Ejercicios para el Examen IV de Álgebra Superior I Semestre 2020-I 7 de octubre de 2019

Profra: Gabriela Campero Arena

Ayudtes: Manuel Zúñiga y Mariana Garduño

Funciones y sus gráficas

- 1. Sea $A=\{1,2,3\}$ y $B=\{4,5,6\}$. Determine cuáles de las siguientes relaciones son funciones de A en B, justificando su respuesta:
 - (i) $\{(1,5),(3,6)\}.$
- (ii) $\{(1,4),(2,6),(3,4)\}.$
- (iii) $\{(1,4),(2,5),(3,4),(3,6)\}.$
- (iv) $\{(1,6),(2,4),(3,5)\}.$
- 2. Sean $X = \{1, 2, 3\}$ y $Y = \{\emptyset, a, b\}$, con $\emptyset \neq a \neq b \neq \emptyset$. Diga cuáles de las siguientes relaciones son funciones de X en Y, justificando su respuesta:
 - (i) $\{(1,\varnothing),(2,\varnothing),(3,a),(1,b)\}.$
- (ii) $\{(1,a),(2,b),(3,\varnothing),(1,a)\}.$
- (iii) $\{(2,\varnothing),(3,\varnothing)\}.$
- 3. Diga cuál es el dominio e imagen de las siguientes relaciones y posteriormente diga si son funciones en ese dominio, justificando su respuesta.
 - (i) Sea $R \subseteq \mathbb{R} \times \mathbb{R}$, donde $(x, y) \in R$ si y sólo si $x = y^2$.
- (ii) Sea $S \subseteq \mathbb{Z} \times \mathbb{Z}$, donde $(x,y) \in S$ si y sólo si x+y es par.
- (iii) Sea $A = \{1, 2, 3\}$ y sea $S = \{(x, y) \in A^2 : x + 1 = y\}.$
- (iv) Sea $B = \{x \in \mathbb{R} : -1 \le x \le 1\}$ y $R = \{(x, y) \in B^2 : x^2 + y^2 = 1\}.$
- (v) Para cualquier conjunto A, la relación diagonal Δ_A también llamada la identidad.
- (vi) Sean $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\} \text{ y } S \subseteq \mathcal{P}(A) \times \mathcal{P}(B), \text{ donde } S = \{(X, B \setminus X) : X \in \mathcal{P}(A)\}.$
- 4. Grafique cada una de las siguientes funciones y determine su imagen, justificando su respuesta:
 - (i) $f: \mathbb{Z} \to \mathbb{Z}$, dada por f(n) = 2n.
- (ii) $f: \mathbb{Z} \to \mathbb{N}$, dada por $f(n) = n^2 + 1$.
- (iii) $f: \mathbb{N} \to \mathbb{N}$, dada por $f(n) = n^2 + 1$.
- (iv) $f: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^2 + 1$.
- (v) $f: \mathbb{R} \to [1, \infty)$, donde $f(x) = x^2 + 1$.
- (vi) $f: \mathbb{Z} \to \mathbb{Z}$, definida por f(n) = 3n + 2.
- (vii) $f: \mathbb{Z} \to \mathbb{Z}$, definida por f(n) = |n|.
- (viii) $f: \mathbb{R} \to \mathbb{R}$, donde f(x) = 3x.
- (ix) Sean $A = \{1, 2, 3\}, C = \{2, 3\} \text{ y } g : A \times C \to \mathbb{Z},$ donde g(x, y) = 3x - y.
- (x) Sean A y C como en el inciso anterior y $h: A \times C \rightarrow \{0,1,3,4,6,7\}$, donde h(x,y)=3x-y.

Tipos de funciones

- 5. Pruebe que $f:A\to B$ es sobre si y sólo si $\operatorname{im}(f)=B.$
- 6. Determine si las funciones del ejercicio 4 son inyectivas, sobreyectivas y/o biyectivas.
- 7. Verifique que la función $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ tal que $f(x)=\tan x$ es una biyección.
- 8. Denotemos por $\lfloor x \rfloor$ a la parte entera de cualquier número real x, es decir, $\lfloor x \rfloor$ es el máximo entero menor o igual a x.
 - (i) Sea $g : \mathbb{R} \to \mathbb{Z}$ tal que $g(x) = \lfloor x \rfloor$. Demuestre que g es sobre más no inyectiva.
- (ii) Sea $f: \mathbb{N} \to \mathbb{Z}$ dada por $f(n) = (-1)^n \lfloor \frac{n}{2} \rfloor$. Demuestre que f es bivectiva.
- 9. Sea $f: \mathbb{Q}^+ \to \mathbb{Z}$ dada por $f\left(\frac{n}{m}\right) = 2^n 3^m$, donde $\frac{n}{m}$ es una fracción simplificada (es decir, $n \ y \ m$ no tienen factores comunes). Demuestre que f es una función inyectiva.
- 10. Sea $f: \mathbb{R} \to \mathbb{R}$ definida como $f(x) = x^2 + 1$. Determine las imágenes directas de los siguientes subconjuntos del dominio bajo f:
 - (i) [-1,1)
- (iii) $(-\infty, 1/2]$
- (v) [1, 10]

- (ii) [0, 3]
- (iv) [0,3)
- 11. Sea $f: \mathbb{R} \to \mathbb{R}$ definida como $f(x) = x^2 + 1$. Determine las preimágenes (o imágenes inversas) de los siguientes subconjuntos del codominio bajo f:
 - (i) [-1,1)
- (iii) $(-\infty, 1/2]$
- (v) [1, 10]

- (ii) [0, 3]
- (iv) [0,3)
- 12. Sean X y Y conjuntos cualesquiera y sea $f: X \to Y$. Demuestre lo siguiente.
 - (i) $f[\varnothing] = \varnothing$.
- (ii) Si $A_1, A_2 \subseteq X$, entonces $f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$.
- (iii) Sea I un subconjunto no vacío de los naturales, y para cada $i \in I$, sea $A_i \subseteq X$. Entonces, $f\left[\bigcup_{i \in I} A_i\right] = \bigcup_{i \in I} f[A_i]$.
- (iv) Sea I un subconjunto no vacío de los naturales, y para cada $i \in I$, sea $A_i \subseteq X$. Entonces, $f\left[\bigcap_{i \in I} A_i\right] \subseteq \bigcap_{i \in I} f[A_i]$.
- (v) $f^{-1}[\varnothing] = \varnothing$.

- (vi) Si $B_1, B_2 \subseteq Y$, entonces $f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2]$.
- (vii) Sea I un subconjunto no vacío de los naturales, y para cada $i \in I$, sea $B_i \subseteq Y$. Entonces, $f^{-1}\left[\bigcap_{i\in I} B_i\right] = \bigcap_{i\in I} f^{-1}[B_i]$.
- (viii) Sea I un subconjunto no vacío de los naturales, y para cada $i \in I$, sea $B_i \subseteq Y$. Entonces, $f^{-1}\left[\bigcup_{i \in I} B_i\right] = \bigcup_{i \in I} f^{-1}[B_i]$.
- 13. Sean X y Y conjuntos, sea $f:X\to Y.$ Demuestre lo siguiente:
 - (i) Para todo $A \subseteq X$, $A \subseteq f^{-1}[f[A]]$.
- (ii) Para todo $B \subseteq Y$, $f[f^{-1}[B]] \subseteq B$.
- (iii) Para todo $A \subseteq X$, $f[X] \setminus f[A] \subseteq f[X \setminus A]$.
- (iv) f es inyectiva si y sólo si para todo $A \subseteq X$, $A = f^{-1}[f[A]]$.
- (v) f es sobre si y sólo si para todo $B \subseteq Y$, $f[f^{-1}[B]] = B$.
- (vi) f es biyectiva si y sólo si para todo $A \subseteq X, Y \backslash f[A] = f[X \backslash A]$.
- 14. Dé un ejemplo por cada uno de los siguientes incisos de conjuntos X, Y, un subconjunto A de X o subconjuntos A_1 y A_2 de X, y una función $f: X \to Y$ de forma que:
 - (i) $f[A_1] \cap f[A_2] \not\subseteq f[A_1 \cap A_2]$.
- (ii) $f[X \setminus A] \subsetneq Y \setminus f[A]$.
- (iii) $f[X \setminus A] \cap (Y \setminus f[A]) = \emptyset$.
- (iv) $Y \setminus f[A] \subsetneq f[X \setminus A]$.

Composición de funciones y funciones inversas

- 15. Sean A y B conjuntos cualesquiera y sea $f: A \to B$. Prueba que $\mathrm{id}_B \circ f = f$ y $f \circ \mathrm{id}_A = f$.
- 16. Dé un ejemplo de dos funciones f y g de \mathbb{R} a \mathbb{R} tales que $f \neq g$, pero $f \circ g = g \circ f$.
- 17. Sean $f: \mathbb{Z} \to \mathbb{Q}$ y $g: \mathbb{Q} \to \mathbb{Z}$ tales que $f(x) = x^2/2 + 1$ y $g(x) = \lfloor x \rfloor$ (es decir, g(x) es el máximo entero no mayor que x).
 - (i) Defina $g \circ f$ y $f \circ g$;
- (ii) determine $(g \circ f)(-2)$ y $(f \circ g)(-1/2)$.
- 18. (i) Sea $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{0\}$, donde f(x) = 1/(2-x). Demuestre que f es invertible, después defina f^{-1} y diga cuál es su dominio.
- (ii) Sea $f: \mathbb{R} \setminus \{3\} \to \mathbb{R}$, donde f(x) = (3x + b)/(x 3) con $b \neq -9$. Demuestre que f es invertible y muestre que $f^{-1} = f$.
- 19. Dé ejemplos de conjuntos A y B y funciones $f:A\to B$ y $g:B\to A$ tales que:

- (i) $g \circ f = id_A$, pero $f \circ g \neq id_B$;
- (ii) $g \circ f \neq id_A$, pero $f \circ g = id_B$.
- 20. Sea $f:A\to B$ con $A\neq\varnothing$. Demuestre lo siguiente:
- (i) f es sobre si y sólo si f tiene inversa derecha.
- (ii) f es inyectiva si y sólo si f tiene inversa izquierda.
- (iii) Supóngase que f es inyectiva. Entonces para cualesquiera funciones $g_1, g_2 : C \to A$, si $f \circ g_1 = f \circ g_2$, se tiene que $g_1 = g_2$.
- (iv) Supóngase que f es sobre. Entonces para cualesquiera funciones $g_1, g_2 : B \to C$, si $g_1 \circ f = g_2 \circ f$, se tiene que $g_1 = g_2$.
- (v) Sean $f:A\to B$ y $g:B\to C$ funciones tales que ambas tienen inversas derechas. Demuestre que entonces $g\circ f$ tiene inversa derecha.
- 21. Para cada una de las siguientes funciones determine si tienen inversa, inversa izquierda o inversa derecha. En caso de que lo tengan encuentre una.
 - (i) $f: \mathbb{Z} \to \mathbb{R}$, definida por f(x) = 2x 3.
 - (ii) $f: \mathbb{Z} \to \mathbb{Z}^+ \cup \{0\}$, definida por f(n) = |n|.
- (iii) $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$.
- 22. Sea $f: \mathbb{N} \to \mathbb{N}$ definida como $f(n) = n^2$.
- (i) Exhiba dos inversas izquierdas distintas de f.
- (ii) Muestre que f no tiene inversa derecha.
- 23. Sean $A,\,B$ y C conjuntos cualesquiera. Demuestre lo siguiente.
 - (i) Sean $B' \subseteq B$, $f: A \to B'$ y $g: B \to C$. Si f y g son inyectivas, entonces $g \circ f$ es inyectiva.
- (ii) Sean $f: A \to B$ y $g: B \to C$. Si f y g son suprayectivas, entonces $g \circ f$ es suprayectiva.
- (iii) Sean $f:A\to B$ y $g:B\to C$. Si f y g son biyectivas, entonces $g\circ f$ es biyectiva.
- 24. Dé ejemplos de conjuntos A, B y C y de funciones $f:A \to B$ y $g:B \to C$ de forma que se cumpla lo siguiente (un ejemplo por inciso):
- (i) g es sobre, pero $g \circ f$ no es sobre;
- (i) f es inyectiva, pero $g \circ f$ no es inyectiva;
- (i) f es inyectiva, g es sobre, pero $g \circ f$ no es ni inyectiva ni sobre;
- (i) f no es sobre, g no es inyectiva, pero $g \circ f$ es biyectiva.
- 25. Sean A, B, C y D conjuntos cualesquiera y sean $f: A \to B$ y $g: B \to C$ y $h: C \to D$.
 - (i) Demuestre que si $g \circ f$ es inyectiva, entonces f es inyectiva.
- (ii) Demuestre que si $g \circ f$ es sobre, entonces g es sobre.

- (iii) Demuestre que si $g \circ f$ y $h \circ g$ son biyectivas, entonces f, g y h son biyectivas. Sugerencia: Demuestre primero que g y h son sobres, luego que f y g son inyectivas, después que h es inyectiva y finalmente que f es sobre.
- (iv) Supongamos que A=D y que $h\circ g\circ f$ y $f\circ h\circ g$ son sobres, mientras que $g\circ f\circ h$ es inyectiva. Demuestre que entonces f,g y h son biyectivas. Sugerencia: Demuestre primero que f y h son sobres, luego que h es inyectiva, después que g es sobre, que f es inyectiva y finalmente que g es inyectiva.