
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

TWO EXTENSIONS OF SYSTEM F WITH (CO)ITERATION AND
PRIMITIVE (CO)RECURSION PRINCIPLES ∗

Favio Ezequiel Miranda-Perea1

Abstract. This paper presents two extensions of the second order polymorphic lambda cal-
culus F with inductive and coinductive types including not only (co)iteration but primitive
(co)recursion and inversion principles. The systems are proven to be safe, can be seen as
extensions of Hagino’s categorical lambda calculus and are also related with the systems of
higher-order iterators of [1].

1991 Mathematics Subject Classification. 03B40, 68N18, 68Q42, 68Q65.

1. Introduction

The main goal of this paper is to fill a gap between two kinds of type systems involving inductive
and coinductive types, namely the lambda calculus with categorical type constructors of [7] and the
higher order systems for (co)iteration developed in [1]. In [7] Hagino develops an strongly normalising
extension of simply typed lambda calculus with clausular1 and positive inductive and coinductive types
and iteration principles called there categorical type constructors, modelling the concept of (weak) initial
and final dialgebras of functors, concept which is also introduced there. Later, in [25], this system
called there Cλ, is encoded into system F, apparently defining for the first time the now usual code
for coinductive types. On the other hand [1] presents several systems of (co)inductive constructors of
higher kinds (higher-order nested datatypes) which all happen to be definable within the system Fω

of higher-order parametric polymorphism. So we have an extension of simply typed lambda calculus
with (co)inductive types definable in system F and several extensions of system Fω with (co)inductive
constructors, which are definable in Fω. To our knowledge, the taxonomy of type systems lacks of a system
combining (co)inductive types, polymorphism and primitive (co)recursion. Though there exist extensions
of system F, in Church style, with both inductive and coinductive types including primitive (co)recursion
principles (see [11, 12]), these systems handle either inductive or coinductive types but not both at the
same time. In this paper we present two type systems handling both inductive and coinductive types as
well as polymorphism and primitive (co)recursion. One system handles conventional (co)inductive types
modellin (co)algebras whereas the other models dialgebras, as in [7], using clausular types. Both systems
are safe, for their operational semantics terminates and preserves types. Moreover, the systems are full
monotone, that is, there is no positivity restriction in constructing a (co)inductive type.

1.1. Overview of the paper

After mentioning some preliminaries on categories and polymorphic lambda calculus, we develop our
first system called MICT, develop some examples of programming and directly prove the termination
(strong normalization) of the operational semantics. In section 4 we present the second system which

Keywords and phrases: Coiteration, corecursion, iteration, primitive recursion, System F, monotone inductive type,
monotone coinductive type, monotonicity witness, algebras, coalgebras, dialgebras

∗ This research has been supported by Conacyt-UNAM Mexico postdoctoral grant number 50289

1 Departamento de Matematicas, Facultad de Ciencias UNAM Circuito Exterior S/N. Ciudad Universitaria 04510 Mexico
D.F. Mexico. E-mail: favio@ciencias.unam.mx
1The name is mine

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

enhaces the former by allowing definitions with several constructors/destructors, feature which is illus-
trated in several examples. Safety for this system is proven by embedding it into the previous system to
ensure termination and by proving directly its type-preservation, a non-trivial property due to the use of
the Curry-style formalism. Finally we point to some future and related work.

2. Preliminaries

In this section we recall some categorical concepts as well as our base type system, the second order
polymorphic lambda calculus F.

2.1. System F

Our basic framework is the well-known system F of Girard and Reynolds in Curry-style presentation.
For ease of presentation we include sum and product types as primitive constructors.

• Types built from an infinite set of type variables denoted by X.

A,B, C, F,G ::= X | A → B | ∀XA | A + B | A×B

• Terms built from an infinite set of term variables denoted by x.

t, r, s ::= x | λxr | rs | inl r | inr s | case(r, x.s, y.t) | 〈r, s〉 | fst r | snd r

• Contexts are sets of the form Γ = {x1 : A1, . . . , xn : An}. The expression Γ, x : A denotes the
context Γ ∪ {x : A} always assuming that x was not previously declared in Γ.

• Typing rules of the form Γ ` t : A denoting that t is a wellformed term of type A in context Γ.

Γ, x : A ` x : A (V ar)

Γ, x : A ` r : B

Γ ` λxr : A → B
(→I)

Γ ` r : A → B Γ ` s : A

Γ ` rs : B
(→ E)

Γ ` t : A

Γ ` t : ∀XA
(∀I)

Γ ` t : ∀XA

Γ ` t : A[X := F]
(∀E)

Γ ` r : A

Γ ` inl r : A + B
(+IL)

Γ ` r : B

Γ ` inr r : A + B
(+IR)

Γ ` r : A + B Γ, x : A ` s : C Γ, y : B ` t : C

Γ ` case(r, x.s, y.t) : C
(+E)

Γ ` r : A Γ ` s : B

Γ ` 〈r, s〉 : A×B
(×I)

Γ ` s : A×B

Γ ` fst s : A
(×EL)

Γ ` s : A×B

Γ ` snd s : B
(×ER)

• Reduction. The operational semantics is given by the one-step β-reduction relation t → t′ defined
as the closure of the following axioms under all term formers.

(λxr)s 7→β r[x := s]
case(inl r, x.s, y.t) 7→β s[x := r]
case(inr r, x.s, y.t) 7→β t[y := r]

fst〈r, s〉 7→β r
snd〈r, s〉 7→β s

TITLE WILL BE SET BY THE PUBLISHER 3

2.2. Algebras and Coalgebras

We assume some knowledge of category theory, here we only state the basic concepts needed later, for
full details on category theory see for example [10].
We will use the categorical approach to (co)induction (see [9]) to formulate our systems of (co)inductive
types, this can be briefly stated as follows:

• Induction is the use of initiality for algebras
• Coinduction is the use of finality for coalgebras

Fix a category C, with products and coproducts for our purposes.

Definition 1. Let T : C → C be a functor. A T -algebra is a pair 〈A, f〉 such that f : TA → A.
Analogously a T -coalgebra is a pair 〈B, g〉 with g : B → TB.

Definition 2. Given two T -algebras 〈A, f〉, 〈B, g〉 a morphism from 〈A, f〉 to 〈B, g〉 is a C-morphism
h : A → B such that the following diagram commutes:

TB B

TA A...
f

...
g

..
...
.........
...

Th

..
...
.........
...

h

We say that the algebra 〈A, f〉 is initial if it is the initial object of the category of T -algebras, i.e., if
for every given algebra 〈B, g〉 there is a unique h such that the above diagram commutes, in this case the
h is denoted Itg and called the iteratively defined morphism with step function g.
If exists, the initial T -algebra is unique and is denoted as 〈µT, inT 〉, so that Itg : µT → B and

Itg ◦ inT = g ◦ T (Itg) (1)

this equation is called principle of iteration.
Dually a morphism of coalgebras from 〈B, g〉 to 〈A, f〉 is a C-morphism h : B → A such that the following
diagram commutes:

B TB

A TA...
f

...
g

........

........

........

........

........

........

........

........

........

........

........

.................

............

Th

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

h

We say that the coalgebra 〈A, f〉 is final if it is the final object of the category of T -algebras, i.e., if for
every given coalgebra 〈B, g〉 there is a unique h such that the above diagram commutes., in this case we
denote such h with CoItg and call it the coiteratively defined morphism with step function g.
If exists, the final T -coalgebra is unique and denoted with 〈νT, outT 〉, so that CoItg : B → νT and

outT ◦CoItg = F (CoItg) ◦ g (2)

this equation is called principle of coiteration.

Proposition 1. inT , outT are isomorphisms, therefore there exist inverse morphisms inT
−1, outT

−1 such
that inT

−1 ◦ inT = IdTµT and outT ◦ outT
−1 = IdνT . These equations are called the principle of inductive

and coinductive inversion respectively.

Proof. Straightforward. �

The extended (co)induction principles will be justified by means of (co)recursive algebras:

4 TITLE WILL BE SET BY THE PUBLISHER

Definition 3. Define ΠD : C → C as ΠDC := C ×D. We say that the T -algebra 〈A, f〉 is recursive if
for every TΠA-algebra 〈B, g〉 there exists a morphism h : A → B such that:

T (A×B) B

TA A...
f

..
g

..
...
.........
...

T 〈Id, h〉

..
...
.........
...

h

(3)

Set ΣD : C → C with ΣDC := C + D. We say that the T -coalgebra 〈A, f〉 is corecursive if for every
TΣA-coalgebra 〈B, g〉 there exists a morphism h : B → A such that:

B T (A + B)

A TA...
f

..
g

........

........

........

........

........

........

........

........

........

........

........

.................

............

T [Id, h]

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

h

(4)

Proposition 2. 〈µT, inT 〉 is recursive and 〈νT, outT 〉 is corecursive.

Proof. Straightforward.
�

For the cases of the initial algebra and the final coalgebra, the h that makes diagrams (3), (4) commute
is denoted Recg,CoRecg respectively and we refer to them as the (co)recursively defined morphism with
step function g, so that we have Recg : µT → B, CoRecg : B → νT such that the following principles
hold:

• Principle of Primitive Recursion

Recg ◦ inT = g ◦ T (〈Id,Recg〉) (5)

• Principle of Primitive Corecursion

outT ◦CoRecg = T ([Id,CoRecg]) ◦ g (6)

2.3. Dialgebras

The concept of dialgebra, introduced in [8], is a straightforward generalization of (co)algebras with
stronger expressive power (see [20]). With dialgebras we can represent products, coproducts and even
exponential objects (see [4]). We will serve later from this concept to justify the clausular feature of one
type system.

Definition 4. Let F,G : C → D covariant functors between two categories C,D. A F,G-dialgebra is a
pair 〈A, f〉 where A is a C-object and f : FA → GA is a D-morphism.

Definition 5. A morphism between two F,G-dialgebras 〈A, f〉, 〈B, g〉 is a C-morphism h : A → B such
that:

FB

FA GA

GB

...
f

...
g

..
...
.........
...

Fh

..
...
.........
...

Gh

Observe that if I is the identity functor then a T, I-dialgebra 〈A, f〉 is a T -algebra and an I, T -dialgebra
is a T -coalgebra.

TITLE WILL BE SET BY THE PUBLISHER 5

We are specially interested in dialgebras where the functors F,G : C → Cn are of the form

F ≡ 〈F1, . . . , Fn〉 G ≡ 〈I, . . . , I〉

with Fi : C → C.
The final G, F -dialgebra, if exists, will be denoted with 〈ν(F1, . . . , Fn), outn〉
The finality of ν(F1, . . . , Fn) is given by the following diagram, where V := ν(F1, . . . , Fn)

〈B, . . . , B〉 〈F1B, . . . , FnB〉

〈F1V, . . . , FnV 〉〈V, . . . , V 〉

..
g

...
outn

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

............

〈h, . . . , h〉

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....................

............

〈F1h, . . . , Fnh〉

where h : B → V is the unique function such that:

outn ◦〈h, . . . , h〉 = 〈F1h, . . . , Fnh〉 ◦ g

Observing that the morphisms outn, g are neccesarily of the form

outn = 〈outn,1, . . . , outn,n〉 g = 〈g1, . . . , gn〉.

The previous diagram can be splitted into the following n-diagrams, denoting the unique h above with
CoItng .

B FiB

Fi

(
ν(F1, . . . , Fn)

)
ν(F1, . . . , Fn)

..
gi

..
outn,i

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.............

............

CoItng

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.............

............

Fi(CoItng)

outn,i ◦CoItng = Fi(CoItng) ◦ gi (7)
These equations represent the coiteration principle on dialgebras
Analogously corecursion is introduced by the following n-diagrams :

B Fi

(
ν(F1, . . . , Fn) + B

)

Fi

(
ν(F1, . . . , Fn)

)
ν(F1, . . . , Fn)

..
gi

..
outn,i

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.............

............

CoRecn
g

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.............

............

Fi

(
[Id,CoRecn

g]
)

outn,i ◦CoRecn
g = Fi

(
[Id,CoRecn

g]
)
◦ gi (8)

This equations represent the principle of primitive corecursion on dialgebras
Finally the coinductive inversion principle is given by this equations:

outk ◦ out−1
k = Id〈F1V,...,FnV 〉 (9)

6 TITLE WILL BE SET BY THE PUBLISHER

Similarly denoting with 〈µ(F1, . . . , Fn), inn〉 the initial F,G-dialgebra we arrive to the following dia-
grams:

FiB B

µ(F1, . . . , Fn)Fi

(
µ(F1, . . . , Fn)

)

...
gi

...
inn,i

...
...
.........
...

Fi(Itng)

...
...
.........
...

Itng

representing the iteration principle:

Itng ◦ inn,i = gi ◦ Fi(Itng) (10)

Fi

(
µ(F1, . . . , Fn)×B

)
B

µ(F1, . . . , Fn)Fi

(
µ(F1, . . . , Fn)

)

...
gi

...
inn,i

...
...
.........
...

Fi

(
〈Id,Recn

g 〉
)

...
...
.........
...

Recn
g

representing the recursion principle

Recn
g ◦ inn,i = gi ◦ Fi

(
〈Id,Recn

g 〉
)

(11)

Finally the inductive inversion principle is given by:

in−1
k ◦ ink = Id〈µ(F1,...,Fn),...,µ(F1,...,Fn)〉 (12)

2.4. From Categories to Types

Our goal is to define extensions of system F with type constructors for initial algebras and final
coalgebras. To do this we need to see the type system as a category C. Pragmatically, types will be objects,
functions from one type to another will be morphisms, composition will be the usual function composition
g◦f := λz.g(fz), and the commutative diagrams presented above will generate the operational semantics
which will allow us to program in the system. Such categories of types and its features are well-known,
see for example [3], here we only assume its existence.
A functor F : C → C is then a transformation between types. We are specially interested in functors
depending on a type variable X mapping a type B to a type F [X := B], which will be denoted by
λXF abstracting the type variable X. It is understood that (λXF)B means F [X := B]. Note that
the systems developed in this paper are not higher-order and therefore abstractions like λXF will not
be part of their official syntax. Our aim is to define type systems with (co)inductive types representing
initial algebras and final coalgebras of functors λXF , denoted µXF , respectively νXF . Observe than
an expression λXF is not immediately a functor because we only know its action on objects (types) but
not on morphisms.
Type systems handling some kind of recursive or (co)inductive types usually require the syntactical
condition of X ocurring only on positive positions in F to allow the construction of the types µXF, νXF
(See for example [5–7,25]). Such condition guarantees the functoriality or monotonicity of F on function
types. In our treatment we prefer to follow [11, 12] and use full monotonicity instead: the functoriality
of λXF on morphisms is represented internally by means of a term map : F mon X in a given context,

TITLE WILL BE SET BY THE PUBLISHER 7

where its type, defined as F mon X := ∀X∀Y.(X → Y) → F → F [X ::= Y], expresses the fact that the
functor λXF is monotone (covariant) with respect to X. Such terms are called monotonicity witnesses.
Therefore a functor in our framework is a pair 〈λXF, map〉 where map is a term of type F mon X (in a
given context). This way of defining functors is reminiscent of the way functors are defined in functional
programming languages like Haskell, where this concept is captured by the following class definition:

class Functor f where
fmap :: (a -> b) -> f a -> f b

Therefore a functor is not only a function f between categories but a pair composed of a function f
and a mapping fmap who plays the role of the functor on morphisms.

3. A Type System for (Co)algebras

In this section we present the system MICT, which will model initial algebras and final coalgebras
using inductive and coinductive types respectively.

3.1. Definition of the system

Extend system F as follows:
• Types:

A,B, C, F,G ::= . . . | µXF | νXF

• Terms:

t, r, s, m ::= . . . | It(m, s, t) | Rec(m, s, t) | in t | CoIt(m, s, t) | CoRec(m, s, t) | out t | out−1(m, t)

• Typing rules:

Γ ` t : F [X := µXF]
Γ ` in t : µXF

(µI)

Γ ` t : µXF
Γ ` m : F mon X
Γ ` s : F [X := B] → B

Γ ` It(m, s, t) : B
(µE)

Γ ` t : µXF
Γ ` m : F mon X
Γ ` s : F [X := µXF ×B] → B

Γ ` Rec(m, s, t) : B
(µE+)

Γ ` s : B → F [X := B]
Γ ` m : F mon X
Γ ` t : B

Γ ` CoIt(m, s, t) : νXF
(νI)

Γ ` s : B → F [X := νXF + B]
Γ ` m : F mon X
Γ ` t : B

Γ ` CoRec(m, s, t) : νXF
(νI+)

Γ ` t : F [X := νXF]
Γ ` m : F mon X

Γ ` out−1(m, t) : νXF
(νIi)

Γ ` r : νXF

Γ ` out r : F [X := νXF]
(νE)

8 TITLE WILL BE SET BY THE PUBLISHER

• Operational semantics: given by the one-step β-reduction relation t →β t′ defined as the closure
of the following axioms under all term formers.

It(m, s, in t) 7→β s
(
m

(
λx.It(m, s, x)

)
t
)

Rec(m, s, in t) 7→β s
(
m

(
〈Id, λz.Rec(m, s, z)〉

)
t
)

out CoIt(m, s, t) 7→β m
(
λz.CoIt(m, s, z)

)
(st)

out CoRec(m, s, t) 7→β m
(
[Id, λx.CoRec(m, s, x)]

)
(st)

out out−1(m, t) 7→β m(λzz)t

where Id := λx.x and for given f : A → B, g : C → B we define [f, g] : A + C → B as
[f, g] := λz.case(z, x.fx, y.gy). Analogously for f : B → A, g : B → C, 〈f, g〉 : B → A × C is
defined as 〈f, g〉 := λz.〈fz, gz〉.

As usual the transitive closure of →β is denoted by →+
β and the reflexive-transitive closure by

→?
β .

These reduction rules correspond to the (co)iteration and (co)recursion principles obtained categori-
cally in section 2.2, we can say that the rules are flat versions of the diagrams. The rule involving the
out−1 constructor deserves some explanation, being out and out−1 inverses in the categorical setting it
may seem strange not to define the rule directly as out out−1(m, t) 7→β t. This naive rule is ruled out as
it destructs the termination of the system which can easily be seen as follows:
Define T := νX.X → 1,m := λfλxλy.?, ω := λx.(outx)x, Ω := ω(out−1(m,ω)). We have the typings
` m : (X → 1) mon X, ` ω : T → 1,` out−1(m,ω) : T and ` Ω : 1. With the rule out out−1(m, t) 7→β t
we get Ω →+

β Ω:
Ω →β (out out−1(m,ω))(out−1(m,ω)) →β ω(out−1(m,ω)) ≡ Ω

Therefore we rule out such reduction. This phenomen was originally noticed in [13] for fixed-point types.

The reader can notice that there is no rule corresponding to the inverse of the in morphism. Later we
will discuss this ommision.

3.2. Programming in MICT

Given an inductive type µXF we can program functions

g : µXF → B

using iteration or recursion as the operational semantics direct give us a nice reduction behavior.
If we define g := λz.It(m, s, z) for given monotonicity witness m and step-function s the equation

g(inx) = s
(
m(g)(x)

)
holds, in the sense that g(inx) →+

β s
(
m(g)x

)
Analogously primitive recursion provides a mean to program functions g : µXF → B which reduce as

g(inx) →+
β s

(
m(〈Id, g〉)(x)

)
In this case g is defined as g := λz.Rec(m, s, z).

In a dual way given a coinductive type νXF we can program functions

g : B → νXF

by coiteration and corecursion as follows:
• If g := λx.CoIt(m, s, x) then

out g(x) →+
β m(g)(s(x))

• If g := λx.CoRec(m, s, x) then

out g(x) →+
β m([Id, g])(s(x))

TITLE WILL BE SET BY THE PUBLISHER 9

For an arbitrary inductive type µXF we denote the function λx. inx simply with in : F [X := µXF] →
µXF . Analogously out : νXF → F [X := νXF] denotes the term λx. outx. The functions in and out play
the role of encoded constructors and destructors respectively. This should be clear from the following
examples.

Example 1 (The Unit Type). We will constantly need This type whose unique inhabitant is denoted by
? and it is defined as 1 := ∀X.X → X. Later we will give a coinductive definition of 1. The unit type
is mostly useful to define basic objects and to handle errors, in a sum type such as 1 + A it is useful to
define an error constant error := inl ? such that error : 1 + A, this will be done in some of the examples
below. The reader can observe that 1 + A is essentially the Haskell type maybe A.

Example 2 (The natural numbers). Define nat := µX.1 + X with in : 1 + nat → nat

• Canonical monotonicity witness: map := λfλx.case(x, u. inlu, v. inr fv).
In this and further examples we define so-called canonical witnesses which are automatically
defined depending on the syntactical form of the type F .

• Constructors:
– Zero: 0 : nat, 0 := in(inl ?)
– Succesor function: suc : nat → nat, suc := λn. in(inr n)

• Destructors:
– Predeccesor function: pred : nat → 1 + nat, such that pred 0 = error, pred(suc n) = inr n

pred := λn.Rec(map, λy.case(y, u. inlu, v. inr(fst v)), n)
• Some functions on nat:

– sum : nat → nat → nat, sum := λnλz.It(map, [λxn, suc], z).
– prod : nat → nat → nat, prod := λnλz.It(map, [λx.sum xn], z).

Example 3 (Finite lists over A). Define list(A) := µX.1 + A×X with in : 1 + A× list(A) → list(A)
• Canonical monotonicity witness: map := λfλx.case(x, u. inlu, v. inr〈fst v, f snd v〉)
• Constructors:

– Empty list: nil : list(A), nil := in(inl ?)
– Cons function: cons : A× list(A) → list(A), cons := λx. in(inr x)

• Destructors:
– Head function: head : list(A) → 1 + A such that head nil = error, head(cons〈a, `〉) = inr a

head := λz.Rec(map, λy.case(y, u. inlu, v. inr(fst v)), z)
– Tail function: tail : list(A) → 1 + list(A) such that tail nil = error, tail(cons〈a, `〉) = inr `

tail := λz.Rec(map, λy.case(y, u. inlu, v. inr(fst(snd v))), z)
• Some funcions on list(A):

– Append: app : list(A) → list(A) → list(A),
app := λz.It(map, [λyλww, λpλx, cons〈fst p, (snd p)x〉], z)

– Length: length : list(A) → nat, length := λzIt(map, [λx.0, λp. suc(snd p)], z)
– Reverse: rev : list(A) → list(A), rev := λzIt(map, [λx.nil, λp. app (snd p)(cons〈fst p, nil〉)], z))

Example 4 (Unlabelled binary trees). Define BinTree := µX.1+X×X with in : 1+BinTree×BinTree →
BinTree

• Canonical monotonicity witness: map := λfλx.case(x, u. inlu, v. inr〈f(fst v), f(snd v)〉)
• Constructors:

– node : BinTree node := in(inl ?)
– makebt : BinTree× BinTree → BinTree, makebt := λx. in(inr x)

• Destructor: strees : BinTree → 1 + BinTree such that strees node = error, strees makebt 〈t1, t2〉 =
inr〈t1, t2〉
strees := λx.Rec(map, λy.case(y, u. inlu, v. inr〈fst(fst v), fst(snd v)〉), x)

• Some functions on BinTree
– nn : BinTree → nat returns the number of nodes given by

nn node = 1, nn(makebt〈t1, t2〉) = suc(sum (nn t1) (nn t2)).

nn := λx.It(map, λy.case(y, u.1, v. suc(sum(fst v)(snd v)), x)

Example 5 (Unlabelled A-branching well-founded trees with succesor). WFTreeSA := µX.1+X +(A →
X) with constructors

10 TITLE WILL BE SET BY THE PUBLISHER

• node : WFTreeSA, node := in(inl ?)
• succ : WFTreeSA → WFTreeSA succ := λx. in(inr(inlx))
• makewft : (A → WFTreeSA) → WFTreeSA makewft := λf. in(inr(inr f))

The particular instance O := WFTreeS nat rises the type of Brouwer ordinals or Kleene’s O.

Example 6 (Streams (infinite lists) over A). stream(A) := νX.A × X with out : stream(A) → A ×
stream(A)

• Canonical monotonicity witness: map := λfλx.〈fst x, f sndx〉
• Destructors:

– head : stream(A) → A, head := λx. fst(outx)
– tail : stream(A) → stream(A), tail := λx. snd(outx)

• Constructor cons : A× stream(A) → stream(A)
• Some functions:

– cnt : A → stream(A) giving a stream of constants
head(cnt a) = a, tail(cnt a) = cnt a
cnt := λzCoIt(map, λy.〈y, y〉, z)

– from : nat → stream(nat) returning the stream of naturals from the given one
head(from n) = n, tail(from n) = from(suc n)
from := λzCoIt(map, λy.〈y, suc y〉, z)

– mapstr : (A → B)× stream(A) → stream(B) returning the stream resulting of applying f to
the elements in a given stream.
head(mapstr〈f, s〉) = f (head s), tail(mapstr〈f, s〉) = mapstr〈f, tail s〉
mapstr := λzCoIt(map, λp.〈(fst p)(head(snd p)), 〈fst p, tail(snd p)〉〉, z)

Of course it would be more elegant to give a curried version of mapstr. From now on, whenever possible,
we will give only curried functions.

Example 7 (Conatural numbers (the ordinal ω + 1)). conat := νX.1 + X

• Canonical monotonicity witness: map := λfλx.case(x, u. inl ?, v. inr(f v))
• Destructor: pred : conat → 1 + conat, pred := out.

Observe that this is the predeccesor function with error such that pred 0 = error
• Constructors:

– Zero 0 : conat, 0 := out−1(map, inl ?)
– Succesor suc : conat → conat, suc := λn. out−1(map, inr n)
– Omega: to define the ordinal ω we first define a global element of conat, ω† : 1 → conat by

coiteration as: ω† := λx.CoIt(map, inr, x). Omega is then defined as ω := ω†?. With this
definition we have pred(suc ω) →? inr ω.

• Some functions on conat:
– Sum of conaturals: the sum ⊕ is destructed as follows:

pred(0⊕ 0) = error pred(0⊕ (suc m)) = 0⊕m pred((suc n)⊕m) = n⊕m

We program an uncurried version ⊕ : conat× conat → conat as ⊕ := λp.CoIt(map, s, p),
where the step function s : conat× conat → 1 + conat× conat is such that:

s 〈x, y〉 =

 error if predx = pred y = error
inr 〈x′, y〉 if predx = inr x′

inr 〈x, y′〉 if predx = error, pred y = inr y′

– Product of conaturals: such that n⊗m is the usual product of naturals and n⊗ω = ω⊗n = ω.
A definition analogous to the sum above is obtained by coiteration with the following step
function:

s 〈x, y〉 =

 error if predx = error
inr 〈x′, y〉 if predx = inr x′

inr 〈x, y′〉 if predx = inr x′, predx′ = error, pred y = inr y′

Example 8 (Finite and infinite lists over A). FinInfList A := νX.1 + A×X with destructor
• ht : FinInfList A → 1 + A× FinInfList A, ht := out

TITLE WILL BE SET BY THE PUBLISHER 11

Observe that with this definition it is inelegant to define the usual destructors head and tail, for we
need a case analysis. This problem can be avoided if we define instead the type as FinInfList A := νX.(1+
A)× (1 + X). This definition yields an easy definition of destructors: head := fst ◦ out, tail := snd ◦ out.
However we still need to work with projections.

From all the above examples we can observe the heavy use of injections and projections which compli-
cate both the definitions of map witnesses and of functions in general, for the constructors or destructors
of a type are encoded and not available directly. After the proof of strong normalization of this system
we will present an improved system which allows to express directly the constructors and destructors,
and therefore modularizes the definition of types and functions.

3.3. A Word on Positivity

The reader can confirm that the above examples are in fact positive, that is, the variable X occurs
only on positive positions in the type F . An immediate question arises: what are then the advantages of
using full monotonicity ?

Above all, positive systems are incompatible with Curry-style in the following sense: In a positive
system a functor is a pair 〈λXF, mapλXF 〉 where X occurs only positive in F and the monotonicity
witness is fixed and defined according to the shape of F , esentially by the rules given in appendix B.
Observe that this term is annotated by the type expression λXF .The (co)inductive types are only allowed
if the positivity restriction holds, therefore there is no neccesity to attach the witness in the typing rules.
For example the (µE) rule becomes

Γ ` t : µXF
Γ ` s : F [X := B] → B

Γ ` It(s, t) : B

and the corresponding reduction rule becomes:

It(s, in t) 7→β s
(
map

(
λx.It(s, x)

)
t
)

But there is no way to recover the specific term map only from the terms. It is mandatory either to look
for the adequate instance of (µE) or to annotate some term to recover the map term. In the first case we
would get a conditional term rewrite system very hard to handle from the metatheorical point of view.
In the second case we would obviously get a Church-style system, and the rule becomes, for instance

ItµXF (s, in t) 7→β s
(
mapλXF

(
λx.It(s, x)

)
t
)

Other answers in favor of monotonicity are:
• Specific monotonicity witnesses are not involved in proofs, we can even have hypothetical mono-

tonicity, i.e. just an additional assumption x : F mon X in our context. Therefore the generality
of our approach simplifies proofs.

• For higher-order systems there is no fixed concept of positivity. With full monotonicity we can
generalize directly the systems presented in this work, this has been done in [14], [1]. Moreover,
sometimes different witnesses are useful for programming, see the example on power list reverse
in [1].

3.4. MICT is safe

We prove the safety of our system by proving termination and type-preservation.

3.4.1. Strong Normalization

In this section we show termination of the type system by showing directly that every typable term
in MICT strongly normalizes by means of a variation of the well-known Tait’s method using so-called
saturated sets. This method characterizes the typable strongly normalizing terms in a syntax-directed
way and modularizes in a convenient way the normalization proof. The proof presented here, specifically

12 TITLE WILL BE SET BY THE PUBLISHER

the constructions on saturated sets, is based in proofs given in [11] for related inductive type systems in
Church-style. The coinductive constructions are, to our knowledge, new.

Definition 6. A term t is strongly normalizing with respect to a reduction relation → if there is no
infinite reduction sequence t → t1 → t2 → Equivalently, the set sn of strongly normalizing terms can
be defined inductively as follows:

For all t′, t → t′implies t′ ∈ sn

t ∈ sn

The syntactical concept of elimination is central to our proof.

Definition 7. Let ? be a new symbol. An elimination is an expression of one of the following forms:

?s, case(?, x.t, y.r), fst ?, snd ?, It(m, s, ?), Rec(m, s, ?), out ?

eliminations are denoted with the letter e.

Definition 8. Multiple eliminations are defined as follows:

E ::= ? | e[? := E]

where the substitution e[? := E] is defined as if ? were a term variable. From now on we will use E[r] to
denote E[? := r].

Definition 9. The set SN is inductively defined as follows:

x ∈ SN

E[x], s ∈ SN

E[x]s ∈ SN

E[x], s, t ∈ SN

case(E[x], x.s, y.t) ∈ SN

E[x] ∈ SN

fst(E[x]) ∈ SN

E[x] ∈ SN

snd(E[x]) ∈ SN

r ∈ SN

λxr ∈ SN

E
[
r[x := s]

]
, s ∈ SN

E[(λxr)s] ∈ SN

t ∈ SN

inl t ∈ SN

t ∈ SN

inr t ∈ SN

E
[
r[x := t]

]
, s ∈ SN

E[case(inl t, x.r, y.s)] ∈ SN

E
[
s[y := t]

]
, r ∈ SN

E
[
case(inr t, x.r, y.s)

]
∈ SN

r, s ∈ SN

〈r, s〉 ∈ SN

E[r], s ∈ SN

E[fst〈r, s〉] ∈ SN

E[s], r ∈ SN

E[snd〈r, s〉] ∈ SN

m, s, E
[
x
]
∈ SN

It(m, s, E
[
x
]
) ∈ SN

m, s, E
[
x
]
∈ SN

Rec(m, s, E
[
x
]
) ∈ SN

E
[
x
]
∈ SN

outE
[
x
]
∈ SN

t ∈ SN

in t ∈ SN

E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]
∈ SN

E
[
It(m, s, in t)

]
∈ SN

E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]
∈ SN

E
[
Rec(m, s, in t)

]
∈ SN

m, s, t ∈ SN

CoIt(m, s, t) ∈ SN

m, s, t ∈ SN

CoRec(m, s, t) ∈ SN

m, t ∈ SN

out−1(m, t) ∈ SN

E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈ SN

E
[
out CoIt(m, s, t)

]
∈ SN

E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈ SN

E
[
out CoRec(m, s, t)

]
∈ SN

E
[
m(λzz)t

]
∈ SN

E
[
out out−1(m, t)

]
∈ SN

This definition of SN captures exhaustively the closure of terms under reduction without refering to
the reduction relation itself. Moreover it is based only on the typing rules, each expression (term or
elimination) on the conclusion of a rule can only be derived with one of the typing rules.

TITLE WILL BE SET BY THE PUBLISHER 13

Proposition 3. The defining rules of SN are sound with respect to the reduction relation. That is,
SN ⊆ sn

Proof. Several routinary inductions show that sn is closed under all the defining rules of SN. therefore
the claim follows by minimality of SN. �

Next we define saturated sets after the set SN. These sets are needed to recursively define the so-
called predicates of strong computability starting from a candidate assigment, which is an assignment of
saturated sets for type variables.

Definition 10 (Saturated Set). A set M of terms is saturated if and only if:

M⊆ SN

and if the following closure conditions hold:

E[x] ∈ SN

E[x] ∈M

E
[
r[x := s]

]
∈M s ∈ SN

E[(λxr)s] ∈M

E
[
r[x := t]

]
∈M s ∈ SN

E[case(inl t, x.r, y.s)] ∈M
E

[
s[y := t]

]
∈M r ∈ SN

E
[
case(inr t, x.r, y.s)

]
∈M

E[r] ∈M s ∈ SN

E[fst〈r, s〉] ∈M
E[s] ∈M r ∈ SN

E[snd〈r, s〉] ∈M

E
[
s
(
m

(
λx.It(m, s, x)

)
t
)]
∈M

E
[
It(m, s, in t)

]
∈M

E
[
s
(
m

(
〈Id, λx.Rec(m, s, x)〉

)
t
)]
∈M

E
[
Rec(m, s, in t)

]
∈M

E
[
m

(
λz.CoIt(m, s, z)

)
(st)

]
∈M

E
[
out CoIt(m, s, t)

]
∈M

E
[
m

(
[Id, λz.CoRec(m, s, z)]

)
(st)

]
∈M

E
[
out CoRec(m, s, t)

]
∈M

E
[
m(λzz)t

]
∈M

E
[
out out−1(m, t)

]
∈M

the set of saturated sets will be denoted with SAT.

Proposition 4. SN ∈ SAT and SAT is closed under intersection.

Proof. Straightforward �

Definition 11. Given a set of terms M we define the saturated closure of M as follows:

cl(M) :=
⋂
{N ∈ SAT | M ∩ SN ⊆ N}

cl(M) is the least saturated superset of M ∩ SN. Observe that M ⊆ cl(M) if and only if M ⊆ SN.
Central to the proof of strong normalization are the constructions for saturated sets corresponding to

the type constructors of the system. In order for the proof to work these constructions must be sound
with respect to the typing rules of the system. We define the constructions and prove the soundness in
the next sections.

14 TITLE WILL BE SET BY THE PUBLISHER

3.4.2. Saturated Sets for Function, Sum and Product Types

Definition 12. Given a variable x and M,N ∈ SAT we define

Sx(M,N) := {t | ∀s ∈M. t[x := s] ∈ N}

Definition 13. Given M,N ∈ SAT, we define the following sets:

M→N := cl({λxt | t ∈ Sx(M,N)})

M+N := cl({inl t | t ∈M} ∪ {inr t | t ∈ N})

M×N := cl({〈s, t〉 | s ∈M and t ∈ N})

Obviously these are saturated sets.

Proposition 5 (Soundness of the constructions). Assume M,N ∈ SAT, then
(1) If s ∈M and t ∈ N then 〈s, t〉 ∈ M×N
(2) If r ∈M×N then fst r ∈M and snd r ∈ N
(3) If t ∈M then inl t ∈M+N .
(4) If t ∈ N then inr t ∈M+N .
(5) If r ∈M+N , s ∈ Sx(M,P), t ∈ Sy(N ,P) then case(r, x.s, y.t) ∈ P
(6) If t ∈ Sx(M,N) then λxt ∈M→ N .
(7) If r ∈M→ N and s ∈M then rs ∈ N .

Proof. For part 1 set I×(M,N) = {〈s, t〉 | s ∈ M and t ∈ N}. Clearly I×(M,N) ⊆ SN and there-
fore I×(M,N) ⊆ M × N . The claim is now obvious. For part 2 set E×(M,N) = {r ∈ SN | fst r ∈
M and snd r ∈ N} ⊆ SN. We have to show that E×(M,N) is closed under the rules for saturated sets.
As example take E

[
[r[x := s]

]
∈ E×(M,N) and s ∈ SN. We have to show E[(λxr)s] ∈ E×(M,N).

E
[
[r[x := s]

]
∈ E×(M,N) implies fst(E[

[
r[x := s]

]
) ∈ M and snd(E[

[
r[x := s]

]
) ∈ N . Observe that

fst(E
[
r[x := s]

]
) ≡ (fst ?)

[
? := E

[
r[x := s]

]]
≡ (fst ?)[? := E]

[
r[x := s]

]
and that (fst ?)[? := E] is again

a multiple elimination say E′, therefore we have E′
[
r[x := s]

]
∈ M, and as s ∈ SN and M ∈ SAT we

get E′[(λxr)s] ∈ SN, i.e., fst(E[(λxr)s]) ∈M. Analogously we show that snd(E[(λxr)s]) ∈ N . Therefore
E[(λxr)s] ∈ E×(M,N). The other rules for saturated sets are proved similarly.
The remaining claims are proved analogously, here we only give the needed sets: for parts 3, 4, I+(M,N) =
{inl t | t ∈ M} ∪ {inr t | t ∈ N}. For part 5 use E+(M,N) = {r ∈ SN | ∀P ∀x∀s ∈ Sx(M,P)∀y ∀t ∈
Sy(N ,P). case(r, x.s, y.t) ∈ P}. For the claims concerning M → N take I→(M,N) := {λxt | t ∈
Sx(M,N)} and E→(M,N) := {r ∈ SN | ∀s ∈M. rs ∈ N} �

3.4.3. Saturated Sets for Inductive Types

The construction for inductive types are based on the ones given in [11] for related systems in Church-
style. Related constructions for arbitrary fixed points can be found in [15].

From now on, we fix Φ : SAT → SAT.

Definition 14. Given M ∈ SAT we define Iµ(M) := {in r | r ∈ Φ(M)} and ΨI : SAT → SAT as
ΨI(M) := cl(Iµ(M)).

As we do not assume that Φ is monotone, we cannot prove neither that ΨI is monotone. This is an
essential difference with the treatment in definition 27, page 221 in [15]. We proceed as follows. Set

mon(Φ) :=
⋂

P,Q∈SAT

(P → Q) → (Φ(P) → Φ(Q))

and define Φ⊇ : SAT → P(SN) as:

Φ⊇(M) := {t ∈ SN | ∀m ∈ mon(Φ),∀N ∈ SAT,∀s ∈M→ N .mst ∈ Φ(N)}

Lemma 1. For all P,Q,N ∈ SAT. If P ⊆ Q then Q → N ⊆ P → N .

TITLE WILL BE SET BY THE PUBLISHER 15

Proof. Assume P ⊆ Q. It suffices to show I→(Q,N)∩SN = I→(Q,N) ⊆ P → N . Take λxt ∈ I→(Q,N),
i.e., t ∈ Sx(Q,N). To show λxt ∈ P → N it suffices to prove t ∈ Sx(P,N). Therefore we take p ∈ P and
show t[x := p] ∈ N , but this is clear from t ∈ Sx(Q,N) because by assumption we also have p ∈ Q. �

Corollary 1. Φ⊇ is monotone, i.e., for all P,Q,∈ SAT, if P ⊆ Q then Φ⊇(P) ⊆ Φ⊇(Q).

Proof. Assume P ⊆ Q and take t ∈ Φ⊇(P). Take also N ∈ SAT, m ∈ mon(Φ) and s ∈ Q → N . We need
to show mst ∈ Φ(N). By the previous lemma s ∈ Q → N implies s ∈ P → N . The claim follows now
from the assumption t ∈ Φ⊇(P).

�
Next define I⊇µ (M) := {in r | r ∈ Φ⊇(M)} and Ψ⊇I : SAT → SAT as Ψ⊇I (M) := cl(I⊇µ (M))
Clearly Ψ⊇I is monotone, because so is Φ⊇, therefore the following definition is correct

µ(Φ) := lfp(Ψ⊇I).

i.e. µ(Φ) is the least fixed point of Ψ⊇I .

Lemma 2. Iµ(M) ⊆ SN and I⊇µ (M) ⊆ SN.

Proof. We show the second claim. Take t ∈ I⊇µ (M), that is, t ≡ in r with r ∈ Φ⊇(M). As Φ⊇(M) ⊆ SN
we have r ∈ SN, which by definition of SN implies in r ∈ SN, i.e., t ∈ SN.

Corollary 2. Iµ(M) ⊆ ΨI(M) and I⊇µ (M) ⊆ Ψ⊇I (M).

Proof. We proof the second claim. By definition of the closure we have I⊇µ (M)∩ SN ⊆ Ψ⊇I (M). But the
previous lemma yields I⊇µ (M) ∩ SN = I⊇µ (M). �

Definition 15. Given Φ : SAT → SAT and M∈ SAT we define

Eµ(M) :=
{

r ∈ SN
∣∣∣ ∀m ∈ mon(Φ).∀N ∈ SAT.(

∀s ∈ Φ(N) → N . It(m, s, r) ∈ N
)
∧(

∀s ∈ Φ(M×N) → N . Rec(m, s, r) ∈ N
)
}

and ΨE : SAT → SAT as
ΨE(M) := cl(Eµ(M)).

Lemma 3. Eµ(M) ∈ SAT.

Proof. Is clear that Eµ(M) ⊆ SN.
Take E[x] ∈ SN. We have to show that E[x] ∈ Eµ(M). Fix m ∈ mon(Φ),N ∈ SAT.

• Assume s ∈ Φ(N) → N .
The goal is It(m, s, E[x]) ∈ N . Observe that this term is again a multiple elimination say E′[x].
As N ∈ SAT it suffices to show that E′[x] ∈ SN. We have E[x] ∈ SN and s ∈ Φ(N) → N ⊆ SN
implies s ∈ SN, similarly m ∈ mon(Φ) ⊆ SN. Therefore all m, s, E[x] ∈ SN which by properties
of SN implies It(m, s, E[x]) ∈ SN.

• Assume s ∈ Φ(M×N) → N . The goal is Rec(m, s, E[x]) ∈ N . As in the previous case we obtain
m, s ∈ SN, therefore by properties of SN we conclude E′[x] := Rec(m, s, E[x]) ∈ SN. Therefore,
as N ∈ SAT we get E′[x] ∈ N .

The other closure rules for SAT sets are proved in a similar way. �

Corollary 3. Eµ(M) = ΨE(M).

Proof. ⊆). we have Eµ(M) = Eµ(M) ∩ SN ⊆ cl(Eµ(M)) ≡ ΨE(M).
⊇). By the previous lemma we have Eµ(M) ∈ SAT. Therefore by minimality of the closure we get
ΨE(M) ≡ cl(Eµ(M)) ⊆ Eµ(M).

�

Lemma 4. ΨI(M) ⊆M⇔ ∀t ∈ Φ(M). in t ∈M.

Proof. ⇒) Assume ΨI(M) ⊆ M, i.e., cl(Iµ(M)) ⊆ M. Take t ∈ Φ(M), this implies in t ∈ Iµ(M),
which, by corollary 2, implies in t ∈ ΨI(M) ⊆M. Therefore in t ∈M.
⇐) Assume ∀t ∈ Φ(M). in t ∈ M and take r ∈ ΨI(M) ≡ cl(Iµ(M)). Goal is r ∈ M. As M ∈ SAT
it suffices to show Iµ(M) ∩ SN ⊆ M, the goal follows by minimality of the closure. By lemma 2 we
have Iµ(M) ⊆ SN, thus we only have to show Iµ(M) ⊆ M. Take in t ∈ Iµ(M), so t ∈ Φ(M) which by
assumption implies in t ∈M. Therefore Iµ(M) ⊆M. �

16 TITLE WILL BE SET BY THE PUBLISHER

Lemma 5.
M⊆ ΨE(M) ⇔ ∀r ∈M.∀m ∈ mon(Φ).∀N ∈ SAT.(

∀s ∈ Φ(N) → N . It(m, s, r) ∈ N
)
∧(

∀s ∈ Φ(M×N) → N . Rec(m, s, r) ∈ N
)

Proof. Call �(r) to the condition on the right hand side for a given r ∈M.
⇒). Assume M ⊆ ΨE(M). We have to show �(r) for all r ∈ M. Take r ∈ M, by corollary 3 we have
M⊆ Eµ(M). Observing that Eµ(M) = {r ∈ SN| �(r)} we are done.
⇐) Assume ∀r ∈ M.�(r) and take r ∈ M, we have to show that r ∈ ΨE(M). By corollary 3 suffices to
show that r ∈ Eµ(M). We have r ∈ SN because M ⊆ SN. Moreover �(r) holds by assumption, which
implies r ∈ Eµ(M). �

Lemma 6. µ(Φ) is a pre-fixed point of ΨI . i.e., ΨI

(
µ(Φ)

)
⊆ µ(Φ)

Proof. By definition of µ(Φ) it suffices to show ΨI

(
Ψ⊇I

(
µ(Φ)

))
⊆ Ψ⊇I

(
µ(Φ)

)
, to show this we will use

the lemma 4. Take t ∈ Φ
(
Ψ⊇I

(
µ(Φ)

))
, this implies in t ∈ I⊇µ

(
Ψ⊇I

(
µ(Φ)

))
⊆ Ψ⊇I

(
Ψ⊇I

(
µ(Φ)

))
, the last

inclusion given by corollary 2. Therefore by definition of µ(Φ) we conclude in t ∈ Ψ⊇I
(
µ(Φ)

)
. �

Lemma 7. µ(Φ) is a post-fixed point of ΨE. i.e., µ(Φ) ⊆ ΨE(µ(Φ))

Proof. Our goal is µ(Φ) ⊆ ΨE

(
µ(Φ)

)
. To prove this we will use extended induction on µ(Φ). Therefore

the goal becomes Ψ⊇I
(
µ(Φ) ∩ΨE

(
µ(Φ)

))
⊆ ΨE

(
µ(Φ)

)
.

Set L := µ(Φ), L′ := L∩ΨE(L). The goal is Ψ⊇I (L′) ⊆ ΨE(L). By monotonicity of the closure it suffices
to show I⊇µ (L′) ⊆ Eµ(L). Take t ∈ I⊇µ (L′), i.e., t ≡ in r with r ∈ Φ⊇(L′). We need to show in r ∈ Eµ(L).
First observe that in r ∈ SN because r ∈ Φ⊇(L′) ⊆ SN and by properties of SN. Next we have to prove
that �(in r) (cf. proof of lemma 5), so fix m ∈ mon(Φ) and N ∈ SAT.

• Take s ∈ Φ(N) → N . We want to show that It(m, s, in r) ∈ N . Using that N ∈ SAT, it
suffices to show that s

(
m

(
λx.It(m, s, x)

)
r
)
∈ N . As s ∈ Φ(N) → N we only have to show

m
(
λx.It(m, s, x)

)
r ∈ Φ(N) but observing that r ∈ Φ⊇(L′) we only have to show that m ∈

mon(Φ),N ∈ SAT and λx.It(m, s, x) ∈ L′ → N . The first two claims are given and to prove the
last one we will show that It(m, s, x) ∈ Sx(L′,N). Take q ∈ L′ we prove It(m, s, x)[x := q] ∈ N ,
w.l.o.g. x /∈ FV (m, s) therefore we show It(m, s, q) ∈ N . We have L′ ⊆ ΨE(L) = Eµ(L), the
equality given by corollary 3. Therefore q ∈ Eµ(L) which immediately yields It(m, s, q) ∈ N .

• Take s ∈ Φ(L × N) → N . We need to prove Rec(m, s, in r) ∈ N . By a similar reason as the
previous case we only have to show

λz.〈(λyy)z, (λx.Rec(m, s, x))z〉 ∈ L′ → L×N .

It suffices to prove 〈(λyy)z, (λx.Rec(m, s, x))z〉 ∈ Sz(L′,L × N), so we take q ∈ L′ and show
〈(λyy)q, (λx.Rec(m, s, x))q〉 ∈ L ×N . For this we prove two things:

– (λyy)q ∈ L. Clearly we have λyy ∈ L → L and as q ∈ L′ ⊆ L we get (λyy)q ∈ L.
– (λx.Rec(m, s, x))q ∈ N . It suffices to show λx.Rec(m, s, x) ∈ L′ → N , that is Rec(m, s, x) ∈

Sx(L′,N). Take p ∈ L′, we will show Rec(m, s, x)[x := p] ∈ N , where w.l.o.g. x /∈ FV (m, s)
so we prove Rec(m, s, p) ∈ N . We have L′ ⊆ ΨE(L) = Eµ(L), the equality given by corollary
3. Therefore p ∈ Eµ(L) which immediately yields Rec(m, s, p) ∈ N .

Therefore �(in r) and we are done. �

3.4.4. Saturated Sets for Coinductive Types

These constructions for saturated sets are, to our knowledge, new.

Definition 16. Given Φ : SAT → SAT,M∈ SAT, define

Iν(M) := {CoIt(m, s, t) | m ∈ mon(Φ), s ∈ N → Φ(N), t ∈ N ,N ∈ SAT}
∪ {CoRec(m, s, t) | m ∈ mon(Φ), s ∈ N → Φ(M+N), t ∈ N ∈ SAT}
∪ {out−1(m, t) | m ∈ mon(Φ), t ∈ Φ(M)}

and ΨI : SAT → SAT with ΨI(M) := cl(Iν(M)).

Lemma 8. Iν(M) ⊆ SN.

TITLE WILL BE SET BY THE PUBLISHER 17

Proof. Take r ∈ Iν(M). We have three cases:
• r ≡ CoIt(m, s, t). We have m, s, t ∈ SN because they belong to some saturated set. Therefore by

properties of SN we also have CoIt(m, s, t) ∈ SN.
• r ≡ CoRec(m, s, t). Similarly m, s, t ∈ SN implies CoRec(m, s, t) ∈ SN.
• r ≡ out−1(m, t). Again m, t ∈ SN implies out−1(m, t) ∈ SN.

�

Corollary 4. Iν(M) ⊆ ΨI(M).

Proof. By definition of closure we have Iν(M) ∩ SN ⊆ cl(Iν(M)) which, by the previous lemma is the
same as Iν(M) ⊆ cl(Iν(M)) ≡ ΨI(M). �

Definition 17. Given Φ : SAT → SAT,M ∈ SAT, define Eν(M) := {r ∈ SN | out r ∈ Φ(M)} and
ΨE : SAT → SAT, with ΨE(M) := cl(Eν(M))

Again we do not know if ΨE is monotone and proceed as follows: define Φ⊆ : SAT → SAT as
Φ⊆(M) := cl(A(M)) with

A(M) := {mqr | m ∈ mon(Φ), q ∈ N →M, r ∈ Φ(N) for some N ∈ SAT}

Lemma 9. For all M∈ SAT, A(M) ⊆ Φ(M).

Proof. Take t ∈ A(M), i.e.,t ≡ mqr with m ∈ mon(Φ), q ∈ N → M, r ∈ Φ(N) for some N ∈ SAT.
m ∈ mon(Φ) ⇒ m ∈ (N → M) → (Φ(N) → Φ(M)) ⇒ mq ∈ Φ(N) → Φ(M) ⇒ mqr ∈ Φ(M), i.e.
t ∈ Φ(M). �

Corollary 5. For all M∈ SAT, A(M) ⊆ SN.

Proof. A(M) ⊆ Φ(M) ⊆ SN. �

Corollary 6. For all M∈ SAT, Φ⊆(M) ⊆ Φ(M).

Proof. As Φ(M) ∈ SAT, by minimality of the closure it suffices to show A(M)∩ SN ⊆ Φ(M), but by the
previous corollary we only need to show A(M) ⊆ Φ(M) but this is the statement of the lemma. �

Corollary 7. For all M∈ SAT, A(M) ⊆ Φ⊆(M).

Proof. A(M) = A(M) ∩ SN ⊆ cl(A(M)) ≡ Φ⊆(M). �

Lemma 10. For all P,Q,N ∈ SAT. If P ⊆ Q then N → P ⊆ N → Q.

Proof. It suffices to show that I→(N ,P) ∩ SN = I→(N ,P) ⊆ I→(N ,Q). Take λxt ∈ I→(N ,P), i.e.,
t ∈ Sx(N ,P). Therefore we have ∀s ∈ N .t[x := s] ∈ P which by assumption implies ∀s ∈ N .t[x := s] ∈ Q.
That is t ∈ Sx(N ,Q) ⇒ λxt ∈ I→(N ,Q). �

Corollary 8. Φ⊆ is monotone, i.e., for all P,Q ∈ SAT, if P ⊆ Q then Φ⊆(P) ⊆ Φ⊆(Q).

Proof. Assume P ⊆ Q. Take mqr ∈ Φ⊆(P), then m ∈ mon(Φ), q ∈ N → P, r ∈ Φ(N). q ∈ N → P
implies by the previous lemma q ∈ N → Q. Therefore we have mqr ∈ Φ⊆(Q). �
Next set E⊆ν (M) := {r ∈ SN | out r ∈ Φ⊆(M)} and define Ψ⊆E : SAT → SAT as
Ψ⊆E(M) := cl(E⊆ν (M)).

Clearly Ψ⊆E is monotone, because so is Φ⊆, therefore the following definition is valid:

ν(Φ) := gfp(Ψ⊆E).

i.e., ν(Φ) is the greatest fixed point of Ψ⊆E .

Lemma 11. Eν(M), E⊆ν (M) ∈ SAT.

Proof. We show the first part. Clearly we have Eν(M) ⊆ SN.
Take E[x] ∈ SN. Goal is E[x] ∈ Eν(M), i.e., out E [x] ∈ Φ(M). By properties of SN, E[x] ∈ SN implies
out E [x] ∈ SN, but out E [x] is a multiple elimination say E′[x] ∈ SN. Therefore, as Φ(M) ∈ SAT, we get
E′[x] ∈ Φ(M). The remaining rules are easily proved.

�

Corollary 9. Eν(M) = ΨE(M), E⊆ν (M) = Ψ⊆E(M)

18 TITLE WILL BE SET BY THE PUBLISHER

Proof. We show the first part.
⊆) We have Eν(M) ∩ SN ⊆ cl(Eν(M)), which, as Eν(M) ⊆ SN, is the same as Eν(M) ⊆ cl(Eν(M)) ≡
ΨE(M).
⊇). By the previous lemma, using the minimality of the closure we have ΨE(M) = cl(Eν(M)) ⊆
Eν(M). �

Lemma 12. M⊆ ΨE(M) ⇔ ∀t ∈M. out t ∈ Φ(M)

Proof. ⇒) Take t ∈ M, by assumption we get t ∈ ΨE(M), and by the previous corollary t ∈ Eν(M),
which by definition of Eν(M) yields out t ∈ Φ(M).
⇐) Take t ∈ M, by assumption we get out t ∈ Φ(M). On the other hand, as M ⊆ SN, we get t ∈ SN.
Therefore t ∈ Eν(M), which by the previous corollary is the same as t ∈ ΨE(M). �

Lemma 13.

ΨI(M) ⊆M⇔ ∀m ∈ mon(Φ).∀N ∈ SAT.(
∀t ∈ N ∀s ∈ N → Φ(N). CoIt(m, s, t) ∈M

)
∧(

∀t ∈ N ∀s ∈ N → Φ(M+N). CoRec(m, s, t) ∈M
)
∧(

∀t ∈ Φ(M). out−1(m, t) ∈M
)

Proof. ⇒). Assume ΨI(M) ⊆M. By corollary 4 we get Iν(M) ⊆M.
Take m ∈ mon(Φ),N ∈ SAT. We prove every part of the conjunction:

• Take t ∈ N , s ∈ N → Φ(N). From this we get CoIt(m, s, t) ∈ Iν(M), therefore CoIt(m, s, t) ∈
M.

• Take t ∈ N , s ∈ N → Φ(M + N). Analogously to the previous case we get CoRec(m, s, t) ∈
Iν(M) ⊆M.

• Take t ∈ Φ(M). This yields out−1(m, t) ∈ Iν(M) ⊆M.
⇐) Assume the condition on the right hand side. We have ΨI(M) = cl(Iν(M)). By minimality of the
closure it suffices to show Iν(M)∩ SN ⊆M. But by lemma 8 this is the same as Iν(M) ⊆M. But this
follows immediately from the assumption and the definition of Iν(M). �

Lemma 14. ν(Φ) is a pre-fixed point of ΨI . i.e., ΨI(ν(Φ)) ⊆ ν(Φ)

Proof. We will use extended coinduction. Therefore the goal becomes

ΨI

(
ν(Φ)

)
⊆ Ψ⊆E

(
ν(Φ) ∪ΨI

(
ν(Φ)

))
Set G := ν(Φ), G′ := G ∪ ΨI(G). The goal becomes ΨI(G) ⊆ Ψ⊆E(G′). By monotonicity of the closure
it suffices to show Iν(G) ⊆ E⊆ν (G′). Assume r ∈ Iν(G). To show r ∈ E⊆ν (G′) it suffices out r ∈ Φ⊆(G′)
(r ∈ SN because Iν(G) ⊆ SN). We have three cases:

• r ≡ CoIt(m, s, t) with m ∈ mon(Φ), s ∈ N → Φ(N), t ∈ N . By properties of saturated sets
it suffices to show m

(
λz.CoIt(m, s, z)

)
(st) ∈ Φ⊆(G′) and using corollary 7 we will prove only

m
(
λz.CoIt(m, s, z)

)
(st) ∈ A(G′). We have by assumption m ∈ mon(Φ) and easily we get st ∈

Φ(N). To prove λz.CoIt(m, s, z) ∈ N → G′, we show CoIt(m, s, z) ∈ Sz(N ,G′). Taking q ∈ N
we show CoIt(m, s, z)[z := q] ≡ CoIt(m, s, q) ∈ G′. Clearly CoIt(m, s, q) ∈ Iν(G), therefore by
corollary 4 we have CoIt(m, s, q) ∈ ΨI(G) ⊆ G′.

• r ≡ CoRec(m, s, t) with m ∈ mon(Φ), s ∈ N → Φ(G + N), t ∈ N . By similar reasoning as the
previous case we only need to show

m
(
[Id, λz.CoRec(m, s, z)]

)
(st) ∈ A(G′).

We have m ∈ mon(Φ) and easily we get st ∈ Φ(G+N). Remains to show that [Id, λz.CoRec(m, s, z)] ∈
G+N → G′. We have [Id, λz.CoRec(m, s, z)] ≡ λx.case(x, y.y, z.CoRec(m, s, z)) therefore the goal
reduces to show case(x, y.y, z.CoRec(m, s, z)) ∈ Sx(G +N ,G′). So we take q ∈ G +N and prove
case(x, y.y, z.CoRec(m, s, z)) ∈ G′, which, by properties of saturated sets, reduces to the next two
claims:

– y ∈ Sy(G,G′). This holds trivially because G ⊆ G′.
– CoRec(m, s, z) ∈ Sz(N ,G′). For this we take p ∈ N and show CoRec(m, s, z)[z := p] ≡

CoRec(m, s, p) ∈ G′. Clearly we have CoRec(m, s, p) ∈ Iν(G). Therefore by corollary 4 we
have CoRec(m, s, p) ∈ ΨI(G) ⊆ G′.

TITLE WILL BE SET BY THE PUBLISHER 19

• r ≡ out−1(m, t) with m ∈ mon(Φ) and t ∈ Φ(G). By properties of saturated sets it suffices to
show m(λzz)t ∈ Φ⊆(G′). Using corollary 7 we show m(λzz)t ∈ A(G′). We have m ∈ mon(Φ) and
t ∈ Φ(G), only remains to show λzz ∈ G → G′, but this is consequence of G ⊆ G′.

�

Lemma 15. ν(Φ) is a post-fixed point of ΨE. i.e., ν(Φ) ⊆ ΨE(ν(Φ))

Proof. By lemma 12 it suffices to show ∀t ∈ ν(Φ). out t ∈ Φ
(
ν(Φ)

)
. By definition we have ν(Φ) =

Ψ⊆E
(
ν(Φ)

)
and by corollary 9 Ψ⊆E

(
ν(Φ)

)
= E⊆ν

(
ν(Φ)

)
. So take t ∈ ν(Φ) = E⊆ν

(
ν(Φ)

)
⇒ out t ∈ Φ⊆

(
ν(Φ)

)
.

Finally by corollary 6 we get out t ∈ Φ
(
ν(Φ)

)
. �

Proposition 6 (Soundness of the constructions). Given Φ : SAT → SAT the following holds.
(1) If t ∈ Φ(µ(Φ)) then in t ∈ µ(Φ).
(2) If r ∈ µ(Φ),m ∈ mon(Φ),N ∈ SAT and s ∈ Φ(N) → N then It(m, s, r) ∈ N .
(3) If r ∈ µ(Φ),m ∈ mon(Φ),N ∈ SAT and s ∈ Φ(µ(Φ)×N) → N then Rec(m, s, r) ∈ N .
(4) If t ∈ ν(Φ) then out t ∈ Φ(ν(Φ)).
(5) If N ∈ SAT, r ∈ N ,m ∈ mon(Φ) and s ∈ N → Φ(N) then CoIt(m, s, r) ∈ ν(Φ).
(6) If N ∈ SAT, r ∈ N ,m ∈ mon(Φ) and s ∈ N → Φ(ν(Φ) +N) then CoRec(m, s, r) ∈ ν(Φ).
(7) If m ∈ mon(Φ) and r ∈ Φ(ν(Φ)) then out−1(m, r) ∈ ν(Φ).

Proof. For part 1, use lemmas 6 and 4. For parts 2, 3 use lemmas 7 and 5. Part 4 follows from lemmas
15 and 12. Finally to prove parts 5, 6, 7 use lemmas 14 and 13.

�
The remainder of the proof of strong normalization follows a standard technique: first we use saturated

sets to define the computability predicates which give a semantics to the types. Then we prove substitution
and coincidence lemmas for the predicates and show that every typable term lies in the predicate of its
type and hence belongs to SN, which proves strong normalization.

Definition 18. A candidate assignment is a finite set of pairs of the form X : M where X is a type
variable and M ∈ SAT such that no type variable occurs twice. Candidate assignments are denoted with
Γ, in the expression Γ, X : M is understood that X /∈ Γ.

Definition 19 (Strong Computability Predicates). Given a type A and a candidate assigment Γ we
define the saturated set of strongly computable terms with respect to A and Γ,denoted SCA[Γ], as follows:

SCX [Γ] :=
{
M if X : M∈ Γ
SN otherwise.

SCA→B [Γ] := SCA[Γ] → SCB [Γ]

SCA+B [Γ] := SCA[Γ] + SCB [Γ]

SCA×B [Γ] := SCA[Γ]× SCB [Γ]

SC∀XA[Γ] :=
⋂
M∈SAT SCA[Γ, X : M]

SCµXA[Γ] := µ(ΦλXA
Γ)

SCνXA[Γ] := ν(ΦλXA
Γ)

where ΦλXA
Γ : SAT → SAT is defined as:

ΦλXA
Γ (M) := SCA[Γ, X : M]

Lemma 16 (Coincidence and Substitution). The following properties hold:
• If X /∈ FV (A) then SCA[Γ, X : M] = SCA[Γ].
• SCA[X:=B][Γ] = SCA[Γ, X : SCB [Γ]].

Proof. Induction on A.
�

20 TITLE WILL BE SET BY THE PUBLISHER

Lemma 17 (Main Lemma). If Γ ` r : A with Γ = {x1 : A1, . . . , xk : Ak} and for all for 1 ≤ i ≤ k we
havesi ∈ SCAi [Γ] then r[~x := ~s] ∈ SCA[Γ].

Proof. Induction on `.
�

Proposition 7. If Γ ` r : A then r ∈ SN.

Proof. Assume Γ = {x1 : A1, . . . , xk : Ak}. As the set of variables is contained in every saturated set we
have xi ∈ SCAi [∅] therefore as Γ ` r : A the main lemma yields r[~x := ~x] ∈ SCA[∅] ⊆ SN. Therefore
r ∈ SN. �

Proposition 8. MICT is strongly normalizing.

Proof. If Γ ` r : A then proposition 7 yields r ∈ SN. But by proposition 3 we have SN ⊆ sn. Therefore
r ∈ sn. �

3.4.5. Type preservation for MICT

The type-preservation or subject-reduction property is not trivial to prove due to the absence of type
annotations on terms characteristic of Curry-style systems. A detailled proof of this property will be
given for the second type system presented in this article, proof which can easily be simplified to get a
proof for the current system.

4. A Type System for Dialgebras

Here we develop the main contribution of this article, an extension of F with initial/final dialgebras
as defined in section 2.3. This time we have multiple constructors/destructors, feature which simplifies
programming and modularizes the definition of monotonicity witnesses involved in the typing rules.

4.1. Definition of the System

Extend system F as follows:
• Types:

A,B, C, F,G ::= . . . | µX(F1, . . . , Fk) | νX(F1, . . . , Fk)
Here every Fi is called a clause.

• Terms :

t, r, s, m ::= . . . | ink,i t | Itk(~m,~s, t) | Reck(~m,~s, t) |

CoItk(~m,~s, t) | CoReck(~m,~s, t) | outk,i t | out−1
k (~m,~t)

where in all cases the length of the vectors is k.
• Typing rules:

Γ ` t : Fi[X := µX(F1, . . . , Fk)]
Γ ` ink,i t : µX(F1, . . . , Fk)

(µI)

Γ ` t : µX(F1, . . . , Fk)
Γ ` mi : Fi mon X 1 ≤ i ≤ k
Γ ` si : Fi[X := B] → B 1 ≤ i ≤ k

Γ ` Itk(~m,~s, t) : B
(µE)

Γ ` t : µX(F1, . . . , Fk)
Γ ` mi : Fi mon X 1 ≤ i ≤ k
Γ ` si : Fi[X := µX(F1, . . . , Fk)×B] → B 1 ≤ i ≤ k

Γ ` Reck(~m,~s, t) : B
(µE+)

Γ ` si : B → Fi[X := B] 1 ≤ i ≤ k
Γ ` mi : Fi mon X 1 ≤ i ≤ k
Γ ` t : B

Γ ` CoItk(~m,~s, t) : νX(F1, . . . , Fk)
(νI)

TITLE WILL BE SET BY THE PUBLISHER 21

Γ ` si : B → Fi[X := νX(F1, . . . , Fk) + B] 1 ≤ i ≤ k
Γ ` mi : Fi mon X 1 ≤ i ≤ k
Γ ` t : B

Γ ` CoReck(~m,~s, t) : νX(F1, . . . , Fk)
(νI+)

Γ ` ti : Fi[X := νX(F1, . . . , Fk)] 1 ≤ i ≤ k
Γ ` mi : Fi mon X 1 ≤ i ≤ k

Γ ` out−1
k (~m,~t) : νX(F1, . . . , Fk)

(νIi)

Γ ` r : νX(F1, . . . , Fk)
Γ ` outk,i r : Fi[X := νX(F1, . . . , Fk)]

(νE)

• Operational semantics:

Itk(~m,~s, ink,i t) 7→β si

(
mi

(
λx.Itk(~m,~s, x)

)
t
)

Reck(~m,~s, ink,i t) 7→β si

(
mi

(
〈Id, λz.Reck(~m,~s, z)〉

)
t
)

outk,i CoItk(~m,~s, t) 7→β mi

(
λz.CoItk(~m,~s, z)

)
(sit)

outk,i CoReck(~m,~s, t) 7→β mi

(
[Id, λz.CoReck(~m,~s, z)]

)
(sit)

outk,i out−1
k (~m,~t) 7→β mi(λz.z)ti

This finish the definition of the system MCICT. A system of Monotone and Clausular Inductive and
Coinductive Types.

4.2. On the inverse for in

Proposition 1 on page 3 provides us with an inverse function inT
−1 which has no counterpart in the

type system MICT. This inversion principle was left out of MICT only to keep an exact correspondence
with the system MCICT where such inverse cannot be modelled in a direct way. However the principle
can be added to MICT by adding a new term constructor in−1(·, ·) ruled by:

Γ ` t : µXF
Γ ` m : F mon X

Γ ` in−1(m, t) : F [X := µXF]

with operational semantics in−1(m, in t) 7→β m(λz.z)t.

With respect to dialgebras, equation (12) on page 6 is not suitable to be represented directly in our
framework. The reason is that there is no satisfactory way to represent the tuples of objects 〈F1µ, . . . , Fkµ〉
Observe that the inverse given in page 6 is a function in−1

k :
〈
µ, . . . , µ

〉
→

〈
F1µ, . . . , Fkµ

〉
such that

in−1
k ◦〈ink,1, . . . , ink,k〉 = Id〈F1µ,...,Fkµ〉

So that we would need a rule like this:

Γ ` t :
〈
µX(F1, . . . , Fk), . . . , µX(F1, . . . , Fk)

〉
Γ ` mi : Fi mon X 1 ≤ i ≤ k

Γ ` in−1
k (~m, t) :

〈
F1[X := µX(F1, . . . , Fk)], . . . , Fk[X := µX(F1, . . . , Fk)]

〉
Of course we would need to give sense to a tuple of objects as a type, but this would complicate the

system only to be able to model this principle.
On the other hand the main application of such rule is to define inductive destructors following the

reasoning “If we have an inductive object t : µX(F1, . . . , Fk) then it was generated by a clause in−1
k t :

Fi[X := µX(F1, . . . , Fk)] for some 1 ≤ i ≤ k”. This rule is used for instance, to guarantee that if t
is a natural number then t is either 0 or a succesor suc n. Such reasoning corresponds to an inverse
in−1

k : µ → F1µ + . . . + Fkµ such that in−1
k (~m, ink,i t) = injki

(
mi(λz.z)t

)
, where injki is the canonical

ith-injection.

22 TITLE WILL BE SET BY THE PUBLISHER

We can model this kind of inverse by the rule:

Γ ` t : µX(F1, . . . , Fk) Γ ` mi : Fi mon X 1 ≤ i ≤ k

Γ ` in−1
k (~m, t) : F1[X := µX(F1, . . . , Fk)] + . . . + Fk[X := µX(F1, . . . , Fk)]

(µEi)

But the main application of this rule, namely to define destructors on inductive types, can easily be
achieved using primitive recursion, which is present in both of our systems. Therefore we will omit the
rule as it would cause more problems than profits. One of its main disadvantages being the generation
of a term inhabiting a sum type in an unusual way.

4.3. Programming in MCICT

Analogously to the previous system we can program functions with an inductive domain or coinductive
codomain. In the case of a function g : µX(F1, . . . , Fk) → A, the iteration principle ensures the existence
of a program for g if g is defined by the following recurrence equations:

g(ink,1 x) = s1 (m1 g x)
...

g(ink,k x) = sk (mk g x)

where si : Fi[X := A] → A and mi : Fi mon X, 1 ≤ i ≤ k are the fixed monotonicity witnesses used to
eliminate the type µX(F1, . . . , Fk). If these conditions hold, then the categorical machinery says that we
can define g := λz.Itk(~m,~s, z) and we will obtain the desired reduction behaviour:

g(ink,i x) →+
β si (mi g x)

Analogously primitive recursion provides a mean to program functions g : µX(F1, . . . , Fk) → A which
satisfy the following recurrence equations:

g(ink,1 x) = s1 (m1 〈Id, g〉 x)
...

g(ink,k x) = sk ((mk 〈Id, g〉 x)

with si : Fi[X := µX(F1, . . . , Fk)×A] → A. In this case g can be defined as g := λz.Reck(~m,~s, z).

In a dual way we can program a function g : A → νX(F1, . . . , Fk) which satisfy the following coiteration
equations:

outk,1(gx) = (m1 g) (s1 x)
...

outk,k(gx) = (mk g) (sk x)
where si : A → Fi[X := A] and mi : Fi mon X, 1 ≤ i ≤ k are the fixed monotonicity witnesses used to

introduce the type νX(F1, . . . , Fk). In this case the program is g := λz.CoItk(~m,~s, z)
Finally corecursion provides a mean to program functions g : A → νX(F1, . . . , Fk) which satisfy the

following equations:
outk,1(g x) = (m1 [Id, g]) (s1 x)

...
outk,k(g x) = (mk [Id, g]) (sk x)

with si : A → Fi[X := νX(F1, . . . , Fk) + A]. In this case a program is g := λz.CoReck(~m,~s, z)

Next we show some examples of programming in MCICT. The reader is invited to program more
functions and to verify the soundness of programs with respect to the operational semantics.

Example 9 (Unit and Empty Types). The two degenerated types with no clauses are the empty type
void := µX() which cannot be inhabited and the unit type 1 := νX() which unique element will be denoted,
as before, with ?.

TITLE WILL BE SET BY THE PUBLISHER 23

Example 10 (The Booleans). This very simple but useful type can be defined as bool := µX(1, 1)
• Canonical monotonicity witnesses: map1 := map2 := λfλxx
• Constructors: true := in2,1 ?, false := in2,2 ?
• Given a type A we define the conditional function

if then else : bool → A → A → A

with the following behaviour, for r, s : A:

if true then r else s = r
if false then r else s = s

This is easily defined by iteration as:

if then else := λzλxλy.It2(map1,map2, λu.x, λv.y, z)

where u 6= x, v 6= y and map1 := map2 := λfλxx.

Example 11 (The natural numbers). Define nat := µX(1, X)
• Canonical monotonicity witnesses: map1 := λfλx.x, map2 := λxx
• Constructors:

– Zero: 0 : nat, 0 := in2,1 ?
– Succesor function: suc : nat → nat, suc := in2,2

• Destructors:
– Predeccesor function: pred : nat → 1 + nat, such that

pred 0 = error, pred suc n = inr n
pred := λn.Rec2(map1,map2, λy.case(y, u. inlu, v. inr(fst v)), n)

• Some functions on nat:
– sum : nat → nat → nat, sum := λnλm.It2(map1,map2, λx.n, suc,m).
– prod : nat → nat → nat

prod := λnλm.It2(map1,map2, in2,1, λy.sum y n, m)

Example 12 (Finite lists over A). Define list(A) := µX(1, A×X)
• Canonical monotonicity witnesses: map1 := λfλxx, map2 := λfλx.〈fst x, f(sndx)〉
• Constructors:

– Empty list: nil : list(A), nil := in2,1 ?
– Cons function: cons : A× list(A) → list(A), cons := in2,2

• Destructors:
– Head function: head : list(A) → 1 + A such that head nil = error, head(cons〈a, `〉) = inr a

head := λz.Rec(map1,map2, λx. inlx, λy. inr(fst y), z)
– Tail function: tail : list(A) → 1 + list(A) such that tail nil = error, tail(cons〈a, `〉) = inr `

tail := λz.Rec(map1,map2, λx. inlx, λy. inr(fst(snd y))), z)
• Some funcions on list(A):

– Append: app : list(A) → list(A) → list(A)
app := λx.It2(map1,map2, λyλzz, λuλv. cons〈fst u, (sndu)v〉)

– Length: length : list(A) → nat
length := λx.It2(map1,map2, λx.0, λy. suc(snd y), x)

– Reverse: rev : list(A) → list(A)
rev := λx.It2(map1,map2, nil, λz.app (snd z) (cons〈fst z, nil〉), x)

– The polymorphic map function on lists: maplist : ∀X∀Y.(X → Y) → list(X) → list(Y) such
that:

maplist f nil = nil maplist f (x : xs) = (f x) : (maplist f xs)
where x : xs denotes cons〈x, xs〉. The program is:

maplist = λfλx.It2(map1,map2, λu.nil, λv.(f (fst v)) : (snd v), x)

Example 13 (Streams (infinite lists) over A). stream(A) := νX(A,X)
• Canonical monotonicity witnesses: map1 := λfλx.x, map2 := λff

24 TITLE WILL BE SET BY THE PUBLISHER

• Destructors:
– head : stream(A) → A, head := out2,1

– tail : stream(A) → stream(A), tail := out2,2

• Constructor cons : A× stream(A) → stream(A)
cons := λx.CoRec2(map1,map2, fst, λz. inl(snd z), x)

• Some functions:
– Streams of constants, cnt : A → stream(A), head(cnt a) = a, tail(cnta) = cnt a

cnt := λx.CoIt2(map1,map2, λzz, λzz, x)
– The stream of natural numbers from a given one:

from : nat → stream(nat), head(from n) = n, tail(from n) = from(suc n)
from := λx.CoIt2(map1,map2, λzz, suc, x)

– The polymorphic map function on streams:
mapstr : ∀X∀Y.(X → Y) → stream(X) → stream(Y)
head(mapstr f x) = f (headx), tail(mapstr f x) = mapstr f (tailx)
mapstr f := λzCoIt(map1,map2, λx.f (headx), tail, z)

Example 14 (Infinite A-labelled binary trees). infbtree A := νX(A,X ×X) with destructors
• rlabel : infbtree A → A, label := out2,1

• children : infbtree A → infbtree A× infbtree A, children := out2,2

Observe that the second destructor encodes together the two subtrees of a given tree and therefore the
use of some projections cannot be avoided.
A better definition would allow a direct destruction into the left and right subtrees as in the following
example.

Example 15 (Finite and infinite A-labelled binary trees).

FinInfBTree A := νX(A, 1 + X, 1 + X)

with destructors label (of the root), left subtree and right subtree.
• label : infbtree A → A, label := out3,1

• lst : infbtree A → 1 + infbtree A, lst := out3,2

• rst : infbtree A → 1 + infbtree A, rst := out3,3

Example 16 (Finite branching, A-labelled trees with potentially infinite depth). pidtree A := νX(A, list(X))
with destructors

• rlabel : pidtree A → A
• lstrees : pidtree A → list(pidtree A)

An inhabitant t : pidtree is destructed as the label of its root rlabel t and the list of its immediate subtrees
lstrees t.

• Canonical monotonicity witnesses: map1 := λfλxx, map2 := maplist
This example shows the important connection between the inductive and the coinductive part

of our system. The coinductive subsystem depends on the inductive one to be able to define the
monotonicity witness of a coinductive type. In this case the iteratively defined witness maplist for
the coinductive type pidtree A.

• The function maptree : (A → C) → pidtree A → pidtree C, mapping a function f : A → C into a
tree t : pidtree A is coiteratively defined by:

rlabel (maptree f t) = f (rlabel t)
lstrees (maptree f t) = maplist maptree (lstrees t)

A program for maptree f is:

maptree f := λx.CoIt2(map1, map2, λy.f (rlabel y), lstrees, x)

Example 17 (Deterministic automata with input alphabet Σ and output type B).

daut(Σ, B) := νX(Σ → X, B)

• Canonical monotonicity witnesses: map1 := λfλgλx.f(gx),map2 := λfλxx

TITLE WILL BE SET BY THE PUBLISHER 25

• Destructors:
– next : daut(Σ, B) → (Σ → daut(Σ, B))
– obs : daut(Σ, B) → B

This example provides the fundamentals of the coalgebraic automata theory developed in [21]. In this
setting an automata is a pair M = 〈δ, o〉 with δ : Q → Σ → Q the transition function and o : Q → B
an observation function, thus M is a Moore automata. There is no need neither for the existence of an
initial state nor for assuming that Q or Σ are finite.
The coinductive type daut(Σ, B) is inhabited essentially by behaviour functions beh(q) : Σ? → B for a
given state q ∈ Q.
We can codify such an automata by means of a function caut : Q → daut(Σ, B) defined coiterativelly:

caut := λz.CoIt2(map1,map2, δ, o, z)

destructed as follows:
next caut q = λx.caut((δq)x) obs caut q = oq

Given a behaviour function beh(q) : Σ? → B we can codify it by an inhabitant of daut(Σ, B) by means
of a function cbeh : (Σ? → B) → daut(Σ, B) given by:

cbeh := λz.CoIt2(map1,map2, λfλaλw.f(a.w), λg.g(ε), z)

where ε, a.w denote the nil and cons operations respectively on Σ?. This function is destructed as follows:

obs(cbeh beh(q)) = beh(q)(ε) next(cbeh beh(q)) = λa.cbeh
(
λw.beh(q)(a.w)

)
Other types for automata are:
• Partial automata: paut(Σ, B) := νX(Σ → 1 + X, B).

In this case the transition functions are of the form δ : Q → Σ → 1 + Q such that δ q a = error if
and only if such transition is undefined.

• Finite Deterministic Automata: Just take Q,Σ finite and B = bool.

fda(Σ) := daut(Σ, bool) = νX(Σ → X, bool)

Some functions on this type are:
– The complement of a FDA: comp : fda(Σ) → fda(Σ) destructed as:

next (compM) = next M obs (compM) = not (obs M)

– The product automata of two FDA’s: prod : fda(Σ) → fda(Σ) → fda(Σ) destructed as
follows:

next (prod M1 M2) = prod (next M1) (next M2)

According to the language we want to recognize we have different possibilites for the obser-
vation function:

obs (prod M1 M2) = (obs M1) and (obs M2) for L(M1) ∩ L(M2)

obs (prod M1 M2) = (obs M1) or (obs M2) for L(M1) ∪ L(M2)

obs (prod M1 M2) = (obs M1) and not (obs M2) for L(M1)− L(M2)

Example 18 (Potentially infinite trees with A-labelled branches).

BLTree A := νX(list(A×X))

A tree t : BLTree A is destructed by lsb : BLTree A → list(A × BLTree A), lsb := out, lsb t returns the list
of branches pendant from the root of t, i.e., returns a list of pairs of A × BLTree A consisting of a label
a : A for the branch and the list of subtrees pendant from that branch in order from left to right.

26 TITLE WILL BE SET BY THE PUBLISHER

• Canonical monotonicity witness: The canonical witness

map : ∀X∀Y.(X → Y) → list(A×X) → list(A× Y)

is defined as follows:

map f nil = nil map f (〈a, x〉 : xs) = 〈a, fx〉 : (map f xs)

But this is just a composition of the iteratively defined maplist function with the function
G : ∀X∀Y.(X → Y) → (A ×X) → (A × Y) such that G f 〈a, x〉 = 〈a, f x〉. Again an inductive
definition is required to define a monotonicity witness for a coinductive type.

• Breadth first search: we will program a function bfs : BLTree A → A∞, where A∞ is the type
of finite and infinite lists over A, which takes a tree t and returns a list of the branches in
breadth-first order. To do this we first define a function bfl : list(A × BLTree A) → A∞ and set
bfs := bfl ◦ lsb. The coinductive definition is:

head bfl t = if (isnil (bfl t)) then error else inr(fst(head t))

tail bfl t = if (isnil (bfl t)) then error else inr bfl((tail t) ∗ lsb(snd(head t)))

where ∗ denotes append of lists.
bfl is programmed by coiteration as

bfl := λx.CoIt2(map1,map2, s1, s2, x)

where
– map1 := λfλxx, map2 := λfλx.case(x, y. inl y, z. inr fz)
– s1 : list(A× BLTree A) → 1 + A

s1 := λw.if (isnilw) then error else inr(fst(headw))

– s2 : list(A× BLTree A) → 1 + list(A× BLTree A)

s2 := λw.if (isnilw) then error else inr(tailw ∗ lsb(snd(headw)))

• Depth first search: this can be easily obtained from the above program by changing the second step
function to:

s2 : list(A× BLTree A) → 1 + list(A× BLTree A)

s2 := λw.if (isnilw) then error else inr(lsb(snd(headw)) ∗ (tailw))

The above examples show the advantage of using clauses. There is a direct definition of constructors or
destructors which avoids the use of injections or projections in general. This feature also modularizes the
definitons of monotonicity witnesses and the general mechanism of (co)inductive definitions of functions.

4.4. MCICT is safe

We prove termination of the system by embedding it into the already terminating system MICT. For
the type preservation we give here a direct proof.

4.4.1. Strong Normalization of MCICT

Strong normalization of the clausular system MCICT will follow the standard technique of type-
respecting reduction-preserving translations or embeddings, see [12]. This time an embedding (·)′, into
the system MICT will be given. The main idea is to define µX(A1, . . . , Ak)′ as µX.A′1 + . . . + A′k and
νX(A1, . . . , Ak)′ as νX.A′1 × . . .×A′k. Some details are given below.

From now on we agree to associate sum and product to the right.

TITLE WILL BE SET BY THE PUBLISHER 27

Definition 20. The following syntactic sugar will be useful, where k ≥ 2: we fix k ≥ 2.

injkj := λz. inrj−1(inl z), 1 ≤ j < k

injkk := λz. inrk−1 z

πk,j := λz. fst(sndj−1 z), 1 ≤ j < k

πk,k := λz. sndk−1 z

These are, of course, the canonical injections and projections for a k-sum and k-product.

Definition 21 (MICT). Given variables x1, . . . , xk, y1, . . . , yk, f, u, v, w, z we define, for k ≥ 2 and 1 ≤
i ≤ k, the following families of terms ti, ri, qi, pi:

tj [u] := injkj (xjfu) 1 ≤ j ≤ k

r0[v] := tk[v]
rj+1[v] := case(v, x.tk−(j+1)[x], y.rj [y]) 0 ≤ j < k − 1

q0[w] := ykw
qj+1[w] := case(w, x.yk−(j+1)x, y.qj [y]) 0 ≤ j < k − 1

pj [z] := xjf(πk,jz) 1 ≤ j ≤ k

Observe that free variables are:

FV (ti[u]) = {xi, f, u}
FV (ri[v]) = {xk−i, . . . , xk, f, v}
FV (qi[w]) = {yk−i, . . . , yk, w}
FV (pi[z]) = {xi, f, z}

Definition 22. Given variables ~x, ~y with |~x| = |~y| = k define the following terms:

M+[~x] := λfλz.rk−1[z]
S+[~y] := λw.qk−1[w]
M×[~x] := λf.λz.〈p1[z], . . . , pk[z]〉
S×[~y] := λw.〈y1w, . . . , ykw〉

Observe that

FV (M+[~x]) = FV (M×[~x]) = ~x
FV (S+[~y]) = FV (S×[~x]) = ~y

These terms will be needed for the embedding of (co)iterators, (co)recursors and in / out functions.

Definition 23. The embedding (·)′ : MCICT → MICT is defined in two parts, first we define it for the
degenerate cases of (co)inductive types without arguments, that is, µX(), νX(), which are special encoded
types. Then we give the general definition which excludes the previous cases. The ommited cases are just
homomorphic2

(µX())′ := ∀XX
It0(t)′ := t′

Rec0(t)′ := t′

(νX())′ := ∀X.X → X
CoIt0(t)′ := λzz

CoRec0(t)′ := λzz

2V.gr. X′ = X, (A → B)′ = A′ → B′, (∀XA)′ = ∀X.A′, etc.

28 TITLE WILL BE SET BY THE PUBLISHER

Next the general definition where k ≥ 1(
µX(F1, . . . , Fk)

)′ := µX.F ′1 + . . . + F ′k(
νX(F1, . . . , Fk)

)′ := νX.F ′1 × . . .× F ′k
x′ := x

in1,1 t′ := in t′

ink,i t′ := in(injki t′) k ≥ 2
It1(m, s, t)′ := It(m′, s′, t′)
Itk(~m,~s, t)′ := It(M+[~m′],S+[~s ′], t′) k ≥ 2

Rec1(m, s, t)′ := Rec(m′, s′, t′)
Reck(~m,~s, t)′ := Rec(M+[~m′],S+[~s ′], t′) k ≥ 2

(out1,1 t)′ := out t′

(outk,i t)′ := πk,i(out t′) k ≥ 2
out−1

k (~m,~t)′ := out−1(M×[~m′], 〈t′1, . . . , t′k〉)
CoIt1(m, s, t)′ := CoIt(m′, s′, t′)
CoItk(~m,~s, t)′ := CoIt(M×[~m′],S×[~s ′], t′) k ≥ 2

CoRec1(m, s, t)′ := CoRec(m′, s′, t′)
CoReck(~m,~s, t)′ := CoRec(M×[~m′],S×[~s ′], t′) k ≥ 2

where the terms M+,M×,S+,S× are taken from definition 22.

The proofs of type-respect and reduction preservation are routinary.

Proposition 9 (Type respect). If Γ `MCICT r : B then Γ′ `MICT r′ : B′, where if Γ = {x1 : A1, . . . , xn :
An} then Γ′ = {x1 : A′1, . . . , xn : A′xn}.

Proof. Induction on `MCICT. �

Proposition 10 (Preservation of reduction). If r →β s in MCICT then r′ →+
β s′ in MICT.

Proof. Induction on →β in MCICT. �

Proposition 11. MCICT is strongly normalising.

Proof. Immediate from propositions 8 and 10. �

4.5. Type preservation for MCICT

In this section we give a detailed proof of type preservation (subject reduction) for the system MCICT.
This important property is not trivial to prove because of the absence of type anotations in terms given
by the Curry-style presentation and due to the presence of untraceable typing rules, which are rules whose
application cannot be traced by looking only at terms.

Definition 24. Given a type A and a context Γ we define the set CΓ(A) of Γ-instances of A as the least
class of types such that:

• A ∈ CΓ(A) (I1)
• If B ∈ CΓ(A) and X /∈ FV (Γ) then B[X := F] ∈ CΓ(A). (I2).

Lemma 18. If X /∈ FV (Γ) then CΓ(B[X := F]) ⊆ CΓ(B).

Proof. By I1, B ∈ CΓ(B) which implies, as X /∈ FV (Γ), that B[X := F] ∈ CΓ(B), the claim follows now
by the minimality of CΓ(B[X := F]). �

Definition 25. A formula A is an open formula if it is not an universal quantification. The interior of
a formula A, denoted A◦ is defined as follows:

A◦ := A, if A is open.
(∀XA)◦ := A◦

Definition 26. We say that an inference rule is non-traceable if its application is not reflected in the
type system. That is, if the term in the conclusion equals one of the terms of the premisses. Otherwise
the rule is called traceable.

TITLE WILL BE SET BY THE PUBLISHER 29

In MCICT the non-traceable rules are the two rules for ∀

Lemma 19 (Main Lemma). Let Ã be an open formula. If Γ ` t : Ã is derived from Γ ` t : A using only
non-traceable rules then Ã ∈ CΓ(A◦)

Proof. Induction on the number of steps in the derivation of Γ ` t : Ã from Γ ` t : A. Case Analysis on
the first rule used in that derivation.

• (∀I). We have Γ ` t : Ã from Γ ` t : ∀XA where X /∈ FV (Γ), therefore by IH we get
Ã ∈ CΓ((∀XA)◦). But (∀XA)◦ ≡ A◦ therefore Ã ∈ CΓ(A◦).

• (∀E). We have A ≡ ∀X∀Y1 . . .∀YnB with B open, i.e., A◦ = B = B◦ and after the application of
(∀E) we get Γ ` t : B[X := F]. By IH we have Ã ∈ CΓ

(
(∀Y1 . . .∀Yn.B[X := F])◦

)
= CΓ(B[X :=

F]◦). We have two subcases:

– B◦ 6= X. In this case B[X := F] is open of the same form as B. Then the IH yields
Ã ∈ CΓ(B[X := F]) which implies by lemma 18, as w.l.o.g. X /∈ FV (Γ), that Ã ∈ CΓ(B)
i.e.,Ã ∈ CΓ(A◦)

– B◦ ≡ X. In this case B[X := F] = F and the IH yields Ã ∈ CΓ(B[X := F]◦) = CΓ(F ◦) =
CΓ(B[X := F ◦]) ,which implies by lemma 18, as w.l.o.g. X /∈ FV (Γ), that Ã ∈ CΓ(B)
i.e.,Ã ∈ CΓ(A◦)

�

Definition 27. A term t is called an I-term if it was generated by an introduction rule, i.e., I-terms are
terms of the following shapes:

λxr, 〈r, s〉, inl r, inr s, ink,j r, CoItk(~m,~s, r), CoReck(~m,~s, r), out−1
k (~m,~r)

Analogously E-terms are terms generated by an elimination rule, i.e. are terms of the following shapes:

rs, fst r, snd r, case(r, x.s, y.t), Itk(~m,~s, r), Reck(~m,~s, r), outk,j r

Lemma 20 (Generation Lemma). If Γ ` t : A, where A is an open formula then:
• If t is the variable x then there exists a declaration x : B ∈ Γ such that A ∈ CΓ(B◦).
• If t is an I-term then Γ ` t : A is the conclusion of an instance of the rule generating t.
• if t is an E-term then there exists a formula B such that Γ ` t : B is the conclusion of the rule

generating t and A ∈ CΓ(B◦).

Proof. Consider in the derivation Γ ` t : A the last step where a traceable rule R occurs, thus R is
the rule generating t. Suppose that the conclusion of R is Γ ` t : B. The main lemma implies that
A ∈ CΓ(B◦). Case Analysis on t.

• t ≡ x. Then R is (V ar) and therefore exists x : B ∈ Γ and as mentioned before A ∈ CΓ(B◦).
• t is an E-term. This case is immediate as R is the rule generating t.
• t is an I-term. Case analysis on the shape of t. We concentrate on t ≡ ink,j r. In this case R

is (µI), B ≡ µY (C1, . . . , C`) and Γ ` r : Cj [Y := µY (C1, . . . , C`)]. Clearly B = B◦, therefore
A ∈ CΓ(B). Let

C =
{

µX(D1, . . . , Dk) | Γ ` r : Dj [X := µX(D1, . . . , Dk)],

for some k, Di

}
,

we need to show that A ∈ C. We claim that CΓ(B) ⊆ C.
(I1) Obviously B ∈ C.
(I2) Assume R ∈ C and Z /∈ FV (Γ). We have

R[Z := F] ≡ µX(D1, . . . , Dk)[Z := F] ≡

µX
(
D1[Z := F], . . . , Dk[Z := K]

)
.

30 TITLE WILL BE SET BY THE PUBLISHER

R ∈ C implies Γ ` r : Dj [X := µX(D1, . . . , Dk)]. From this, as Z /∈ FV (Γ) we can build a
derivation of

Γ ` r : Dj [X := µX(D1, . . . , Dk)][Z := F].

Finally using substitution properties we obtain

Γ ` r : Dj [Z := F]
[
X := µX(D1, . . . , Dk)[Z := F]

]
,

i.e.

Γ ` r : Dj [Z := F]
[
X := µX(D1[Z := F], . . . , Dk[Z := F])

]
which implies R[Z := F] ∈ C.

Therefore by minimality of CΓ(B) we conclude CΓ(B) ⊆ C which yields A ∈ C. �

Proposition 12 (One-step Subject Reduction). If Γ ` t : A and t →1
β t̂ (i.e. t →β t̂ in one step) then

Γ ` t̂ : A.

Proof. Induction on `. The cases for an introduction rule are direct from the IH. The cases for elimination
rules are direct, as example we show it for (νE).

We have A ≡ Fi[X := νX(F1, . . . , Fk)] and Γ ` outk,j s : A coming from Γ ` s : νX(F1, . . . , Fk).
The interesting subcases are s ≡ CoItk(~m,~s, r),CoReck(~m,~s, r), out−1(~m,~r). We analyze the case s ≡
CoItk(~m,~s, r) and t̂ = mi

(
λz.CoItk(~m,~s, z)

)
(sir). From the assumption Γ ` CoItk(~m,~s, r) : νX(F1, . . . , Fk),

the generation lemma yields Γ ` mi : Fi mon X, Γ ` si : B → Fi[X := B], Γ ` r : B. It is easy to
see that Γ ` λz.CoItk(~m,~s, z) : B → νX(F1, . . . , Fk), which implies Γ ` mi

(
λz.CoItk(~m,~s, z)

)
: Fi[X :=

B] → Fi[X := νX(F1, . . . , Fk)].
On the other hand we have Γ ` sir : Fi[X := B]. Therefore Γ ` mi

(
λz.CoItk(~m,~s, z)

)
(sir) : Fi[X :=

νX(F1, . . . , Fk)], i.e. Γ ` t̂ : A. �

Corollary 10 (Subject Reduction for MCICT). If Γ `E r : A and r →β r̂ then Γ `E r̂ : A.

Proof. Induction on the length of the reduction sequence r →β r̂. �

5. Conclusions

We have presented two Curry-style extensions of system F with monotone (co)inductive types including
not only (co)iteration but also primitive (co)recursion principles and coinductive inversion. Both systems
are safe and therefore suitable to be implemented as functional programming languages, especially the
second one which allows the use of several constructors/destructors and is therefore more friendly to
the user as it modularizes definitions of functions and monotonicity witnesses as was showed in several
examples.

5.1. Related Work

Systems MCICT developed here can be seen as an extension of Hagino’s categorical type system ([7])
with polymorphism and primitive (co)recursion. On the other hand one of the higher-order systems
of [1] can be seen as an extension of the (co)iterative fragment of our first system MICT. Some related
extensions in Church-style are studied in [5, 12].

Our systems have also a counterpart in natural deduction under the Curry-Howard correspondence
developed by extending the second-order logic AF2 in [18], systems which are also related to the work
in [23], and which are useful to extract programs from proofs à la Krivine-Parigot (see [19]), using as
the underlying programming language the formalisms of this article. This has been done again in [18]
where we have also developed Mendler-style sistems of (co)inductive types. The expressive power of such
systems as well as its importance in higher-order functional programming are well-known (see [1], for
example).

TITLE WILL BE SET BY THE PUBLISHER 31

5.2. Future Work

It is desirable to implement our type systems, an starting point in this direction are the implementations
in Haskell given in [24]. On the theoretical side we are currently working on some extensions of system F
with course-of-value (co)iteration and (co)-recursion principles related to some systems developed in [23],
the main goal is to define type systems modelling not only histomorphisms but also hylomorphisms.
The categorical counterpart has already been developed in [2,22,24]. However the course-of-value-system
in [23] does not correspond to the categorical interpretation of course-of-value induction, that is, the oper-
ational semantics does not correspond to the universal property of histomorphisms. It will be interesting
to investigate in which sense both reduction concepts are related.

References

[1] A. Abel, R. Matthes, T. Uustalu. Iteration and Coiteration Schemes for Higher-Order and Nested Datatypes.
In Theoretical Computer Science 333(1-2). pp. 3-66. Elsevier 2005.

[2] Alcino Cunha M. Recursion Patterns as Hylomorphisms. Technical Report DI-PURe-03.11.01, Department of
Informatics, University of Minho. November 2003.

[3] R.L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge University Press, 1993.
[4] H. Dybkjær, A. Melton. Comparing Hagino’s Categorical Programming Language and Typed Lambda-

Calculi.Theoretical Computer Science 111 pp. 145-189. Elsevier 1991.
[5] H. Geuvers. Inductive and coinductive types with iteration and recursion. In B. Nordström, K. Petterson, G.

Plotkin, Eds. Proceedings of the 1992 Workshop on Types for Proofs and Programs B̊astad, Sweden June 1992,
pp. 183-207. Available Via http://www.cs.kun.nl/~herman/BRABasInf_RecTyp.ps.gz.

[6] J. Greiner. Programming with Inductive and Co-Inductive Types. Technical Report CMU-CS-92-109, Carnegie-
Mellon University. January 1992

[7] T. Hagino. A Typed Lambda Calculus with Categorical Type Constructors. In D.H. Pitt, A. Poigné, D.E.
Rydeheard. Category Theory and Computer Science. LNCS 283 Springer Verlag 1987.

[8] T. Hagino. A Categorical Programming Language. Ph.D. Thesis CST-47-87 (also published as ECS-LFCS-87-
38). Department of Computer Science, University of Edinburgh 1987.

[9] B. Jacobs, J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. EATCS Bulletin 62. p. 222-259. 1997.
[10] S. Mac Lane. Categories for the Working Mathematicioan. 2nd. Edition. Vol. 5. Graduate Texts in Mathematics,

Springer Verlag 1998.
[11] Ralph Matthes, Extensions of System F by Iteration and Primitive Recursion on Monotone Inductive Types, Dis-

sertation Universität München, 1999. Available via http://www.tcs.informatik.uni-muenchen.de/~matthes/

dissertation/matthesdiss.ps.gz

[12] Ralph Matthes. Monotone (co)inductive types and positive fixed-point types. In Theoretical Informatics and
Applications 33(4-5) pp. 309-328. EDP Sciences. 1999.

[13] Ralph Matthes. Monotone fixed-point types and strong normalization. In Georg Gottlob, Etienne Grandjean,
and Katrin Seyr, editors, Computer Science Logic, 12th International Workshop, Brno, Czech Republic, August
24-28, 1998, Proceedings, volume 1584 of Lecture Notes in Computer Science, pages 298-312. Springer Verlag,
1999.

[14] Ralph Matthes. Monotone inductive and coinductive constructors of rank 2. In Proceedings of Computer Science
Logic 2001. LNCS 2142. pp. 600-614. Springer Verlag. 2001.

[15] Ralph Matthes. Non-Strictly Positive Fixed-Points for Classical Natural Deduction. In Annals of Pure and
Applied Logic 133. pp. 205-230. Elsevier 2005.

[16] N.P. Mendler. Recursive Types and Type Constraints in Second-Order Lambda Calculus. In Proceedings of the
2nd Annual Symposium on Locig in Computer Science,Ithaca N.Y. pp. 30-36 IEEE Computer Society Press,
Washington D.C. 1987.

[17] N.P. Mendler. Inductive Types and Type Constraints in the Second-Order Lambda Calculus. Annals of Pure
and Applied Logic 51(1-2) pp. 159-172. North-Holland 1991.

[18] F. E. Miranda-Perea. On Extensions of AF2 with Monotone and Clausular (Co)inductive Definitions. Ph.D.
Thesis, Ludwig-Maximilians-Universität München. Germany 2004.

[19] M. Parigot, Recursive programming with proofs. In Theoretical Computer Science 94, pp.335-356. Elsevier.
1992.

[20] E. Poll, J. Zwanenburg. From Algebras and Coalgebras to Dialgebras. In Coalgebraic Methods in Computer
Science (CMCS’2001). Electronic Notes in Theoretical Computer Science 44. Elsevier, 2001.

[21] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In Proceedings of CONCUR ’98, D.
Sangiorigi and R. de Simone (eds.), LNCS 1466, Springer, 1998, pp. 194-218.

[22] T. Uustalu, V. Vene. Primitive (co)recursion and course-of-value (co)iteration, categorically. In INFORMATICA,
v. 10, n.1, pp. 5-26. 1999.

[23] T. Uustalu, V. Vene. Least and greatest fixed-points in intuitionistic natural deduction. In Theoretical Computer
Science, v. 272, n. 1-2, pp. 315-339, 2002.

[24] V. Vene. Categorical programming with inductive and coinductive types. Diss. Math. Uni. Tartuensis, v. 23,
Uni. of Tartu, Aug. 2000.

[25] G.C. Wraith. A note on categorical datatypes. In D.Pitts et al, editors. Category Theory and Computer Science.
LNCS 389, Springer Verlag 1989.

32 TITLE WILL BE SET BY THE PUBLISHER

Appendix A. Syntactical Sugar

Future work includes the implementation of our type system MCICT, here we propose some syntactical
sugar to avoid the heavy use of λ-terms.

• Data type definition.
An inductive type µX(F1, . . . , Fn) can be declared as:

< type name > = Inductive X with constructors
c1 : F1 → X
...
cn : Fn → X

Here ci are particular names for the constructors, ci := ink,i

A Coinductive type νX(F1, . . . , Fn) is declared as:

< type name > = Coinductive X with destructors
d1 : X → F1

...
dn : X → Fn

Here di are particular names for the destructors, di := outk,i

• A function fun : I → B, where I := µX(F1, . . . , Fk), defined by iteration fun := λx.Itk(~m,~s, x) is
represented as:

fun = iterator of I to B with steps
s1 : F1[X := B] → B
...
sk : Fk[X := B] → B

where map1 = m1, . . . mapk = mk

Analogously if fun := λx.Reck(~m,~s, x) we just change the word “iterator”to “recursor”
• A function fun : B → C, where C := νX(F1, . . . , Fk), defined by corecursion fun := λx.CoReck(~m,~s, x)

is represented as:

fun = corecursor of C from B with steps
s1 : B → F1[X := B]
...
sk : B → Fk[X := B]

where map1 = m1, . . . mapk = mk

Analogously if fun := λx.CoItk(~m,~s, x) we just change the word “corecursor”to “coiterator”
• The operational semantics is then, as follows:

– If fun is defined by iteration then fun(cix) → si

(
mapi fun x

)
– If fun is defined by recursion then fun(cix) → si

(
mapi 〈Id, fun〉x

)
– If fun is defined by corecursion then di(fun x) → mapi [Id, fun] (six)
– If fun is defined by coiteration then di(fun x) → mapi fun (six)

Appendix B. Canonical Monotonicity Witnesses

We present a canonical selection for monotonicity witnesses which essentially corresponds to the usual
definitions for the positive cases, we do not restrict ourselves to strict positivity and define also antimono-
tonicity. Moreover we define witnesses for interleaving types.

Definition 28 (Antimonotonicity). Given a type A and a type variable X, we define the type F mon− X
as:

F mon− X := ∀X.∀Y.(X → Y) → F [X := Y] → F

TITLE WILL BE SET BY THE PUBLISHER 33

If a term m inhabits the type F mon− X in a given context, then the functor 〈λXF, m〉 will be
antimonotone (contravariant) in the same context.

Definition 29 (Generic (Anti)monotonicity Witnesses). We define the following MCICT-terms:
• Mid := λxx
• Mtriv := λfλxx
• M→ := λm1λm2λfλxλy.m2f(x(m1fy))
• M∀ := λmλfλx.mfx
• M× := λm1λm2λfλx〈m1f(fst x),m2f(sndx)〉
• M+ := λm1λm2λfλx.case(x, y. inlm1fy, z. inr m2fz)
• Mk

µ := λ~mλ~nλfλx.Itk(~m,~s, x), where si := λz. ink,i(nifz).
• Mk

ν := λ~mλ~nλfλx. out−1
k (~m,~s) where si := nif(outk,i x).

Proposition 13 (Derived Typing Rules for (Anti)monotonicity). The following rules are derivable:
• Γ ` Mid : X mon X
• If X /∈ FV (F) then Γ ` Mtriv : F mon X and Γ ` Mtriv : F mon− X
• If Γ ` m1 : F mon− X and Γ ` m2 : G mon X then

Γ ` M→m1m2 : (F → G) mon X

• If Γ ` m1 : F mon X and Γ ` m2 : G mon− X then

Γ ` M→m1m2 : (F → G) mon− X

• If Γ ` t : ∀Z.F mon X then Γ ` M∀t : (∀ZF) mon X
• If Γ ` t : ∀Z.F mon− X then Γ ` M∀t : (∀Z.F) mon− X
• If Γ ` m1 : F mon X and Γ ` m2 : G mon X then

Γ ` M×m1m2 : (F ×G) mon X

• If Γ ` m1 : F mon− X and Γ ` m2 : G mon− X then

Γ ` M×m1m2 : (F ×G) mon− X

• If Γ ` m1 : F mon X and Γ ` m2 : G mon X then

Γ ` M+m1m2 : (F + G) mon X

• If Γ ` m1 : F mon− X and Γ ` m2 : G mon− X then

Γ ` M+m1m2 : (F + G) mon− X

• If Γ ` mi : (∀X.Fi mon Z) and Γ ` ni : (∀Z.Fi mon X) then

Γ ` Mk
µ ~m~n : µZ(F1, . . . , Fk) mon X

• If Γ ` mi : (∀X.Fi mon Z) and Γ ` ni : (∀Z.Fi mon− X) then

Γ ` Mk
µ ~m~n : µZ(F1, . . . , Fk) mon− X

• If Γ ` mi : (∀X.Fi mon Z) and Γ ` ni : (∀Z.Fi mon X) then

Γ ` Mk
ν ~m~n : νZ(F1, . . . , Fk) mon X

• If Γ ` mi : (∀X.Fi mon Z) and Γ ` ni : (∀Z.Fi mon− X) then

Γ ` Mk
ν ~m~n : νZ(F1, . . . , Fk) mon− X

Communicated by (The editor will be set by the publisher).
August 13, 2008.

