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In order to make computational simulations of real life processes it is very

useful to have high quality structured grids.

• Structured, convex and hexahedral.

• Geometric properties related to the real process. 

• Useful to finite element and finite volume methods.

Main problem.

1. Main problem.



• High computational cost. Low computational cost.

• Few iterations when using finite element More iterations when using finite element 

method. method.

• More precision.                                             Similar precision with more grid elements

2. Background.

Structured hexahedral      vs.      Tetrahedral grids.

grids. 



Ivanenko [6] gives a variational formulation to generate harmonic and

convex grids. He defines a grid over a region simply connected

as the homeomorphism

where B is the unitary cube [0,1] x [0,1] x [0,1].

2. Background.

Defining a grid.

( )x  3

:x B 



This mapping induces a natural decomposition of into six faces, since

each face of the cube is mapped to a face of the boundary of

2. Background.

Defining a grid.
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A useful mapping that gives smoothness properties is the harmonic

mapping. Let us define the local energy as

Ivanenko defines a harmonic mapping as the minimum of the energy

functional (or harmonic functional in this case)

Liseikin [11] shows that this mapping exists and is an homeomorphism.

2. Background.

The harmonic mapping.
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Let us consider an uniform grid of dimension m x n x p on the unitary cube

the continuous functional can be approximated by

2. Background.

Discrete version of the harmonic functional.
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In the 2D case the mapping is approximated using a bilinear mapping.

The condition to guarantee that the mapping is a homeomorphism and

every cell is convex is that the Jacobian of the bilinear mapping to be

positive in all the points of the cell (particularly at the corners).

Hence is possible get the positivity of the Jacobian calculating the areas of

the oriented triangles:

2. Background.

Discrete version of the harmonic functional.

x



In order to extend the 2D ideas to the 3D case, we need to approximate the

mapping by the trilinear mapping

but in this case the Jacobian

is a fourth degree polynomial which depends on

2. Background.

Discrete version of the harmonic functional.
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An alternative given by Azarenok [1] considers the two dodecahedra that

result when making cuts on the diagonals of the cell.

2. Background.

Discrete version of the harmonic functional.
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Instead use the trilinear mapping, we use now a set of linear transformations

of the basic tetrahedron in the space on its correspondent tetrahedron

in the space x, y, z.

2. Background.

Discrete version of the harmonic functional.
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The Jacobian of the linear transformations is given by

hence, if the volume of the tetrahedra is positive then the Jacobian is also

positive and the mapping is invertible.

Also the positivity of the volume of the ten tetrahedra generated gives a

short condition to verify the convexity of the cells which is reliable in most

of the cases (Ushakova [14]).

2. Background.

Discrete version of the harmonic functional.

( ) 6* ( )l lJ T vol T

( ) 0, 1,2,...,10lvol T l 



We can discretize the functional by simply averaging over the 10 tetrahedra

defined by the two dodecahedrons

and we can approximate the total sum in a similar form and get the discrete

version of the harmonic functional

hence the large-scale optimization problem to solve is:

2. Background.

Discrete version of the harmonic functional.
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The discrete version of the harmonic functional

is well defined only for grids having positive volume in all the tetrahedra

since its integrand is in the form          where 

To overcome this pitfall we propose a variant of the discrete harmonic 

functional using the main ideas developed by Barrera et al in [3] for 

the 2D problem.

3. The quasi-harmonic functional Hw.

Numerical problems in the use of the harmonic functional.
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The functional uses a control parameter which controls the use of negative

and small values of vol

3. The quasi-harmonic functional Hw.

The quasi-harmonic functional Hw.
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We get now a quasi-harmonic functional

without the numerical problems presented in the harmonic functional.

hence the large-scale optimization problem to solve is:

3. The quasi-harmonic functional Hw.

The quasi-harmonic functional Hw.
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3. The quasi-harmonic functional Hw.

Examples.

We can take an initial non convex grid:



3. The quasi-harmonic functional Hw.

Examples.

And get an optimal grid:

The red faces are not plane.



4. Hexahedral grids.

Hexahedral grids.

A problem arises when generating convex grids using the quasi-

harmonic functional. The problem is, that not all the cells in the optimal

grid are hexahedral since not all the cell faces are plane.



4. Hexahedral grids.

Coplanarity conditions.

If a face of a cell is not plane this can be seen as a tetrahedron, then if

we use all the tetrahedra associated to the grid cell faces without

repetitions we can include a measure of coplanarity

However, to include this coplanarity conditions explicitly in the

optimization problem produces a large scale problem with restrictions.

, ,( ( ))i j kk Volume face C tol 

D

C

B

A



4. Hexahedral grids.

The modified quasi-harmonic functional.

We include the coplanarity conditions inside the functional as the

regularization

hence the actual optimization problem is to solve

which is well defined over the set of interior cells.
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4. Hexahedral grids.

Numerical limitations.

Grid Can we get coplanarity?

Cos 5-5-10

No.

Vol max =0.0243004.

100% non hexahedral cells.

Swan 7-7-5

No.

Vol max =4.96*10-5.

97% non hexahedral cells.

Peak 10-10-10

No.

Vol max =0.00036997.

77% non hexahedral cells.



4. Hexahedral grids.

A new coplanarity condition.

To overcome the numerical limitations we use the next coplanarity

condition
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4. Hexahedral grids.

Numerical experiments.

Grid Can we get coplanarity by 

the first condition?

Can we get coplanarity by 

the second condition?

Cos 5-5-10

No.

Vol max =0.0243004. 

100% non hexahedral cells.

Yes.

Cos max = 3.64*10-8

Vol max = 4.53*10-6

Swan 7-7-5

No.

Vol max =4.96*10-5.

97% non hexahedral cells.

Yes.

Cos max = 3.52*10-8

Vol max = 6.97*10-6

Peak 10-10-10

No.

Vol max =0.00036997.

77% non hexahedral cells.

Yes.

Cos max = 1.88*10-8

Vol max = 1.47*10-9

Bottle 15-15-10

Yes.

Vol max = 7.38*10-10

Yes.

Cos max = 1.22*10-8

Vol max = 2.6*10-10



Examples. 4. Hexahedral grids.



4. Hexahedral grids.

Examples.



5. A blast wave problem.

A blast wave problem.

We apply our grids in a blast wave problem studied in [10] by Randall

Leveque. The problem is simulated on an unitary sphere solving a system

of hyperbolic PDE’s using CLAWPACK. The grid used by Leveque is

generated by a radial mapping of the cube [-1,1] x [-1,1] x [-1,1].



5. A blast wave problem.

A blast wave problem.

The Euler equations for a compressible polytropic gas are given in standard 

conservation form 

∂t q + ∇ · f (q) = 0,

with



5. A blast wave problem.

A blast wave problem.

The conserved quantities are the density ρ, momentum ρ・u = (ρu, ρv, ρw),

and total energy E. In addition to these equations, we must supply an

equation of state that relates the pressure p to the conserved quantities.

For the polytropic gas, the equation of state is given by

where ϒ is the adiabatic gas constant. We use the value for air and set

ϒ = 1.4.



5. A blast wave problem.

The two used grids.



5. A blast wave problem.

Initial conditions.

• p = 5 inside a sphere of radius 0.2 and center (0,0,−0.4).

•Outside this sphere p = 1.

• Density equals to 1 inside the sphere of radius 0.2 and 0 outside the sphere.

• Solid wall boundary condition. 



5. A blast wave problem.

Blast wave simulations.

Radial grid. Structured convex and hexahedral grid. 

t =   0.00t =   0.10t =   0.20t =   0.30t =   0.40t =   0.50t =   0.60t =   0.70t =   0.80t =   0.90t =   1.00t =   1.10t =   1.20 t =   0.00t =   0.10t =   0.20t =   0.30t =   0.40t =   0.50t =   0.60t =   0.70t =   0.80t =   0.90t =   1.00t =   1.10t =   1.20



5. A blast wave problem.

Blast wave simulations.

A simulation on an ellipsoid.

t =   0.00t =   0.10t =   0.20t =   0.30t =   0.40t =   0.50t =   0.60t =   0.70t =   0.80t =   0.90t =   1.00t =   1.10t =   1.20



6. Conclusions and future work.

Conclusions and future work.
Conclusions:

• The generation of structured and convex grids using a quasi- harmonic 

functional starting with a non convex grid is possible.

• The generation of hexahedral grids over the set of interior cells improving the 

quality of the cells it is also possible.

• The grids generated can be useful to simulate PDE’s problems.

Future work:

• Generate grids on more complex regions.

•Calibrate the internal parameters in the grid generator.

•Work other PDE’s problems.
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