff t |= γ for at least a t ∈ T.

Denotations of Gamma programs are subsets of T. If P is a program, its

denotation is represented by [[P]] and P |= 3γ iff [[P]] |= 3γ.

φ ◦ ψ is the sequential composition of the assertions φ and ψ. t |= φ ◦ ψ

iff t = t1t2 and t1 |= φ and t2 |= ψ. The parallel composition of φ and ψ is

defined as

φ ‖ ψ =
∧

θ∈φψ

θ.

Both ◦ and ‖ commute with 3 and
∨

and are monotone with respect to ≤:

(
∨

i

3φi)◦(
∨

j

3ψ j) =
∨

i, j

3(φi◦ψ j) (
∨

i

3φi) ‖ (
∨

j

3ψ j) =
∨

i, j

3(φi ‖ ψ j).

Now if P and Q are Gamma programs we have the following deduction

rules:

left-stuttering
P |= 3(θψ) ψ 6= nil

P |= 3(θ(φ,φ)ψ)
absorption

P |= 3(a(φ,ψ)(ψ, θ)b)

P |= 3(a(φ, θ)b)

seq. composition
P |= φ Q |= ψ

Q ◦ P |= ψ ◦ φ
par. composition

P |= φ Q |= ψ

P + Q |= φ ‖ ψ
.
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Left-stuttering and absorption are justified by the fact that sets of transition

traces are closed under those two operations.

The proofs in [GH 96] relied on two provisional rules whose validity

depended on the existence of a multiset logic:

terminal

φ⇒ ¬R(x1, . . . , xn)

(A(x1, . . . , xn) ⇐ R(x1, . . . , xn)) |= 3(φ,φ)

mediator

φ⇒ R(x1, . . . , xn) A(x1, . . . , xn) ⇒ ψ (A(x1, . . . , xn) ⇐ R(x1, . . . , xn)) |= θ

(A(x1, . . . , xn) ⇐ R(x1, . . . , xn)) |= 3((φ,ψ)θ)
.

In section 4 we shall be able to prove a restricted version of these rules.

Nevertheless —and conditioned on the existence of a multiset logic— [GH

95] and [GH 96] stated the following:

Theorem 2.2 If P and Q are two Gamma programs then:

1. If ‡[[P]] ⊆ ‡[[Q]] then P ⊑O Q, where ⊑O denotes an observational congruence

relation as defined in [GH 95].

2. P |= φ implies Q |= φ if and only if ‡T[[P]] ⊆ ‡T[[Q]].

3. If P |= φ implies Q |= φ then P ⊑O Q.

3 Multiset logic

Let D be a domain associated with the logical theory L(D). We want to

define a logic for D. Let D be a geometric theory [Vi 89] whose formation

rules and axioms are the following

Formation rules

The subbasic propositions are built from propositions in the logic of the

domain:
φ1, . . . ,φn ∈ L(D)

2{φ1, . . . ,φn} ∈ L(D)
,
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where the order of the φi’s is not relevant. More complex propositions can

be built by finite conjunctions and arbitrary disjunctions:

t ∈ L(D)

φ,ψ ∈ L(D)

φ ∧ ψ ∈ L(D)

{φi} ⊆ L(D),
∨
{φi} ∈ L(D)

f =
∨

∅.

We will use the following shorthands:

(D1) if φ ∈ L(D) then φn =de f {φ, . . . ,φ
︸ ︷︷ ︸

n times

}

(D2) 3{φ1, . . . ,φn} =de f

∨

m

2({φ1, . . . ,φn} ⊎ tm).

General axioms

The general axioms give D the structure of a frame:

(A1 ≤ −ref) φ ≤ φ, (A2 ≤ −trans)
φ ≤ ψ,ψ ≤ χ

φ ≤ χ
,

(A3 = −I)
φ ≤ ψ,ψ ≤ φ

φ = ψ
, (A4 = −E)

φ = ψ

φ ≤ ψ,ψ ≤ φ
,

(A5 t − I) φ ≤ t, (A6 ∧ −I)
φ ≤ ψ1,φ ≤ ψ2

φ ≤ ψ1 ∧ ψ2

,

(A7 ∧ −E − L) φ ∧ ψ ≤ φ, (A8 ∧ −E − R) φ ∧ ψ ≤ ψ,

(A9 ∨ −I)
∀φ ∈ Φ φ ≤ ψ

∨
Φ ≤ ψ

, (A10 ∨ −E − R)
φ ∈ Φ

φ ≤
∨

Φ
,

(A11 ∧ −dist) φ ∧
∨

{ψi}i∈I ≤
∨

{φ ∧ ψi}i∈I.

Specific axioms

The following are specific axioms for our frame of multisets, where S and T

are finite multisets of formulas of L(D) and Σ(n) is the set of permutations

of n elements:

(A12) 2S ∧2T ≤ f if S 6= T

(A13) 2{φ1, . . . ,φn} ∧2{ψ1, . . . ,ψn} ≤
∨

σ∈Σ(n)

2{φ1 ∧ ψσ(1), . . . ,φn ∧ ψσ(n)}
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(A14) 2(S ⊎ {φ}) ≤ 2(S ⊎ {ψ}) if φ ≤ ψ

(A15) 2(S ⊎ {
∨

i φi}) ≤
∨

i

2(S ⊎ {φi}).

Theorem 3.1 The following statements are true:

a) 2tm ∧3{φ1, . . . ,φn} ≤ f if m < n.

b) 2(S ⊎ {
∨

i φi}) =
∨

i 2(S ⊎ {φi}).

c) 3(S ⊎ {
∨

i φi}) =
∨

i 3(S ⊎ {φi}).

Proof. For a) we have:

2tm ∧3{φ1, . . . ,φn}= 2tm ∧
∨

k

2({φ1, . . . ,φn} ⊎ tk) definition

≤
∨

k

2tm ∧ 2({φ1, . . . ,φn} ⊎ tk) A11

≤ f by A12 and hypothesis.

From A14 and the fact that φi ≤
∨

i φi for every i we have 2(S ⊎ {φi}) ≤

2(S ⊎ {
∨

i φi}), also for every i. Then
∨

i 2(S ⊎ {φi}) ≤ 2(S ⊎ {
∨

i}). The other

direction of the inequality is A15 and we get b). c) follows from b) and the

definition of 3.

We also want to define a satisfaction relation between D and

D. Let us suppose that the relation x |= φ, with x ∈ D and φ ∈ L(D),

has been properly defined.

Definition 3.2 If {x1, . . . , xn} ∈ D and φ1, . . . ,φn ∈ L(D) then {x1, . . . , xn} |=

2{φ1, . . . ,φn} iff there exist a σ ∈ Σ(n) such that xσ(1) |= φ1, . . . , xσ(n) |= φn.

Theorem 3.3 For every M ∈ D: a) if {x1, . . . , xn} |= 2{φ1, . . . ,φn} then M ⊎

{x1, . . . , xn} |= 3{φ1, . . . ,φn}; b) M |= 2tm iff M = m; c) M |= 3tm iff M ≥ m.

Proof. It is enough to observe that {x1, . . . , xn} ⊎ M |= 2{φ1, . . . ,φn} ⊎ tk,

where M = k. Then M |=
∨

m 2({φ1, . . . ,φn} ⊎ tm = 3{φ1, . . . ,φn}. The other

properties follow trivially from this and the definition of |=.
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Theorem 3.4 For every M, if φ ≤ ψ and M |= φ then M |= ψ.

Proof. If φ ≤ ψ depends on axioms A1–A11 the theorem is clearly because

of the general theory and it only remains to be proved for axioms A12–A15.

For axiom A12 we have φ = 2S ∧ 2T and ψ = f . But no M ∈ D can

satisfy simultaneously 2S and 2T if S 6= T, and the theorem holds by

vacuity.

With A13, now φ = 2{φ1, . . . ,φn}∧2{ψ1, . . . ,ψn} and ψ =
∨

σ∈Σ(n)
2{φ1 ∧ ψσ(1), . . . ,φn ∧ ψσ(n)}.

Let us suppose that {x1, . . . , xn} |= φ, ie, x1 |= φσ1(1), . . . xn |= φσ1(1) and

x1 |= ψσ2(1), . . . xn |= ψσ2(n). Then x1 |= φσ1(1)∧ψσ2(1), . . . , xn |= φσ1(n)∧ψσ2(n).

In other words {x1, . . . , xn} |= ψ.

Regarding A14, if M |= 2(S ⊎ {φ}) then M = {x1, . . . , xn} such that

{x1, . . . , xn−1} |= 2S and xn |= φ. Hence xn |= ψ. Consequently M |=

2(S ⊎ {ψ}).

Finally if M |= 2(S⊎{
∨

i φi}) then again M = {x1, . . . , xn}, with {x1, . . . , xn−1} |=

2S and xn |=
∨

i φi. Therefore xn |= φi for some i and then M |= 2(S ⊎ {φi})

for the same i, which leads directly to the desired conclusion.

3.1 A locale for the logic

We still do not know if D corresponds to the points of the logic previously

defined, ie, the points in D might be something different to finite multisets.

Therefore it would be worth to see what the points of the logic look like.

Consider the locale LocD whose frame of opens is D. A possible way to see

true-kernels of elements in pt D is as completely prime filters of D (lemma

5.4.6 in [Vi 89]).

D is sound, ie, if φ ≤ ψ then φ ∈ M implies ψ ∈ M. What about the

inverse: is the logic complete?

If we are able to prove coherence of D completeness will come from a

general theorem. Consider first what the compact elements in D should

look like. If a ∈ KD then for every B such that a ≤
∨

B there exist a finite

B′ ⊆ B such that a ≤
∨

B′. That is, we are excluding infinite disjunctions

and as a consequence the operator 3. Every a ∈ KD should be a finite

conjunction or disjunction of propositions of the form 2{a1, . . . , an}. In the
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following Kα will denote the set {a | a is compact and a ≤ α}, where a, α

belong either to L(D) or L(D).

Theorem 3.5 If 2{a1, . . . , an} ∈ KD then each of the ai’s is compact in L(D).

Proof. Suppose 2{a1, . . . , an} ∈ KD but there is a non-compact ai, that is

there exist a directed set B ⊆ L(D) such that ai ≤
∨↑

B and ai ≤ b for no

b ∈ B (where
∨↑

emphasizes the fact that it is a directed join). Consider

now the set B′ = {2{a1, . . . , ai−1, b, ai+1, . . . , an} | b ∈ B}. By A14 B′ is

directed like B. According to A15

2{a1, . . . , an} ≤ 2{a1, . . . , ai−1,
∨↑

B, ai+1, . . . , an}

≤

↑
∨

b∈B

2{a1, . . . , ai−1, b, ai+1, . . . , an}

=

↑
∨

B′.

However, there is no b′ ∈ B′ such that 2{a1, . . . , an} ≤ b′, which contra-

dicts our assumptions that 2{a1, . . . , an} was compact. Therefore all ai’s are

compact.

Theorem 3.6 D is coherent, that is, KD ≃ D.

Proof. We need to find two frame homomorphisms h1 : KD → D and

h2 : D → KD such that h1 ◦ h2 = IdKD and h2 ◦ h1 = IdD. As KD ⊆ D let h1

be the inclusion function, and define

h2(2{α1, . . . ,αn}) =

↑
∨

ai∈Kαi

2{a1, . . . , an}.

h1 is a frame isomorphism as it preserves relations in A12–A15. Regarding

8



h2, let m 6= n. Then

h2(2{α1, . . . ,αn} ∧ 2{β1, . . . , βm}) =

↑
∨

ai∈Kαi
bi∈Kβi

(2{a1, . . . , an} ∧ 2{b1, . . . , bm})

≤

↑
∨

ai∈Kαi
bi∈Kβi

f

= f = h2( f)

which proves h2 respects A12. With respect to A13:

h2(2{α1, . . . ,αn} ∧ 2{β1, . . . , βn})

=

↑
∨

ai∈Kαi
bi∈Kβi

(2{a1, . . . , an} ∧2{b1, . . . , bn})

≤

↑
∨

ai∈Kαi
bi∈Kβi

∨

σ∈Σ(n)

2{a1 ∧ bσ(1), . . . , an ∧ bσ(n)}

On the other hand, ai ∈ Kαi
and bσ(i) ∈ Kβσ(i)

and hence ai ∧ bσ(i) ∈ Kαi∧βσ(i)
,

which means:

≤

↑
∨

ci∈Kαi∧βσ(i)

∨

σ∈Σ(n)

2{c1, . . . , cn}

= h2(
∨

σ∈Σ(n)

2{α1 ∧ βσ(1), . . . ,αn ∧ βσ(n)}).

Axiom A14 is easier. If αn+1 ≤ β

h2(2({α1, . . . ,αn} ⊎ {αn+1})) =

↑
∨

ai∈Kαi

2({a1, . . . , an} ⊎ {an+1})

≤

↑
∨

ai∈Kαi
b∈Kβ

2({a1, . . . , an} ⊎ {b})

= h2({α1, . . . ,αn} ⊎ {β}).
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Finally we will check A15

h2(2({α1, . . . ,αn} ⊎ {
∨

j β j})) =

↑
∨

ai∈Kαi
b∈K∨

j β j

2({a1, . . . , an} ⊎ {b})

≤

↑
∨

ai∈Kαi
b j∈Kβ j

∨

j

2({a1, . . . , an} ⊎ {b j})

= h2(
∨

j

2({α1, . . . ,αn} ⊎ {β j}))

Consider now the composition of h1 and h2:

h2 ◦ h1(2{a1, . . . , an}) = h2(2{a1, . . . , an})

=

↑
∨

āi∈Kai

2{̄a1, . . . , ān}

= 2{a1, . . . , an} as each ai is compact.

h1 ◦ h2(2{α1, . . . ,αn}) = h1(

↑
∨

ai∈Kαi

2{a1, . . . , an})

= 2{α1, . . . ,αn} as L(D) is algebraic.

Theorem 3.7 (Completeness of D) If for all M ∈ pt D, M |= φ implies M |= ψ

then φ ≤ ψ.

Proof. As D is coherent, then LocD is spectral. Then, according to [Vi 89]

9.2.4 is also spatial. Then the theorem derives from [Vi 89] 5.3.5.

As a nice additional result we have that 〈pt D,⊑〉 is directed cocomplete

(7.3.1 and 7.3.2 in [Vi 89]).

The next task is to relate points in pt D to multisets in D. It is not

difficult to define a one-to-one function f : D → pt D in the following way:

f(M) = M such that M |= α iff α ∈ M (this function also induces a partial

order on D, viz. M1 ≤ M2 iff f(M1) ⊆ f(M2)). In other words, pt D contains

enough points to reflect the structure of D, but it might contain additional

objects. The existence of one-to-one function from pt D to D is yet to be

proved.
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4 Adding to Gamma logic

Once we have an acceptable multiset logic we want to prove properties

of Gamma programs. Remember that two important deduction rules were

provisional in the proof system proposed in section 2. Now it is possible to

prove them, though for a restricted set of reaction conditions.

Definition 4.1 Let R(x1, . . . , xn) be a reaction condition and A = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}

an action.

1. R is unary expressible iff it is equivalent to a conjunction of unary predi-

cates P1(x1), . . . , Pn(xn).

2. If P(x) is a unary predicate let ψP be a formula in L(D) such that P(x)

holds iff x |= ψP. If R(x1, . . . , xn) = P1(x1) ∧ · · · ∧ Pn(xn) then ψR =

3{ψP1
, . . . ,ψPn}.

3. If f : Dn → D is a function, then P f(x1,...,xn) is a unary predicate such that

P f(x1,...,xn)(x) holds iff x = f(x1, . . . , xn).

4. If p = (k − n) + m and φ = 2{φ1, . . . ,φk} ≤ ψR then MA⇐R(φ) =

{2{γ1, . . . , γp} | {γ1, . . . , γp} = ({φ1, . . . ,φk} − {φi1 ≤ ψP1
, . . . ,φin ≤ ψPn})⊎

{ψP f1(x1,...,xn)
, . . . ,ψP fm(x1,...,xn)

}}.

Using these definitions and what we know about D we can prove a

version of the terminal and mediator rules for Gamma.

Theorem 4.2 Let A ⇐ R be a Gamma rewriting rule (where R is unary

expressible) and φ = 2{φ1, . . . ,φn}. Then the following rules are sound:

mediator
φ ≤ ψR, γ ∈ MA⇐R(φ), (A ⇐ R) |= 3θ

(A ⇐ R) |= 3((φ, γ)θ)

terminal
φ ∧ ψR ≤ f

(A ⇐ R) |= 3(φ,φ)
.

Proof. As the logic is complete, we know that M ∈ pt D |= φ implies

M |= ψR iff φ ≤ ψR. This and dtlf framework give us the completeness of

these rules. Their soundness comes from theorem 2.2.
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5 The logic at work

[GH 96] proved a particular instance of the Gamma example of section 1.

However, in that example it was assumed without proof the correctness of

rules mediator and terminal. We restate that proof using our new multiset

logic.

In this case ψP1
= 3{‘x > 1’}, ψP2

= 3{‘x = 0’} and ψP3
= 3{t,t}. From now

onwards ‘n’ will be a shorthand for the predicate ‘x = n’. Then we want to

prove that P3 ◦ (P1 + P2) |= 3(2{4},2{5}), as 5 is the 4th Fibonacci number.

Our proof has a backward-going flavour:

P1 |= 3(2{1,1,1,1,1},2{1,1,1,1,1}) terminal and 2{1,1,1,1,1} ∧3{x>1} ≤ f

P1 |= 3((2{2,1,1,0},2{1,1,1,0,0})(2{1,1,1,1,1},2{1,1,1,1,1}))
mediator and 2{2,1,1,0} ≤ 3{x>1} and

2{1,1,1,0,0} ∈ MP1
(2{2,1,1,0})

P1 |= 3((2{4},2{3,2})(2{3,2},2{2,2,1})(2{2,2,1},2{2,1,1,0})

(2{2,1,1,0},2{1,1,1,0,0})(2{1,1,1,1,1},2{1,1,1,1,1}))

mediator repeated several times

P1 |= 3((2{4},2{1,1,1,0,0})(2{1,1,1,1,1},2{1,1,1,1,1}))

absorption repeated

P2 |= 3(2{1,1,1,1,1},2{1,1,1,1,1}) terminal and 2{1,1,1,1,1} ∧3{0} ≤ f

P2 |= 3((2{1,1,1,0,0},2{1,1,1,1,0})(2{1,1,1,1,0},2{1,1,1,1,1})

(2{1,1,1,1,1},2{1,1,1,1,1}))

mediator, twice

P2 |= 3((2{1,1,1,0,0},2{1,1,1,1,1})(2{1,1,1,1,1},2{1,1,1,1,1})) absorption

P1 + P2 |= 3((2{4},2{1,1,1,0,0})(2{1,1,1,0,0},2{1,1,1,1,1})

(2{1,1,1,1,1},2{1,1,1,1,1}))

parallel

P1 + P2 |= 3(2{4},2{1,1,1,1,1}) absorption

P3 |= 3(2{1,1,1,1,1},2{5}) terminal, mediator, absorption
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P3 ◦ (P1 + P2) |= 3((2{4},2{1,1,1,1,1})(2{1,1,1,1,1},2{5})) sequential

P3 ◦ (P1 + P2) |= 3(2{4},2{5}) absorption

6 Future work

The proof of soundness and completeness of the logic was made using the

localic presentation. However, it was not proved that the points of the

locale correspond to the kind of finite multisets used in Gamma programs.

In other words, our logic might be talking about some other class of objects.

Additionally, the type of predicates expressible by the logic is somewhat

restricted. An extension to general predicates would complicate the bags

order and our proofs about its properties would also look too complex. A

way of avoiding this should be found.

Finally, as the reader might be aware, the logic can only prove particular

instances of programs (in the example of the Fibonacci numbers, the proof

only holds for the multiset {4}). A rule for proving that the program pro-

duces the n-th Fibonacci number when applied to {n} will be most useful.

A strategy suggested by S. Vickers uses natural induction, though a more

general rule based on arbitrary well-founded orders is being developed at

this moment and will be the subject of a future paper.
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