LÓGICA COMPUTACIONAL CÁLCULO DE PREDICADOS

Francisco Hernández Quiroz

Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhg@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhg

Facultad de Ciencias

Francisco Hernández Quiroz

Cálculo de predicados

Sintaxis Semántica S. de demostración

Fórmulas

Las fórmulas atómicas se definen así

$$Pred_A = \{P_k^n(t_1, ..., t_n) \mid 1 \le n, k \qquad t_1, ..., t_n \in T\}$$

El conjunto de fórmulas se genera por la siguiente gramática

$$\alpha ::= \phi \mid \neg \alpha \mid (\alpha \vee \alpha) \mid \cdots \mid (\forall x \cdot \alpha) \mid (\exists x \cdot \alpha),$$

donde $\phi \in \operatorname{Pred}_A$ y $x \in \operatorname{Var}$.

Sintaxis Semántica S. de demostración

Términos

Tenemos dos conjuntos básicos. Las variables:

$$Var = \{x, y, z, x_0, y_0, z_0, \dots \}$$

y las constantes:

$$C = \{c, c_0, c_1, \dots\}$$

Los términos se definen así

$$T ::= X \mid C \mid f_k^n(T_1, \ldots, T_n),$$

donde $X \in Var$, $C \in C$ y T_1, \ldots, T_n son términos. Al conjunto de términos lo denotaremos como T.

Francisco Hernández Quiroz

Sintaxis Semántica S. de demostración

Términos v fórmulas Sustitución

Variables libres y ligadas

Una variable en una fórmula puede aparecer libre o ligada. Definiremos dos funciones para calcular los conjuntos de variables libres y ligadas:

$$F: \mathsf{Pred} \to \mathcal{P}(\mathsf{Var}) \quad \mathsf{y} \quad B: \mathsf{Pred} \to \mathcal{P}(\mathsf{Var})$$

donde Pred es el conjunto de fórmulas del cálculo de predicados.

$$F(P_k^n(t_1, ..., t_n)) = \{x \mid x \in t_i\} \quad B(P_k^n(t_1, ..., t_n)) = \emptyset$$

$$F(\neg \alpha) = F(\alpha) \quad B(\neg \alpha) = B(\alpha)$$

$$F(\alpha \lor \beta) = F(\alpha) \cup F(\beta) \quad B(\alpha \lor \beta) = B(\alpha) \cup B(\beta)$$
...
$$F(\forall x . \alpha) = F(\alpha) - \{x\} \quad B(\forall x . \alpha) = B(\alpha) \cup \{x\}$$

$$F(\exists x . \alpha) = F(\alpha) - \{x\} \quad B(\exists x . \alpha) = B(\alpha) \cup \{x\}$$

Sustitución en términos

Las funciones anteriores servirán para poder sustituir variables libres por términos en fórmulas arbitrarias de Pred.

Comenzamos con las sustituciones en términos:

- $1. \quad x_{[x:=t]} = t$
- 2. $y_{[x:=t]} = y$

si $x \neq y$

- $si c \in C$
- 3. $c_{[x:=t]} = c$ 4. $f_m^n(t_1, \ldots, t_n)_{[x:=t]} = f_m^n(t_{1[x:=t]}, \ldots, t_{n[x:=t]})$

Francisco Hernández Quiroz

Sustitución en fórmulas

Ahora veremos las sustituciones en fórmulas:

- 1. $P_m^n(t_1,\ldots,t_n)_{[x:=t]} = P_m^n(t_{1[x:=t]},\ldots,t_{n[x:=t]})$
- 2. (a) $(\neg \alpha)_{[x:=t]} = \neg (\alpha_{[x:=t]})$
 - (b) $(\alpha \vee \beta)_{[x:=t]} = (\alpha_{[x:=t]} \vee \beta_{[x:=t]})$
 - (c) $(\alpha \wedge \beta)_{[x:=t]} = (\alpha_{[x:=t]} \wedge \beta_{[x:=t]})$
 - (d) $(\alpha \Rightarrow \beta)_{[x:=t]} = (\alpha_{[x:=t]} \Rightarrow \beta_{[x:=t]})$
 - (e) $(\alpha \Leftrightarrow \beta)_{[x:=t]} = (\alpha_{[x:=t]} \Leftrightarrow \beta_{[x:=t]})$
- 3. (a) $(\forall x . \alpha)_{[x:=t]} = (\forall x . \alpha)$
 - (b) $(\forall y . \alpha)_{[x:=t]} = (\forall y . \alpha_{[x:=t]})$ si $x \notin FV(\alpha)$ o $y \notin t$
 - (c) $(\forall y \cdot \alpha)_{[x:=t]} = \forall z \cdot (\alpha_{[y:=z]})_{[x:=t]}$ si $x \in FV(\alpha)$ y $y \in t$ (z una variable nueva)
- (d), (e) y (f) corresponden al cuantificador existencial \exists y son análogas.

Semántica

La semántica de Pred se basa en el concepto de interpretación. Una interpretación / consiste en un conjunto U al que llamaremos el universo de interpretación y tres funciones

 $\Psi : Var \cup C \rightarrow U$

 $\Phi : \{f_k^n\} \to \{\phi : U^n \to U\}$

 $\Pi : \{\hat{P}_{\nu}^{n}\} \to \{R \subset U^{n}\}$

Las funciones Ψ y Φ se combinan para la interpretación de términos más complejos:

$$\hat{\Psi}(f_{k}^{n}(t_{1},\ldots,t_{n})) = \Phi(f_{k}^{n})(\hat{\Psi}(t_{1}),\ldots,\hat{\Psi}(t_{n})).$$

Satisfacción I

La satisfacción es una relación entre interpretaciones y fórmulas de Pred. Sea $\alpha \in \text{Pred y sea } I = \langle \Psi, \Phi, \Pi \rangle$ una interpretación. Diremos que Isatisface α si se cumplen las siguientes condiciones definidas inductivamente en la estructura de α :

- $\alpha = \neg \beta$ e *I* no satisface β :
- \bullet $\alpha = \beta \vee \gamma$ e *I* satisface β o satisface γ ;

 $\alpha = (\forall x . \beta)$ y para toda $I' = \langle \Psi', \Phi, \Pi \rangle$, donde

$$\Psi'(c) = \Psi(c) \quad \forall c \in \mathbb{C}$$

 $\Psi'(v) = \Psi(v) \quad \forall v \in \text{Var} . x \neq v$

I' satisface β .

Francisco Hernández Quiroz Lógica Computacional Cálculo de predicados Francisco Hernández Quiroz

Satisfacción II

 \bullet $\alpha = (\exists x . \beta)$ y existe $I' = \langle \Psi', \Phi, \Pi \rangle$, donde

$$\Psi'(c) = \Psi(c) \quad \forall c \in \mathbb{C}$$

 $\Psi'(y) = \Psi(y) \quad \forall y \in \text{Var} . x \neq y$

tal que l' satisface β .

Francisco Hernández Quiroz

Cálculo de predicados

Sintaxis Semántica S. de demostración

Verdad y validez

La satisfacción es un concepto más débil que el de verdad. Éste último se define en función de la satisfacción:

Sea α una fórmula y sea I una interpretación. Diremos que α *es verdadera en I* sii para toda $I' = \langle \Psi', \Phi, \Pi \rangle$, donde

$$\Psi'(c) = \Psi(c) \quad \forall c \in C$$

se tiene que l' satisface α . En ese caso, escribiremos

$$\models_I \alpha$$
.

El concepto de validez es análogo al de tautología en el cálculo de proposiciones:

 α es válidad sii para toda interpretación *I* se tiene que

 $\models_{l} \alpha$.

Francisco Hernández Quiroz

Cálculo de predicados

Semántica S. de demostración

Ejemplos

Considérense las fórmulas

- $P_1^2(x,c)$
- \bigcirc $\forall x . P_1^2(x, c)$
- \bigcirc $\forall x . P_1^2(c, x)$
- $P_1^1(x) \vee \neg P_1^1(x)$

y la interpretación $I_{\mathbb{N}} = \langle \Psi, \Phi, \Pi \rangle$, donde

$$\Psi: \mathsf{Var} \cup \mathsf{C} \to \mathbb{N}$$

$$\Psi: \mathsf{Var} \cup \mathsf{C} \to \mathbb{N} \qquad \Phi: \{f_k^n\} \to \{\phi: \mathbb{N}^n \to \mathbb{N}\} \qquad \Pi: \{P_k^n\} \to \{R \subseteq \mathbb{N}^n\}$$

$$\exists: \{P_k^n\} \to \{R \subseteq \mathbb{N}^n\}$$

y en especial

$$\Psi(x) = 0$$
 $\Psi(c) = 0$ $\Pi(P_1^2) = \{ n \mid n \text{ es par } \}.$

 $I_{\mathbb{N}}$ satisface las fórmulas 1, 3 y 4, pero sólo las fórmulas 3 y 4 son verdaderas. Además, la fórmula 4 es válida, pues será verdadera para cualquier otra interpretación que se elija.

Sintaxis Semántica S. de demostración

Modelos

Sea I una interpretación y sea Γ un conjunto de fórmulas. Diremos que I es un *modelo* de Γ sii

$$\models_I \gamma \qquad \forall \gamma \in \Gamma.$$

Francisco Hernández Quiroz Francisco Hernández Quiroz Cálculo de predicados

Indecidibilidad semántica

Sintaxis Semántica S. de demostración

Caso general Deducción natu

Sistemas de demostración

Teorema

No existe un algoritmo que nos permita determinar, para toda α arbitraria, si $\models \alpha$ o $\not\models \alpha$.

Demostración. Es equivalente al problema de la detención.

• Se tiene un conjunto (finito) de reglas de inferencia.

de las ideas vistas en cálculo de proposiciones:

 Una demostración es una sucesión de fórmulas de las cuales la última es la conclusión y las anteriores son o bien premisas o bien aplicaciones de las reglas de inferencia (con sustitución) a partir de fórmulas ya demostradas.

Los sistemas de demostración del cálculo de predicados son una extensión

• En una demostración es posible utilizar (instancias de) teoremas ya demostrados.

Francisco Hernández Quiroz

Lógica Computacional

Cálculo de predicados

13/1

Francisco Hernández Quiroz

Lógica Computacional

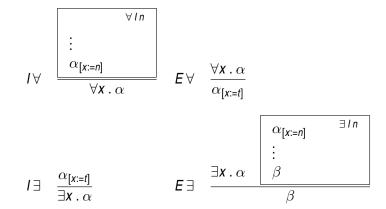
Cálculo de predicados

4/40

Sintaxis Semántica S. de demostración

Caso general Deducción natural

Deducción natural



Sintaxis Semántica S. de demostración

Caso general Deducción natural

Ejemplos. Regla $E \forall$

Demostraremos el teorema

$$\forall x . P_1^1(x) \Rightarrow P_2^1(x), P_1^1(c) \vdash P_2^1(c)$$

1 $\forall x . P_1^1(x) \Rightarrow P_2^1(x)$

Prem

2 $P_1^1(c)$

Prem

3 $P_1^1(c) \Rightarrow P_2^1(c)$

E ∀ 1

4 $P_2^1(c)$

 $E \Rightarrow 3, 2$

Francisco Hernández Quiroz Lógica Computacional Cálculo de predicados 15 / 19 Francisco Hernández Quiroz Lógica Computacional Cálculo de predicados 16 / 19

Ejemplos. Regla I∃

Demostraremos el teorema

$$\forall x . P_1^1(x) \Rightarrow P_2^1(x), P_1^1(c) \vdash \exists x . P_2^1(x)$$

1 $\forall x . P_1^1(x) \Rightarrow P_2^1(x)$

Prem

2 $P_1^1(c)$

Prem

3 $P_1^1(c) \Rightarrow P_2^1(c)$

E ∀ 1

4 $P_2^1(c)$

 $E \Rightarrow 3.2$

 $5 \exists x . P_2^1(x)$

1∃4

Francisco Hernández Quiroz

Francisco Hernández Quiroz

Cálculo de predicados

Sintaxis Semántica S. de demostración

Ejemplos. Regla $E \exists$

Finalmente, demostraremos el teorema

$$\forall x . P_1^1(x) \Rightarrow P_2^1(x), \exists x . P_1^1(x) \vdash \exists x . P_2^1(x)$$

1
$$\forall x . P_1^1(x) \Rightarrow P_2^1(x)$$

Prem

$$2 \quad \exists x . P_1^1(x)$$

Prem

$$P_1^1(n)$$

E∃n

$$P_1(n)$$

Hip

$$4 \qquad P_1^1(n) \Rightarrow P_2^1(n)$$

E ∀ 1

5
$$P_2^1(n)$$

 $E \Rightarrow 4.3$

$$\exists x . P_2^1(x)$$

7
$$\exists x . P_2^1(x)$$

Francisco Hernández Quiroz

E ∃ 2

Cálculo de predicados

Sintaxis Semántica S. de demostración

Ejemplos. Regla I∀

Demostraremos el teorema

$$\forall x . P_1^1(x) \Rightarrow P_2^1(x), \forall x . P_2^1(x) \Rightarrow P_3^1(x) \vdash \forall x . P_1^1(x) \Rightarrow P_3^1(x)$$

I∀n

1
$$\forall x . P_1^1(x) \Rightarrow P_2^1(x)$$

Prem

2
$$\forall x . P_2^1(x) \Rightarrow P_3^1(x)$$

Prem

$$P_1^1(n) \Rightarrow P_2^1(n)$$

E ∀ 1

$$P_2^1(n) \Rightarrow P_3^1(n)$$

E ∀ 2

$$P_1^1(n) \Rightarrow P_3^1(n)$$

Teo
$$\alpha \Rightarrow \beta, \beta \Rightarrow \gamma \vdash \alpha \Rightarrow \gamma$$

6
$$\forall x . P_1^1(x) \Rightarrow P_3^1(x)$$

 $I \forall$